基于确定学习理论的轴流压气机旋转失速建模与检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机被誉为飞机的“心脏”,没有高性能的航空发动机,就不会有先进的航空武器装备和具市场竞争力的民用客机。涡轮风扇(turbofan,简称涡扇)发动机是目前世界上军用和大型民用飞机最常用的动力装置。这种发动机的最主要特点是在高亚音速/超音速飞行条件下具有很高的效率。由于航空发动机的研发周期一般在15至20年左右,世界上航空发动机技术领先的国家都高度重视相关的基础和应用基础研究。高性能航空发动机是一个国家工业综合水平的重要标志。世界上主要发达国家长期以来一直将航空发动机列为优先发展产业,并高度重视与之相关的基础研究。我国是世界上具有航空发动机自主研制能力的少数国家之一,但与世界先进水平相比,在可靠性,稳定性和效率等方面还有明显差距,迫切需要我国在航空发动机领域加大投入、加快发展。喘振和旋转失速是航空涡扇发动机轴流压气机研究领域中重要而困难的问题。由于旋转失速一般被认为是喘振的先兆,因此对失速初始扰动的建模和检测对喘振和旋转失速的主动控制具有重要意义。鉴于旋转失速的建模与检测技术具有重要的理论研究意义和实际应用价值,本文对其进行了深入的研究,并基于确定学习理论,在前人研究的基础上进行了以下的研究和创新:
     1、利用确定学习理论提出一个基于动力学分岔特性的轴流压气机旋转失速检测方法。基于简化后的Moore-Greitzer三阶压气机模型,分析了该系统中存在的分岔现象。选取跟喷管开度相关的γ参数作为分岔参数,分析表明随着γ从大到小变化,该系统中的Pitchfork分岔会先于Hopf分岔发生。Pitchfork分岔的出现对应于旋转失速的发生,所以预测Pitchfork的发生可以预测轴流压气机系统中的旋转失速的发生,从而提出预警并避免系统进入不稳定状态。利用基于确定学习理论方法,对压气机系统随着γ参数的变化出现的几种典型模态的相关系统动态进行辨识,表达和存储并建立相应的模式库。然后利用动态模式识别方法,提出一个针对Pitchfork分岔的快速检测机制。
     2、利用确定学习理论提出一个基于高阶Mansoux模型的轴流压气机旋转失速检测方法。该方法分为两个阶段:训练阶段和测试阶段。在训练阶段,基于高阶离散化Mansoux模型,利用确定学习理论提出一个对旋转失速初始扰动的内在系统动态的近似准确建模方法。利用高阶有限维Mansoux模型,获得对压气机无穷维分布参数系统的有限维近似建模。在此基础上,研究Mansoux模型中的某个测量点的系统动态中由其本身状态和相邻2个测量点的状态表达的部分,并假设其它系统动态已知。进一步,利用在失速初始扰动阶段少数测量点信号,采用RBF神经网络和确定学习算法,对在失速初始扰动阶段每个测量点对应的未知内在系统动态进行辨识,获得对这些系统动态的常值RBF神经网络近似,并将之看作是对旋转失速初始扰动内在系统动态的近似建模。在检测阶段,利用以上通过确定学习获得的对旋转失速初始扰动的常值RBF神经网络全息特征表达,构建由常值RBF神经网络组成的旋转失速初始扰动模式库;然后基于这种失速初始扰动全息特征表达,构造一组嵌入了常值RBF神经网络的动态估计器,将这组动态估计器与被测模式比较得到一组残差信号;最后利用动态模式的相似性定义和最小残差准则,判断系统是否进入旋转失速初始扰动。
     3、利用北京航空航天大学的低速轴流压气机试验台验证本文所提检测方法的有效性。通过沿周向布置的5个压力传感器获取压气机前缘壁面静压,对这些静压数据进行相应的转换,得到相应的流量脉动数据。利用以上所提的动态模式识别方法,对这些数据进行离线分析,离线分析包括两个环节,即先利用确定学习算法对这些数据进行近似准确建模,将得到的关于旋转失速初始扰动的内部系统动态知识以常值RBF神经网络存储。然后利用动态模式识别方法对被测数据进行快速检测。其次,利用LabVIEW软件对以上所提旋转失速检测算法进行在线实现,并利用该在线实现程序现场对旋转失速进行检测,充分的实验结果表明,本文所提方法能够对旋转失速进行快速准确检测。本文所提检测算法提取了压气机系统的流量信号与压力升信号,并对压气机系统的主要系统动态进行辨识,与传统检测方法相比,本文所用信息更加全面准确,以得到更为准确的旋转失速检测结果。
Aero-engine is known as the “heart” of aircraft. Without high-performance aircraftengines, there would be no advanced aviation weaponry and civil airplanes with power-ful market competitiveness. Turbofan (referred to as the vortex fan) engine is the mostcommonly used power unit of the military and large civil aircraft in the world. Themost notable feature of turbofan engine is that it works with high efciency at highsubsonic/supersonic fight conditions. Since the development of the aero-engine usuallytakes about15-20years, countries that lead in aero-engine technologies in the world at-tach great importance to the relevant basic and applied basic research. High-performanceaero-engine is an important symbol of a nation’s industrial level. Major developed coun-tries in the world, always take aero-engine industry as the priority industry, and attachgreat importance to the associated basic research. Our country is one of the few countrieswith independent capability of aero-engine development in the world. However, comparedwith the world’s advanced level, there are still obvious gaps in terms of reliability, stabil-ity and efciency. Therefore, it is urgent for China to increase investment and acceleratethe development in the feld of aero-engine. Rotating stall and surge are important andchallenging problems in the area of axial compressors. For the reasons that, rotatingstall precedes surge in many machines, rotating stall has received much more attentionin both experimental and theoretical studies. To implement active control of rotatingstall and surge, it is essential to achieve accurate modeling and rapid detection of stallprecursors. Based on its strong points and importance both in theoretical research andpractical application, stall inception detection will be further studied based on the de-terministic learning theory in this dissertation. The main contribution and innovation ofthis dissertation are summarized as follows:
