青瓯柑S-SAP标记与杨梅转录组多态性cSSRs标记筛选策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓯柑(Citrus suavissima Hort. ex Tanaka)是浙江南部最具特色的地方柑橘栽培品种,青瓯柑是于2005年所发现的普通瓯柑芽变新种类,但目前尚无可用于早期鉴别的特异分子标记。杨梅(Wyrica rubra Sieb. et Zucc., Myricaceae)是原产我国的特产果树,我国有着丰富的资源,但其可用的多态性cSSRs (cDNA-SSRs)比较缺乏。为此,本研究旨在开发青瓯柑特异S-SAP标记以及建立基于转录组的杨梅多态性cSSRs标记的筛选策略。研究取得了以下主要结果。
     1、对经典S-SAP标记技术做了调整,建立了瓯柑EcoR I单酶切S-SAP标记技术体系,并且从EAT和C12选择性扩增产物中,筛选出了一条长约250bp特异于青瓯柑的S-SAP标记。对该标记条带进行了克隆测序,确定其长度为247bp该标记十分稳定,可以直接用来证明青瓯柑是普通瓯柑的真实芽变。该标记相应的EcoR I单酶切S-SAP标记技术分析体系,也能够为青瓯柑新品种审定和种苗鉴定提供技术支持;该技术体系也可以为其他果树同类研究提供技术参考。同时,本研究也克隆出了4条瓯柑的RNaseH-LTR片段序列,可用于近缘柑橘种类品种的S-SAP分析研究。
     2、从杨梅‘荸荠’转录组的UniGenes序列鉴别出了6883个cSSR位点,相应的cSSR位点分布频率为1个cSSR位点/3.2Kb。在所有cSSR位点当中,重复序列长度小于或等于12bp cSSR位点约占58%,14-22bpcSSR位点约占35%,等于或长于24bp的cSSR位点约占7%;二核苷酸和三核苷酸cSSR位点是主要类型,两者所占比例超过75%,AG/CT和AAG/CTT分别在二核苷酸和三核苷酸cSSR位点中所占比例最高,同其他类型cSSR位点一样,它们的数量随着重复次数增加而减少。在所有杨梅转录组cSSRs中,有594个复合cSSRs,其约占总cSSRs的10%。杨梅转录组上有5914cSSRs被系统地分为11类。此5914cSSRs共包含6330个cSSR位点,占杨梅转录组总cSSR位点数的92.0%。
     3、基于11类cSSRs的多态性比较分析,本研究设计出了杨梅转录组多态性cSSRs标记筛选的策略。该策略为:首先,优先选取2-ntL、Compound B、 Compound A cSSRs和Compound D这四类cSSRs进行筛选多态性cSSRs;其次,从3-ntL中,可以快速获取大量的多态性cSSRs;此外,2-ntM cSSRs可以用于从中筛选出多态性水平较高的cSSRS。采用此策略,可以大大地提高杨梅转录组多态性cSSRs标记筛选的效率,为大量筛选多态性cSSRs标记提供很大便利。
     4、本研究也获得了109个杨梅多态性cSSRs标记,其能够产生389个等位基因(多态性比率为93.8%)。利用这些cSSRs标记,进一步确认了部分杨梅样品的遗传关系。这109个cSSRs标记,可以作为杨梅分子遗传育种的一项重要研究资源。
Ougan (Citrus suavissima Hort. ex Tanaka) is the most special cultivar of citrus in the south of Zhejiang Province. Green Ougan is a newly variety found in2005of mandarin derived from the bud mutation of Ordinary Ougan, but there still was no available molecular markers for early distinguishing of the new variety. Chinese bayberry (Myrica rubra Sieb. et Zucc., Myricaceae) is one specialty of fruit tree which is native to China, and there are plenty of the resoureces in the country, but the available polymorphic cSSRs (cDNA-cSSRs) were scarce. Therefore, this research was armed at developing the S-SAP marker specific for Green Ougan and establishing a strategy for screening polymorphic cSSRs from those derived from Chinese bayberry transcriptome. The main results are as follows:
     1. Some modifications were made to S-SAP technique, and a system of S-SAP technique for Ougan was established, in which genomic DNA was digested solely with EcoR I. From the selective amplification products generated with the primers of C12and EAT, an about250bp band specific for Green Ougan was screened out, which size was confirmed to be247bp with cloning and sequencing. The results could be used to proof that Green Ougan is an authentic bud sport of Ordinary Ougan and also provide technical supports for the cultivar registration and the seedling identification of Green Ougan. The S-SAP technique based on digestion solely with EcoR I, could also provide some technical references to the similar studies of other fruit trees. Meanwhile, four RNaseH-LTR fragment sequences of mandarin were obtained by cloning, and they should be able to be applied to the S-SAP analysis of the varieties of citrus close-related to mandarin.
