三维曲面板类件的多点滚压成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多点滚压成形是一种新型的板材柔性成形技术,其基本原理是采用具有可弯曲性能的辊状物体作为成形工具,结合多点调形技术实现三维曲面板类件的柔性成形。多点滚压成形可以实现球形件、鞍形件、扭曲形件、盘形件、筒形件和自由曲面件等三维曲面件的高效、连续成形,具有较高的工程应用价值和学术研究价值。
     本文依据多点滚压成形原理研制了两种类型的成形装置,即柔性辊式成形装置与刚性辊式成形装置,进行相关的实验研究,获得了成形效果良好的三维曲面件;通过大量的实验总结出三种典型成形工艺,即一次调形成形工艺、渐进调形成形工艺与实时调形成形工艺;探讨三种有限元建模方法,并采用离散化的建模方案进行相关的数值模拟研究;对典型三维曲面件的应力应变场进行系统的数值分析,包括球形件、鞍形件和扭曲形件;得出成形力计算方法,并模拟成形力变化趋势;对回弹进行数值模拟,主要研究了不同工艺参数时回弹的变化趋势;对起皱缺陷进行数值模拟,系统研究了起皱产生的原因、不同工艺参数时皱曲的变化规律,并提出了抑制起皱的方法;针对旋转曲面件的成形做了相关的模拟工作,获得了与实际相符的模拟结果。
     以上内容涉及到成形装置的研制、成形工艺的探讨以及成形过程数值模拟研究;性能良好的成形装置为日后实验工作提供设备支持,合理的成形工艺是获得合格成形件的保证,深入的数值分析为成形装置的优化以及成形件成形情况的预测提供更加科学的手段。这些工作的完成将为多点滚压成形技术的进一步发展打下坚实的基础。
Three-dimensional (3-D) surface parts are widely applied to many domains of industry, because they have the characteristics of light weight, good streamline surface and reasonable stress state. 3-D surface parts are manufactured by die forming method in the mass production sectors. For the small batch production sectors and the sectors which unfit the die forming, they manufacture 3-D surface parts by flexible forming methods. At present, there are some flexible forming methods for sheet metal, such as flame bending, incremental forming, laser forming, shot peen forming and multi-point forming. With the development of economy and society, the requirement of products trends to diversification and individuation, so the flexible manufacturing methods with better quality, higher efficiency and lower cost are needed to bring forward for modern industry, therefore to the forming of sheet metal, new-style flexible forming technology is needed to be invented.
     Multi-point roll forming (MPRF) is a new-style flexible forming technology for 3-D surface parts, it can be considered as the combination of conventional continuous local forming (roll bending, spinning) and multi-point forming. MPRF adopts bendable roller which is controlled by multi-point adjusting machine as forming tool to make sheet metal generate 3-D deformation. MPRF can manufacture spherical surface part, saddle surface part, twisty surface part, disc-shape part, tubelike shape part and arbitrary surface part by dieless, high efficient and continuous method, it is provided with higher engineering applied value and academic research value.
     The main contents and conclusions are as follows:
     1. Researh on MPRF equipment and forming process
     The two types of MPRF equipment are studied, which are flexible roller type and rigid roller type. Design scheme of flexible roller type equipment is discussed, including the selection of flexible roller, the structure of adjusting element and the structure of the equipement; the related experimental validation is finished. The rigid roller type equipment is developed, including design of working element, design of the equipment; the related experimental research is finished, the impression and fold on the surface of workpiece are restrained by polyurethane layer, and the good 3-D surface parts are obtained. The typical processes are summarized, which are one-time adjusting forming process, increamental adjusting forming process and real-time adjusting forming process. The advantages and disadvantages of two types of MPRF are compared.
     2. Research on the finite element modeling technology of MPRF
     Three kinds of finite element modeling methods in ANSYS/LS-DYNA environment are put out, which are continuous and dependent on adjusting element controlling modeling method, continuous and dependent on rigid body driving modeling method and discrete modeling method. Compare the three methods: the first mothed can reflect the flexible roller adjustment state and the stress state of the components, but it is not suitable for simulating the forming process of sheet metal; the second method can realize the simulation of sheet forming process in a certan extent, but it still has great limitation due to the restriction of flexible roller curvature radius and other reasons; the third method gets rid of all the problems when the flexible roller adopts elastomer, and achieves the simulation of sheet forming process successfully, so it is the best one. The continuity and the convergence of the third method are analyzed. The simultation results of the third method are presented, and they are nearly the same as experimental results.
     3. Numerical analysis of stress and strain fields in MPRF process
     The forming characteristic of MPRF is described from the view of mathematics, and the mathematical expressions of spherical surface part, similar spherical surface part, saddle surface part, tubelike shape part and arbitrity surface part are presented. The forming zones of MPRF process are divided. The stress and strain fields in the forming process of spherical surface part are analyzed, including the average equivalent stress and plastic strain fields at start stage, middle stage and end stage of forming process, the average equivalent stress and plastic strain fields of lower layer, middle layer and upper layer, the stress and strain fields of load zone, and the reasonable explanation is made. The average equivalent stress and plastic strain fields of saddle surface part and twisty surface part are analyzed, and the reasonable explanation is given.