     1. A precursor for Pitchfork bifurcation in axial compression system was proposed.Firstly, the bifurcation behavior of Moore-Greitzer model was analyzed: A Pitchforkbifurcation in this model is relevant to rotating stall; A Hoph bifurcation is associatedwith surge. The former bifurcation comes up before the latter one. Consequently, aprecursor for Pitchfork bifurcation can be treated as rotating stall. Secondly, based onthe bifurcation behavior of Moore-Greitzer model, a precursor for Pitchfork bifurcationwas proposed via deterministic learning, which was recently presented to learn unknownnonlinear system dynamics from uncertain dynamic environments. Specifcally:(i) severaltypical patterns in Moore-Greitzer model were identifed by deterministic learning, the obtained knowledge of the approximated system dynamics is stored in constant RBFnetworks;(ii) A bank of estimators are constructed using the constant RBF networksto represent the training patterns and previously learned system dynamics is embeddedin the estimators;(iii) By comparing the set of estimators with the test pattern, a setof recognition errors are generated, and the average L1norms of the errors are taken asthe similarity measure between the dynamics of the training patterns and the dynamicsof the test pattern. Therefore, the test pattern (Pitchfork bifurcation) similar to one ofthe training patterns can be rapidly recognized according to the smallest error principle.Simulations results illustrate the approach.
     2. We present an approach for approximately accurate modeling and rapid detectionof stall precursors. Firstly, a method of modeling the system dynamics corresponding tostall precursor is presented:(i) The Mansoux model, which is a high-dimensional ODEmodel used to approximate the axial compressor, is considered as the approximation ofthe model describing stall precursors.(ii) By analyzing the properties of the Mansouxmodel, for a measurement point, the system dynamics represented by states at this pointand other two adjacent points are supposed to be unknown. The other system dynamicsare assumed to be known.(iii) By using RBF neural networks (NN) and the deterministiclearning algorithms, approximately-accurate modeling of the dominant system dynamicscorresponding to stall precursors is achieved. The obtained knowledge of system dynamicsis stored in constant RBF networks, and is considered as the locally accurate approxima-tion of the model describing stall precursors. Secondly, a scheme for rapid detection ofa stall precursor is proposed:(i) By using the constant RBF networks obtained above,a bank of estimators are constructed corresponding to trained stall precursors.(ii) Bycomparing the set of estimators with the test monitored system, a set of residuals aregenerated.(iii) Based on dynamical pattern recognition, the occurrence of stall precursorcan be rapidly detected according to the smallest residual principle. Simulation studiesare included to show the efectiveness of the approach.