     2. In the UniGenes derived from RNA-seq of the transcriptome of Chinese bayberry cv. Biqi,6883cSSR loci were identified with1/3.2Kb in frequency.≤12bp,14-22bp and≥24bp cSSR loci respectively accounted for58%,35%and7%or so; di-and tri-nucleotide cSSR loci took up over75%; AG/CT and AAG/CTT were the most in corresponding cSSR loci and their number decreased with the repeat number increasing. In all the cSSRs derived from the transcriptome of Chinese bayberry, there were594compound cSSRs about accounting for10%, and5914 cSSRs were divided comprehensively into eleven types. The5914cSSRs contained6330cSSR loci occupying92.0%of all loci.
     3. A strategy was devised to screen for polymorphic cSSRs based on the analysis of polymorphisms in each type of cSSR. And it was that the2-ntL, Compound B, Compound A, and Compound D cSSRs should be preferentially selected for screening polymorphic cSSRs. In addition,3-ntL cSSRs could be suitable for obtaining abundant polymorphic cSSRs efficiently, and2-ntM cSSRs suitable for screening highly polymorphic cSSRs. Using the strategy, the efficiency of screening polymorphic cSSRs could be greatly raised and that could greatly facilitate consequently screening polymorphic cSSRs in large scale.
     4.109polymorphic cSSRs were also obtained and they can generate389alleles with polymorphism ratio being93.8%. Using these cSSR markers, the relationships among some Chinese bayberry samples were furtherly confirmed. And the109cSSR markers should be a promising genomic resource for molecular breeding of Chinese bayberry.
引文
鲍露,徐昌杰,江文彬,陈履荣,陈昆松.葡萄AFLP技术体系建立及其在超藤与藤稔葡萄品种鉴别中的应用.果树学报,2005,22(4):422-425
    白瑞霞,彭建营.DNA分子标记在果树遗传育种研究中的应用.西北植物学报,2004,24(8):1547-1554
    蔡斌,李成慧,姚泉洪,周军,陶建敏,章镇.葡萄全基因组SSR分析和数据库构建.南京农业大学学报,2009,32(4):28-32
    程凤昌,何桥,洪林,郭启高,漆巨容,吴纯清,余德全,魏召新,梁国鲁.晚熟甜橙芽变的ISSR鉴定.西南农业学报,2008,21(5):1378-1380
    杜晓云,张青林,罗正荣.逆转座子分子标记及其在果树上的应用.果树学报,2009,26(6):865-870
    高志红,章镇,韩振海.SSR技术及其在果树上的应用.果树学报,2002,19(5):281-285
    关玲,章镇,王新卫,薛华柏,刘艳红,王三红,乔玉山.苹果基因组SSR位点分析与应用.中国农业科学,2011,44(21):4415-4428
    何新华,陈力耕,陈怡,郭长禄.中国杨梅资源及利用研究评述.果树学报,2004,41(5):467-471
    贾怀志.三种基于逆转座子分子标记技术体系的建立及其在苹果芽变鉴定中的应用.南京:南京农业大学硕士学位论文,2008
    贾怀志,蔡斌华,王飞,孙俊,王昆,章镇.利用S-SAP鉴定富士苹果芽变.西北植物学报,2009,(6):1111-1115
    李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26(5):769-776.