     3. A low-speed axial fow compressor test rig of Beijing University of Aeronau-tics and Astronautics is employed to verify the efectiveness of the proposed detectionmethod. Five ftting seats are evenly placed in the circumferential direction of the com-pressor. Respectively, fve high response transducers, which are used for dynamic pressuremeasurement for the fow feld between the rotor and stator, are spaced at each fttingseats. The data sampled by the pressure transducers located was saved as voltage values.The voltage values are transformed to axial velocity coefcients by linear transformation.Firstly, by employing the dynamic pattern recognition algorithm proposed in this disser- tation, the data acquired are processed of-line. The general process for the of-line dataprocessing consists of two phases: the identifcation phase and the recognition phase. Inthe training phase, locally-accurate identifcation of the stall inception system dynamicsis achieved by using radial basis function (RBF) neural networks (NNs) through deter-ministic learning. The obtained knowledge of the approximated gait system dynamicsis stored in constant RBF networks. A bank of estimators are constructed using con-stant RBF networks to represent the training stall inception patterns. In the recognitionphase, by comparing the set of estimators with the test stall inception pattern, a set ofrecognition errors are generated, and the average L1norms of the errors are taken as thesimilarity measure between the dynamics of the training stall inception patterns and thedynamics of the test stall inception pattern. Therefore, the test stall inception patternsimilar to one of the training gait patterns can be rapidly recognized according to thesmallest error principle. Secondly, the online programs for stall inception detection arerealized by LabVIEW. Sufcient online experiments were carried out to demonstrate theefciency of the algorithm proposed in this dissertation. Experimental results shows thepossible value of the stall inception detection method in engineering. In this dissertation,information about fow rate and pressure rise in the compressor is employed to identifythe internal system dynamics corresponding to stall inception. Compared to other de-tection methods in the literature, much more information are exploited to achieve moreaccurate detection results.
引文
[1] Piscopo, P. Propulsion technology partnerships for the new Millennium: a viewfrom the Pentagon, Ofce of Deputy Under Secretary of Defense [C],1999.
    [2] AIAA Air Breathing Propulsion Technical Committee, The Versatile AfordableAdvanced Turbine Engines(VAATE) Initiative-An AIAA Position Paper [C], Jan-uary,2006.
    [3]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D].中国科学院工程热物理研究所,2004.
    [4] Smith, G. Casing treatment in axial compressors [D]. Ph.D Thesis, EngineeringDepartment, University of Cambridge,1980.
    [5]程晓斌.小波分析与压气机旋转失速先兆研究[D].中国科学院工程热物理研究所,2001.
    [6] Lin, F., Li, Z., Recent focus and future research energy in smart engine technology[C]. Proceedings of Symposium on Engineering the21th Century (SEE2000),2000:1388-1396.
    [7] Epstein, A.H., FowcsWillims, J.E., and Greitzer, E.M. Active Suppression of aero-dynamic instabilities in turbomachines [J]. Trans. AIAA J. Of Propulsion andPower,1986,5(2):204-211.
    [8] Emmons H W. Pearson C E, Grant H P. Compressor surge and stall propagation[J]. Transactions of the ASME,1955,77(3):455-469.
    [9] Wang C., Hill D.J. Deterministic Learning Theory for Identifcation, Recognitionand Control [M]. CRC Press,2009.
    [10] Paduano J D. Analysis of compression system dynamics [J]. Unpublished,2000.
    [11] Gu Guoxiang, Andrew Sparks, Siva S. Banda. An overview of rotating stall andsurge control for axial fow compressors [J]. IEEE Transactions on Control SystemTechnology,1999,7(6):639-647.
    [12]吴艳辉,楚武利,张皓光.轴流压气机失速初始扰动的研究进展[J].力学进展,2008,38(5):571-584.
    [13] Schulze, W.M., Erwin, J.R. and Westphal, W.R., Investigation of an impluseaxial-fow compressor rotor over a range of blade angles [C]. NACA RM L50F27a,1950.
    [14] C.S. Tan, I. Day, S. Morris, A. Wadia. Spike-type compressor stall inception,detection, and control [J]. Annu. Rev. Fluid Mech.2010,42:275–300.
    [15]沈阳黎明航空发动机(集团)有限责任公司.燃气轮机原理、结构与应用[M].科学出版社,2002.
    [16] Wennerstrom, A.J. Investigation of a1500ft/sec, Transonic, High-Through-Flow,Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio [C]. AFARL-TR-76-92, Aerospace Research Laboratories, Wright-Patterson Airforce Base,1976.
    [17] Koch, C. C., Experimental Evaluation of Outer Case Blowing or Bleeding of SingleStage Axial Flow Compressor [C], NASA CR-54592,1970.
    [18]蔡运金等.应用端弯叶片增加压气机喘振裕度[J].航空动力学报,1988,3(3).
    [19]陶德平,彭泽琐,魏星禄.压气机二次流及其控制[J].航空动力学报,1988,3(4).
    [20] Ffowcs Williams, J.E., and Huang, X. Active stabilization of compressor surge [J],Journal of Fluid Mech.,1989,204:245-262.
    [21] Pinsley, J.E., Guenette, G.R., Epstein, A.H. and Greitzer, E.M. Active stabiliza-tion of centrifugal compressor surge [J], Journal of Turbomachinery,1991,113(4):723-732.
    [22] Gysling, D.L, Gugundji, J., Greitzer, E.M., and Epstein A.H. Dynamic controlof centrol of centrifugal compressor surge using tailored structures [J]. Journal ofTurbomachinery,1991,113(4):710-722.
    [23] Ffowcs Willims, J.E. and Graham, W.R. An engine demonstration of active surgecontrol [C].1990, ASME Paper90-GT-224.
    [24] Ffowcs Willims, J.E., Harper, M.F.L., and Allwright, D.L. Active Stabilization ofCompressor in a Working Engine [J].1992, ASME Paper92-GT-88.
    [25]聂超群.压缩系统喘振现象主动控制的实验研[D].中科院工程热物理研究所博士学位论文,1994.
    [26] Paduano, J.D., Epstein, A.H., Valavani, L., Longely, J.P., Greitzer, E.M., andGuennette,G.R. Atcive control of rotating stall in a low speed, axial fow compres-sor [J]. ASME J. of Turbomachinery,1993,115(1):48-56.
    [27] Day, L.J. Active suppression of rotating stall and surge in axial compressors [J].ASME J. of Turbomachinery,1993,115(1):40-47.
    [28] Haynes, J. M., Hendricks, G. J., and Epstein, A. H., Active Stabilization of Rotat-ing Stall in a Three-Stage of Axial Compressor [J]. ASME J. of Turbomachinery,1994,116(2):226-239.
    [29] van Schalkwyk, C. M., Paduano, J. D., Greitzer, E. M., and Epstein, A. H., Activestabilization of axial compressors with circumferential inlet distortion [C].97-GT-279, ASME Turbo Expo’97, Orlando,1997.
    [30] Hynes, T.P., and Greitzer, E. M., A method of assessing efects of circumferentialfow distortion on compressor stability [J]. ASME J. of Turbomachinery,1987,109(1):371-379.
    [31]张靖煊.畸变条件下轴流压气机叶顶间隙流对流动失稳影响的非定常机制[D].中国科学院研究生院博士学位论文,2007.
    [32] Weigl, H.J., Paduano, J.D., Frechette, L..C, et al. Active stabilization of rotatingstall in a transonic single stage axial compressor [C].97-GT411, ASME TurboExpo,1997.
    [33] Weigl, H. J. Active stabilization of rotating stall and surge in a transonic singlestage axial compressor [D]. Ph.D. Thesis, MIT, Department of Aeronautics andAstronautics,1997.
    [34] Eveker, K.M., Gysling, D.L., Nett, C.N., and Sharma, O.P. Integrated Controlof Rotating Stall and Surge in a Low Speed Axial Compression System [C]. InProceedings of SPIE, Orlando,1995,1494:17-18.
    [35] Bern, R.G., Weigl, H.J., Paduano, J.D. and Epstein, A.H., Experimental tech-niques for actuation, sensing and measurement of rotating stall dynamics in highspeed compressors [C]. in Proceedings of SPIE, Orlando,1995,2494:166-185.
    [36] Freeman, C., Wilson, A.G., Day, I.J., and Swinbanks, M.A. Experiments in ActiveControl of Stall on an Aeroengine Gas Turbine [C], ASME Turbo Expo’97,1997,97-GT-280.
    [37] Yeung, S. And Murray, R. M. Reduction of bleed valve bandwidth requirements forcontrol of rotating stall using continuous air injection [C]. Conference on ControlApplications, East Hartford,1997.
    [38] Simon J.S., Valavani L., Epstein A.H., Greitzer E.M. Evaluation of approachesto active compressor surge stabilization [J]. ASME J. of Turbomachinery,1993,115(1):57–67.
    [39] Wang, Y., and Murray, R. M. Efects of Noise, Magnitude Saturation, and RateLimits on Rotating Stall Control [C].36th IEEE Conference on Decision andControl,1997.
    [40] JD Paduano, EM Greitzer, AH Epstein. Compression system stability and activecontrol [J]. Annu. Rev. Fluid Mech.2001,33:491–517.
    [41] D’Andrea, R., Behnken, R. L. Murray, R. M. Active control of rotating stall viapulsed air injection: a parametric study on a low speed axial fow compressor [C].In Proceedings of SPIE, Orlando,1995,1494:152-165.