    李兴军,吕均良,李三玉.中国杨梅研究进展.四川农业大学学报,1999,17(2):224-229
    李元军,唐美玲,于青,刘美英,宋来庆,韩振海.富士苹果AFLP体系的优化及其在鉴定早熟芽变中的应用.园艺学报,2009,36(3):327-332
    林伯年,徐林娟,贾春蕾.RAPD技术在杨梅属植物分类研究中的应用.园艺学报,1999,26(4):221-226
    刘闯萍,王军.SSR标记及其在葡萄上的应用.果树学报,2008,25(1):93-101
    刘峰,王运生,田雪亮,茆振川,邹学校,谢丙炎.辣椒转录组SSR挖掘及其多态性分析.园艺学报,2012,39(1):168-174
    陆丹,牛楠,李玥莹.SSR标记技术在植物基因组研究上的应用.沈阳师范大学学报(自然科学版),2010,28(1):83-85
    房经贵,章镇,周兰华,陈崇顺,王三红.RAPD标记鉴定果树芽变的可行性分析.果树学报,2001,18(3):182-185
    钱剑林,俞文生,王化坤,娄晓鸣,章镇.江浙地区杨梅主要品种的ISSR分析.植物资源与环境学报,2006,15(3):17-20
    钱皆兵,陈子敏,陈俊伟,谢鸣,秦巧平,郑金土,杨荣曦,吴才有,张上隆.优质大果杨梅新品系乌紫杨梅的生物学特性及其RAPD鉴定.果树学报,2007,24(1):64-67
    邱英雄,傅承新,孔航辉.杨梅不同品种的ISSR分析.农业生物技术学报,2002,10(4):343-346
    任卫波,张蕴薇,韩建国,方程,郭慧琴.SCAR标记在作物和牧草上的应用现状及前景.草原与草坪,2006,(4):3-8
    孙保娟,李植良,黎振兴,罗少波,李艳艳.SCAR标记转化失败的原因和对策.分子植物育种,2010,8(3):589-594
    孙俊.苹果Tyl-copia类逆转座子的特性及其在苹果属遗传多样性分析中的应用.南京:南京农业大学博士学位论文,2005
    王彩虹,王倩,戴洪义,田义柯,贾建航,束怀瑞,王斌.苹果柱型基因Co的一个AFLP标记的SCAR转换.园艺学报,2002,29(2):100-104
    王静毅.SSR分子标记开发和在香蕉种质资源遗传分析中的应用.海口:海南大学博士学位论文,2010
    王娟,宋尚伟.SSR标记在苹果种质资源及遗传育种研究中的应用.河南农业科学2009,(5):16-20
    王丽鸳.基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究.杭州:中国农业科学院茶叶研究所博士学位论文,2011
    谢让金,邓烈.一种适合AFLP分析的柑橘DNA提取方法.生物技术,2007,17(6):27-28
    谢小波,求盈盈,戚行江,郑锡良,邱立军,张跃建.杨梅雌雄种质遗传关系的RAPD和ISSR分析.果树学报,2008a,25(2):198-202
    谢小波,求盈盈,戚行江,郑锡良,邱立军,张跃建.浙江杨梅品种遗传差异的RAPD和ISSR分析.浙江农业学报,2008b,20(1):1-5
    徐象华,斯金平,谢建秋,蓝云龙,曾燕如,江伟林,叶文伟.柑橘新品种无子瓯柑的选育.果树学报,2006,23(5):781-782
    徐月,曹庆芹,冯永庆,杨凯,秦岭,廖康.短雄花序板栗芽变的AFLP分析.园艺学报,2006,33(6):1321-1324
    杨晓玲,施苏华,唐恬.新一代测序技术的发展及应用前景.生物技术通报,2010,(10):76-84
    伊凯,闫忠业,刘志,王冬梅,杨峰,张景娥.苹果芽变选种鉴定及应用研究.果树学报,2006,23(5):745-749
    易芍文,胡忠荣,袁媛,高正清,李昆明.分子标记在果树育种中的应用.云南农业科技,2003,(5):34-38
    章恢志,吴谋成,林显荣.瓯柑药用物质的研究.果树科学,1989,6(3):173-176
    张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展.果树学报,2006,23(6):871-876
    张水明.基于AFLP和SSR分子标记的中国杨梅遗传多样性分析.杭州:浙江大学博士学位论文,2009
    张玉山,白旭峰.一种简单快速高分辨率的PAGE胶显带方法.遗传,2008,30(2):251-254
    张增翠,侯喜林.SSR分子标记开发策略及评价.遗传,2004,26(5):763-768
    郑金土,张望舒,鲍露,王霄霄,褚有为,傅起升,徐昌杰,陈昆松.荸荠种杨梅变异新株系甬选5号的主要生物学特征及其AFLP鉴别.果树学报,2006,23(3):397-400
    Albani MC, Battey NH, Wilkinson MJ. The development of ISSR-derived SCAR markers around the seasonal flowering locus (SFL) in Fragaria vesca. Theoretical and Applied Genetics,2004,109(3):571-579
    Berenyi M, Gichuki ST, Schmidt J, Burg K. Tyl-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweetpotato. Theoretical and Applied Genetics,2002,105(6-7):862-869
    Botstein D, White R1, Skolnick M, Davis RW. Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics,1980,32(3):314-331
    Breto MP, Ruiz C, Pina JA, Asins MJ. The diversification of Citrus clementina hort. ex tan., a vegetatively propagated crop species. Molecular Phylogenetics and Evolution,2001,21(2):285-293
    Buschiazzo E, Gemmell NJ. The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays,2006,28(10):1040-1050
    Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng YQ. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics,2010,11:569
    Chen KS, Xu CJ, Zhang B, Ferguson IB. Red bayberry:botany and horticulture. Horticultural Reviews,2004,30:83-114
    Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiology,2000,124(4):1483-1492
    Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney RK, Cook DR, Singh NK. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biology,2011,11:17
    Egan AN, Schlueter J, Spooner DM. Applications of next-generation sequencing in plant biology. American Journal of Botany,2012,99(2):175-185
    Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ. Polymorphism of insertion sites of Tyl-copia class retrotransposons and its use for linkage and diversity analysis in pea. Molecular and General Genetics,1998,260(1):9-19
    Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS. Transcriptomic analysis of Chinese bayberry(Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics,2012,13:19
    Hughes M, Hollingsworth PM, Squirrell J. Isolation of polymorphic microsatellite markers for Begonia sutherlandii Hook. f. Molecular Ecology Notes,2002,2: 185-186