    [42] Behnken, R. L., Leung, M., and Murray, R. M., Characterizing the Efects of AirInjection on Compressor Performance for Use in Active Control of Rotating Stall
    [C].97-GT-316, ASME Turbo Expo’97, Orlando,1997.
    [43] Liaw, D.C., and Abed, E.H. Active Stabilization of Rotating Stall: A Bifurcation-Theoretic Approach [C]. Second IFAC Nonlinear Control Symposium, Bordeaux,France,1992.
    [44] Badmus, O.O., Chowdhury, S., Eveker, K.M., Nett, C.N., and Rivera, C.J. Simpli-fed Approach for Control of Rotating stall Part I: Theoretical Development andPart II: Experimental Results [C]. AIAA93-2229and AIAA93-2234,29th JointPropulsion Conference, Monterey,1993.
    [45] McCaughan F E. Application of bifurcation theory to axial fow compressor insta-bility [J]. Journal of Turbomachinery,1989,111:426-433
    [46] McCaughan F E. Bifurcation analysis of axial fow compressor stability [J]. SIAMJournal on Applied Mathematics,1990,20:1232-1253
    [47] Day I J. Stall inception in axial fow compressor [J]. ASME Journal of Turboma-chinery,1993,113(1):1-9.
    [48] Protz, J.M., Nonlinear active control of rotating stall and surge [D]. MS thesis.Mass. Inst. Technol., Cambridge,1997.
    [49] Setiawan J.D., Distortion tolerance of stall/surge controllers in axial compressionsystems [D]. MS thesis. Mass. Inst. Technol., Cambridge,1996.
    [50] Moore F.K., Greitzer E.M. A theory of post-stall transients in axial compressionsystems Part I: Development of Equations [J]. Journal of Engines for Gas Turbinesand Power,1986,108(1):68-76.
    [51] Moore F.K, Greitzer E.M. A theory of post-stall transients in axial compressionsystems Part I: Application [J]. Journal of Engines for Gas Turbines and Power,1986,108(2):231-239.
    [52] Paduano J.D., Valavani L., Epstein A.H. Parameter identifcation of compressordynamics during closed-loop operation [C]. American control conference,1991:2379-2385.
    [53] Mansoux C.A., Cysling D.L., Setiawan J.D., Paduano J.D. Distributed nonlin-ear modeling and stability analysis of axial compressor stall and surge [C]. In:Proceedings of the Annerican Control Conference,1994:2305-2316.
    [54]高坤华.基于混沌理论的压气机失速预测及分析[D].西北工业大学博士学位论文,2007.
    [55] Bonnaure, L.P. Modeling High Speed Multistage Compressor Stability [D]. M. S.Thesis, MIT, Department of Aeronautics andAstronautics,1991.
    [56] Hendricks, G.J., Bonnaure, L.P., Longley, J.P., et al. Analysis of Rotating StallOnset in High-Speed Axial Flow Compressors [C]. AIAA paper93-2233, the29thJoint Propulsion Conference, Monterey,1993
    [57] Feulner, M.R., Hendricks, G.J., Paduano, J.D., Modeling for control of rotatingstall in high speed multi-stage axial compressors [C].94-GT200, ASME TurboExpo, The Hague, Netherlands,1994.
    [58] Frechette, L.G. Implications of stability modeling for high-speed axial compressordesign [D] M. S. Thesis, MIT, Department of Aeronautics and Astronautics,1997.
    [59] Sun, X.F. Three-dimensional compressible fow stability theory of rotating stall[C]. BUAA Technical Report BH-B4765, Beijing University of Aeronautics andAstronautics, Department of Jet Propulsion,1996.
    [60] Mcdougal N.M., Cumpsty N.A., Hynes T.P. Stall inception in axial compressors[J]. ASME Journal of Turbomachinery,1990,112(1):116-125
    [61] Garnier V.H., Epstein A.H., Greitzer E.M. Rotating wave as a stall inception in-dication in axial compressors [J]. ASME Journal of Turbomachinery,1991,113(2):290-301
    [62] Hoying D. A., Stall inception in a multistage high speed axial compressor [C].29thJoint Propulsion conference, Monterey,1993.
    [63] Inoue M., Kuroumaru M., Iwamoto T., Ando Y. Detection of a rotating stallprecursor in isolated axial fow compressor rotors [J]. ASME Journal of Turboma-chinery,1991,113(2):281-289.
    [64] Tryfonidis M, Etchevers O, Paduano J.D., Epstein A.H., Hendricks G.J. Prestallbehavior of several high-speed compressors [J]. ASME Journal of Turbomachinery,1995,117(1):62-80.
    [65] Day, I. J., Breuer, T., Escuret, J., Cherrett, M., Wilson, A., Stall inception and theprospects for active control in four High Speed Compressors [C].97-GT-281,ASMETurbo, orlando,1997.
    [66] Day I J, Freeman C. The unstable behavior of low and high-speed compressors[J]. ASME Journal of Turbomachinery,1994,116(2):194-201.
    [67] Park H G. Unsteady disturbance structures in axial fow compressor stall inception[M]. Master’s Thesis, MIT,1994.
    [68] Camp T.R., Day I.J. A study of spike and modal stall phenomena in a low-speedaxial compressor [J]. ASME J. Turbomachinery,1998,120:393-401.
    [69] Day I J, Breuer T, Escuret J, Cherrett M, Wilson A. Stall inception and theprospects for active control in four high-speed compressors [J]. ASME Journal ofTurbomachinery,1999,121(1):18-27.
    [70] Gong Y F. A computational model for rotating stall and inlet distortions in mul-tistage compressors [D]. MIT,1999.
    [71] Stenning, A. H.,1980, Rotating stall and surge [J]. ASME Journal of Fluids En-gineering,1980,102:14-20.
    [72] Takata H, Nagano S. Nonlinear analysis of rotating stall [J]. Journal of Engineeringfor Power,1972,94(4):279-293
    [73] Moore F.K. A theory of rotating stall in axial compressors Part I-III [J]. Journalof Engines for Gas Turbines and Power,1984,106(2):313-334.
    [74] McDougall N.M. Stall inception in axial compressors [D]. PHD. Dissertation, Cam-bridge University,1988.
    [75] Sears W.R. Operation method in the theory of airfoil in nonuniform motion [J].Journal of Franklin lmtitute,1940,230:120-145.
    [76] Wilson A C, Freeman C. Stall inception and development in an axial fow aero-engine [J]. ASME Journal of Turbomachinery,1994,116(2):216-225.
    [77] Hoss B, Leinhos D, Fottner L. Stall inception in the compressor system of a tur-bofan engine [J]. ASME J. Turbomach.,2000,122:32–43.
    [78] Liao S F, Chen J Y. Time frequency analysis of rotating stall by means of wavelettransform [C]. ASME96-GT-57,1996.
    [79] Lin F, Chen J, Li M L. Experimental investigation of unteady rotor tip fows in ahigh speed compressor throttled to stall [C]. ASME Turbo Expo,2002-GT-30360,2002
    [80] Xie F, Xie S S. Detection of rotating stall in aircraft engine based on waveletanalysis [J]. Journal of Aerospace Power,2006,21(4):754-758.
    [81] Teolis C, Gent D, Kim C, Teolis A, Paduano J, Bright M. Eddy current sensorsignal processing for stall detection [C]. In Proceedings of IEEE Aerospace Con-ference,2005:3479-3495.
    [82] Cameron J, Morris S. Spatial correlation based stall inception analysis [C]. Pre-sented at Am. Soc. Mech. Eng. Turbo Expo07, Montreal, Canada,2007.
    [83] Longley J.P. Inlet distortion and compressor instabilities [D]. Cambridge: Cam-bridge University,1988.
    [84] Longley JP, Shin HW, Plumley RE, Silkowski PD, Day IJ, et al. Efects of rotatinginlet distortion on multistage compressor stability [J]. ASME J. Turbomach.,1996,118(2):181–88.
    [85] Lin, F., Chen, J., and Li, M.,2004. Wavelet analysis of rotor-tip distrubances inan axial-fow compressor [J]. J. of Propulsion and Power,2004,20:319–334.
    [86] Inoue, M., Kuroumaru, M., Yashida, S., and Furukawa, M., Short-and Long-Scale Disturbances Leading to Rotating Stall in an Axial Compressor Stage withDiferent Stator/Rotor Gaps [C]. American Society of Mechanical Engineers, Paper2001-GT-341, June2001.
    [87] Paduano, J.D., Valavani, L., Epstein, A.H., et al. Modeling for Control of RotatingStall [J]. Automatica,1994,30(9):1357–1373.
    [88] Tahara N, Kurosaki M, Ohta Y, Outa E, Tsurumi Y, Nakakita T.2004. Earlystall warning technique for axial fow compressors [J]. Journal of Turbomachinery,2007,129:448-456
    [89] Y. Liu, M. Dhingra, J.V.R. Prasad. Benefts of active compressor stability manage-ment on turbofan engine operability [J]. Journal of Engineering for Gas Turbinesand Power,2009,131(4):1-9.
    [90] Wadia A, Cbristensen D, Prasad J.V.R. Compressor stability management in air-craft engines [C]. Proc.25th Congr. Int. Council Aerosp. Sci, Hamburg, Germany,ICAS2006-5.4.2(Pap. No.759).