    Hunger S, Di Gaspero G, Mohring S, Bellin D, Schafer-Pregl R, Borchardt DC, Durel CE, Werber M, Weisshaar B, Salamini F, Schneider K. Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta vulgaris L.). Genome,2003,46(1):70-82
    Jiao Y, Jia HM, Li XW, Chai ML, Jia HJ, Chen Z, Wang GY, Chai CY, van de Weg EW, Gao ZS. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry(Myrica rubra). BMC Genomics,2012, 13:201
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics,1999,98(5):704-711
    Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics,2006,22(5):253-259
    Kaur S, Cogan N, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW. Transcriptome sequencing of lentil based on second-generation technology permits large-scale UniGene assembly and SSR marker discovery. BMC Genomics,2011,12:265
    Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Research,2008,18(1):30-38
    Konieczny A, Ausubel FM. A procedure for mapping arabidopsis mutations using codominant ecotype-specific PCR-based markers. The Plant Journal,1993,4(2): 403-410
    Kruglyak S, Durrett RT, Schug MD, Aquadro CF. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proceedings of the National Academy of Sciences of the United States of America,1998,95(18):10774-10778
    La Rota M, Kantety RV, Yu JK, Sorrells ME. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics,2005,6:23
    Li YC, Korol AB, Fahima T, Nevo E. Microsatellites within genes:Structure, function, and evolution. Molecular biology and Evolution,2004,21(6): 991-1007
    Marie S, Lukic M, Cerovic R, Mitrovic M, Boskovic R. Application of molecular markers in apple breeding. Gentika,2010,42(2):359-375
    Maroof M, Biyashev RM, Yang GP, Zhang Q, Allard RW. Extraordinarily polymorphic microsatellite DNA in barley-species-diversity, chromosomal locations, and population-dynamics. Proceedings of the National Academy of Sciences of the United States of America,1994,91(12):5466-5470
    Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal,1993,3(1):175-182
    Negi MS, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theoretical and Applied Genetics,2000, 101(1-2):146-152
    Nei M, Tajima F. Problems arising in phylogenetic inference from restriction-site data. Molecular Biology and Evolution,1987,4(3):320-323
    Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 1993,85(8):985-993
    Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA. Transcriptome sequencing in an ecologically important tree species:assembly, annotation, and marker discovery. BMC Genomics,2010,11:180
    Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN, Flavell AJ. Rapid isolation of plant Tyl-copia group retrotransposon LTR sequences for molecular marker studies. The Plant Journal,1999,19(6):711-717
    Rohlf FJ. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.1.Exeter Software, Setauket, New York,2000
    Rico-Cabanas L, Martinez-Izquierdo JA. CIRE1, a novel transcriptionally active Tyl-copia retrotransposon from Citrus sinensis. Molecular Genetics and Genomics,2007,277(4):365-377
    Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research,1992,20(2):211-215
    Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ. Analysis of SSRs derived from grape ESTs. Theoretical and Applied Genetics,2000,100(5): 723-726
    Shirasawa K, Kishitani S, Nishio T. Conversion of AFLP markers to sequence-specific markers for closely related lines in rice by use of the rice genome sequence. Molecular Breeding,2004,14(3):283-292
    Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W. How much effort is required to isolate nuclear microsatellites from plants? Molecular Ecology,2003,12:1339-1348
    Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti J, Flavell AJ.Tyl-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theoretical and Applied Genetics,2005,110: 1195-1202
    Tautz D. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Research,1989,17:6463-6471
    Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):Frequency, length variation, transposon associations, and genetic marker potential. Genome Research,2001,11(8):1441-1452