    [91] Christensen, D., Cantin, P., Gutz, D., Szucs, P., Wadia, A., Armor, J., Dhingra,M.,Neumeier, Y., and Prasad, J. Development and Demonstration of a Stability Man-agement System for Gas Turbine Engines [C]. ASME Paper No. GT-2006-90324,2006.
    [92] Christensen D, Cantin P, Gutz D, Szucs P, Wadia A, et al. Development anddemonstration of a stability management system for gas turbine eneines [J]. ASMEJournal of Turbomachinery,2008,130:1-9.
    [93] Tong Z, Li L, Nie C. A method of online stall control by DSP in axial compressors[C]. Presented at Am. Soc. Mech. Eng. Turbo Expo09, Florida, GT2009–59771,2009.
    [94] Bright, M.M., Qammar, H.K., Weigl, H.J., and Paduanao, J.D. Stall precursoridentifcation in high-speed compressor stages using chaotic time series analysismethods [J]. Journal of Turbomachiuery,1997,119(3):491-500.
    [95] Bright, M.M., Qammar, H.K., and Wong, L. Investigation of pre-stall mode andpip inception in high-speed compressors through the use of correlation integral [J].Jourual of Turbomachiuery,1999,121(4):743-750.
    [96]张靖煊.一种捕捉预示压气机失稳预警信号的新方法的研究[J].航空动力学报,2004,19(2):270-276.
    [97]李长征,熊兵,吴晨.基于短时能量的压气机喘振检测[J].测控技术,2010,29(3):92-93.
    [98]刘勃,雷勇.压气机气动失稳先兆检测快速算法的研究[J].测控技术,2009,28(3):23-25.
    [99]李扬,李应红,吴云.基于方差分析的某轴流式压气机失速征兆起始检测[J].航空计算技术,2005,35(1):104-105.
    [100] Ya.Z. Guzel’baev and A.L. Khavkin. Methods of deticting rotating surge and stallbased on group statistical treatment of centrifugal compressor regime parameters[J]. Chemical and Peroleum Engineering,2007,43(9):543-546
    [101] Hoss B, Leinhos D, Fottner L. Stall inception in the compressor system of a tur-bofan engine [J]. ASME J. Turbomach.,2000,122:32–43.
    [102] Yew-Wen Liang and Der-Cherng Liaw. Detection of surge and stall in compressionsystems: an example study [J]. IEEE Transactions on Automatic Control,2001,46(10):1609-0613.
    [103] Nie C, Xu G, Cheng X, Chen J. Micro air injection and its unsteady response ina low-speed axial compressor [J]. ASME J. Turbomach.,2002,124:572–79.
    [104]王聪,陈填锐,刘腾飞.确定学习与基于数据的建模及控制[J].自动化学报,2009,35(6):693-706.
    [105] Broomhead D.S., Lowe D. Multivariable functional interpolation and adaptivenetworks [J]. Complex Systems,1988,2:321-355.
    [106] Poggio T., Girosi F. Networks for approximation and learning [J]. Proceedings ofthe IEEE,1990,79(9):1481-1497.
    [107] Narendra K.S. and Annaswamy A.M. Stable Adaptive Systems [M]. EnglewoodClifs, NJ: Prentice-Hall,1989.
    [108] Sastry S.S., Bodson M. Adaptive Control: Stability, Convergence, and Robustness[M]. Englewood Clif, NJ: Prentice-Hall,1989.
    [109] Kurdila A.J., Narcowich F.J., Ward J.D. Persistancy of excitation in identifcationusing radial basis function approximants [J]. SIAM J. Control and Optimization,1995,33(2):625-642.
    [110] Wang C., Hill D.J. Learning from neural control [J]. IEEE Transactions On NeuralNetworks,2006,17(1):130-146.
    [111] Wang C., Chen T., Chen G., et al. Deterministic learning of nonlinear dynamicalsystems [J]. International Journal of Bifurcation and Chaos,2009,19(4):1307-1328.
    [112] Wang C, Hill D.J. and Chen G. Deterministic learning of nonlinear dynamicalsystems [C]. Proceedings of the18th IEEE International Symposium on IntelligentControl [C]. Institute of Electrical and Electronics Engineers Inc,2003:87-92.
    [113] Wang C. and Hill D.J. Deterministic learning and rapid dynamical pattern recog-nition [J]. IEEE Transactions on Neural Networks,2007,18(3):617-630.
    [114]陈填锐.确定学习理论与智能故障诊断[D].华南理工大学博士学位论文,2010.
    [115]彭滔.分布参数系统的确定学习理论及其应用[D].华南理工大学博士学位论文,2011.
    [116]曾玮.基于确定学习理论的人体步态识别研究[D].华南理工大学博士学位论文,2012.
    [117] Farrell J. Stability and approximator convergence in nonparametric nonlinearadaptive control [J]. IEEE Transactions on Neural Networks,1998,9(5):1008-1020.
    [118] Khalil H.K. Nonlinear Systems [M].2nd ed. Englewood Clifs, NJ: Prentice Hall,1996.
    [119] Liu T., Wang C. and Hill D.J. Deterministic learning and rapid dynamical pat-tern recognition of discrete-time systems [A]. IEEE International Symposium onIntelligent Control-Proceedings [C]. United States: IEEE,2008:1091-1096.
    [120] Wang C, Chen T R. Rapid detection of small oscillation faults via deterministiclearning [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2011:1629-1634.
    [121] Anderson B.D.O. and Johnson C.R. Exponential convergence of adaptive identif-cation and control algorithms [J]. Automatica,1982,18(1):1-13.
    [122] Shilnikov L.P., Shilnikov A.L., Turaev D.V., et al. Methods of Qualitative Theoryin Nonlinear Dynamics [M]. Singapore: World Scientifc,2001.
    [123] Lavrich, P.L. Time resolved measurements of rotating stall in axial fow compres-sors [D]. GTL Report194, Ph.D. Thesis, MIT Dept. of Aeronautics and Astro-nautics,1988.
    [124] Silkowski PD.1995. Measurements of rotor stalling in a matched and mismatchedmultistage compressor [C]. Gas Turbine Lab. Rep. No.221, Mass. Inst. Technol.,Cambridge.
    [125] Greitzer E M. The stability of pumping systems-the1980Freeman Scholar Lecture[J]. ASME Journal of Fluid Engineering,1981,103:193-242.
    [126] Yong Wang, Richard M. Murray. Bifurcation control of rotating stall with actuatormagnitude and rate limits: Part I―model reduction and qualitative dynamics [J].Automatica,2002,38(4):597-610.
    [127] Dhingra M., Neumeier Y., Prasad J.V.R., Breeze-Stringfellow A., Shin H.W.,Szucs P.N. A stochastic model for a compressor stability measure [C]. Presentedat Am. Soc. Mech. Eng. Turbo Expo06, Barcelona, Spain,2006.
    [128] Dhingra, M., Neumeier, Y., Prasad, J.V.R., and Shin, H. W. Stall and surgeprecursors in axial compressors [C]. Presented at39th AIAA/ASME/SAE/ASEEJoint Propulsion Conference and Exhibit, Huntsville, Alabama,2003.
    [129] McCaughan F.E. Application of bifurcation theory to axial fow compressor insta-bility [J]. Journal of Turbomachinery,1989,111:426-433.
    [130] Liaw, D. C., R. A. Adomaitis, and E. H. Abed. Two-parameter bifurcation analysisof axial fow compressor dynamics [C]. Proc. American Control Conf., Boston,1991:2955-2960
    [131] Abed E H, Houpt P K, Hosny W M. Bifurcation analysis of surge and rotatingstall in axial fow compressors [J]. AMSE Journal of Turbomachinery,1993,115(4):817-824
    [132] Liaw, D. C.,&Abed, E. H. Control of compressor stall inception: A bifurcation-theoretic approach [J]. Automatica,1996,32(1),109–115.
    [133] Adomaitis R A, Abed E H. Bifurcation analysis of nonuniform fow patterns inaxial-fow gas compressors [C]. In:1stWorld Congress on Nonlinear Analysis,1992.
    [134] E. H. Abed, J. H. Fu, Local feedback stabilization and bifurcation control, I. Hopfbifurcation [J]. Systems and Control Letters,1986,(7):11-17.
    [135] E. Abed, J. H. Fu. Local feedback stabilization and bifurcation control, II. sta-tionary bifurcation [J]. Systems and Control Letters,1987,(8):467-473.
    [136] Iooss G., D. D. Joseph, Elementary Stability and Bifurcation Theory [M],2nd ed.,Springer-Verlag, New York,1990.
    [137] James C Robinson. All possible chaotic dynamics can be approximated in threedimensions [J]. Nonlinearity,1998,11(3):529-545
    [138] Greitzer E M. Surge and rotating stall in axial fow compressors, Part I: Theoreticalcompression system model, and Part II: Experimental results and comparison withtheory [J], ASME Journal of Engineering for Power,1976,98:190-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700