    Terakawa M, Kikuchi S, Kanetani S, Matsui K, Yumoto T, Yoshimaru, H. Characterization of 13 polymorphic microsatellite loci for an evergreen tree, Myrica rubra. Molecular Ecology Notes,2006,6:709-711
    Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnology,2009,27:522-530
    Venturi S, Dondini L, Donini P, Sansavini S. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theoretical and Applied Genetics,2006,112:440-444
    Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabea UM. AFLP-a new technique for DNA-fingerprinting. Nucleic Acids Research,1995,23(21):4407-4420
    Wang ZY, Fang BP, Chen JY, Zhang XJ, Luo ZX, Huang LF, Chen XL, Li YJ. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics,2010,11:726
    Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas B, Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular and General Genetics,1997,253(6):687-694
    Weber JL. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics, 1990,7(4):524-530
    Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics,2011,12:451
    Weising K, Winter P, Hiittel B, Kahl G. Microsatellite markers for molecular breeding. Journal of Crop Production,1997,1(1):113-143
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990,18(24):7213-7220
    Williams J, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Research,1990,18(22):6531-6535
    Wu KS, Jones R, Danneberger L, Scolnik PA. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research,1994,22(15): 3257-3258
    Xiao JP, Chen LG, Xie M, Liu HL, Ye WQ. Identification of AFLP fragments linked to seedlessness in Ponkan mandarin(Citrus reticulata Blanco) and conversion to SCAR markers. Scientia Horticulturae,2009,121(4):505-514
    Xie RJ, Zhou J, Wang GY, Zhang SM, Chen L, Gao ZS. Cultivar Identification and Genetic Diversity of Chinese Bayberry(Myrica rubra) Accessions Based on Fluorescent SSR Markers. Plant Molecular Biology Reporter,2011a,29(3): 554-562
    Xie XB, Qiu YY, Ke LP, Zheng XL, Wu GT, Chen JQ, Qi XJ, Ahn S. Microsatellite primers in red bayberry, Myrica rubra (Mycicaceae). American Journal of Botany,2011b,98(4):e93-e95
    Yi G, Lee JM, Lee S, Choi D, Kim BD. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theoretical and Applied Genetics,2006,114:113-130
    Zalapa JE, Cuevas H, Zhu HY, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botanly, 2012,99(2):193-208
    Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review. Molecular Ecology,2002,11(1):1-16
    Zeng FQ, Yi B, Tu JX, Fu TD. Identification of AFLP and SCAR markers linked to the male fertility restorer gene ofpol CMS(Brassica napus L.). Euphytica,2009, 165:363-369
    Zhang JK, Zhu XY, Luo FL, Sun CD, Huang JZ, LiX, Chen KS. Separation and purification of neohesperidin from the albedo of Citrus reticulata cv. Suavissima by combination of macroporous resin and high-speed counter-current chromatography. Journal of Seperation Science,2012,35:128-136
    Zhang SM, Gao ZS, Xu CJ, Chen KS,Wang GY, Zheng JT, Lu T. Genetic Diversity of Chinese Bayberry(Myrica rubra Sieb. & Zucc.) Accessions Revealed by Amplified Fragment Length Polymorphism (AFLP). HortScience,2009a,44(2): 487-491
    Zhang SM, Xu CJ, Gao ZS, Chen KS, Wang GY. Development and characterization of microsatellite markers for Chinese bayberry(Myrica rubra Sieb. & Zucc.). Conservation Genetics,2009b,10(5):1605-1607
    Zhang WS, Li X, Zheng JT, Wang GY, Sun CD, Ferguson IB, Chen KS. Bioactive components and antioxidant capacity of Chinese bayberry(Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. European Food Research and Technology,2008,227(4):1091-1097
    Zhao GL, Dai HY, Chang LL, Ma Y, Sun HY, He P, Zhang ZH. Isolation of two novel complete Tyl-copia retrotransposons from apple and demonstration of use of derived S-SAP markers for distinguishing bud sports of Malus domestica cv. Fuji. Tree Genetics and Genomes,2010,6(1):149-159
    Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification. Genomics,1994, 20(2):176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700