     4. Numerical simulation of forming force in MPRF process
     Based on the Euler-Bernouli section assumption, the uni-direction stress state assumption, the same stress-strain curve assumption for tension and compression and the ideal elastic-plastic material assumption, the calculated method of local transverse bending force, local longitudinal bending force and total forming force are deduced. The calculation method of forming force in FEA analysis process is discussed. Take spherical surface part of 08Al as the research object, the variational trend of x-force, y-force, z-force and resultant force are analyzed by numerical simulation method. The y-force is the main force which makes sheet metal plastic formed, and the z-force is the main force which drives sheet metal continuous movement. The influence of upper flexible roller press displacement, thickness of sheet metal, material properties and curvature radius of flexible roller are studied, and the simulation results are in accord with practical situation.
     5. Numerical simulation of forming defects in MPRF process
     Springback and wrinkling are the main forming defects in MPRF process. The key points in springback simulation are elaborated, including springback theory, calculation of springback ratio and simulation method. Take the spherical surface part as research object, and the springback phenomenon is analyzed by explicit-implicit algorithm. The simulation results indicate: after springback, the equivalent stress of sheet metal part is released, and it generates deformation along the reverse direction of its bending direction; the springback ratio decreases with the increasing of thickness and press displacement; these simulation results are in accord with practical situation. Take the spherical surface part as research object again, the wrinkling is simulated. The simulation results indicate: wrinkling is on the both ends and both sides of the part, and the reasons of wrinkling are explained by principal strain state of shell element and the law of stress-strain. The situation that thickness and press displacement influence the wrinkling of both ends is analyzed. The situation that flexible roller curvature radius and rolling times influence the wrinkling of both sides is analyzed, and the simulation results are explained from the view of principal strain state, tangential compressive stress, flowing state of metal, mechanics, energy and geometric deformation. No-wrinkling critical graph of both sides is obtained. The simulation results are in accord with experimental results. The methods that restrain wrinkling are brought forward.
     6. Numerical simulation of MPRF for rotary surface
     Compare MPRF with conventional spinning, the advantage that line forming method replaces point forming method is indicated. FEA model of disc-shape part is established, forming process of disc-shape part is simulated, and the differences between simulation process and experimental process are indicated. The equivalent stress and plastic strain fields at start stage, half circle stage and whole circle stage are analyzed, and the reasonable explanation is made. Wrinkling of disc-shape part is analyzed. The wrinkles are on the edge of disc-shape part. At the beginning, the quantities of wrinkes are few, and the amplitudes of wrinkles are large; with the increasing of rotation times, the quantities of wrinkles increase, and the amplitudes of wrinkles decrease; finally, the wrinkles disappear. The simulation result of disc-shape part is nealy the same as exiperimental result. FEA model of concave tubelike shape part is established, the simulation result is presented, and it is in accord with experimental result.
引文
[1]李春峰.板材成形新技术及发展趋势[J].机械工人,2005(7):4~9.
    [2]王俊彪.材料的先进成形技术[M].北京,高等教育出版社,2002.
    [3]李明哲,胡志清蔡中义,龚学鹏.自由曲面工件的连续高效塑性成形方法[J].吉林大学学报(工学版),2007,37(3):489~494.
    [4]韩志仁,张凌云,祁桂根.飞机大型蒙皮制造技术现状分析[C].中国航空学会2007年学术年会,2007:21~25.
    [5]汪骥.水火弯板自动化加工工艺的关键技术研究[D].大连:大连理工大学,2006.
    [6] M. Ishiyama, Y. Tango, Y. Nakamura. Stydies of Plate Bending for Practical Use by Computer Aided Line Heating System (in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 1998, 183 (6): 335~342.
    [7] M. Ishiyama, Y. Tango. Advanced Line-Heating Process for Hull-steel Assembly[J]. Journal of Ship Production, 2000, 16 (2): 121~132.
    [8] Y. Tomita, N. Osawa, K. Hashimoto, et al. Study on Heat Transfer Phenomena between the Combustion Flow Field and the Heating Plate during Line Heating Process (3rd Report, in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2001, 190 (11): 579~587.
    [9] J. Sawamura, Y. Tomita, N. Osawa, et a1.Study on Combustion Analysis in the Impinging Jet Flame during Line Heating Process(in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2001, 11(190): 489~497.
    [10] J. Sawamura,Y. Tomita, N. Osawa, et al. Study on the Combustion Model and Turbulent Mofel for Thermal Flow Analysis of Impinging Jet Flame during line Heating Process (in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2002, 192 (11): 531~543.
    [11] T. terasaki, M. mizukami, M. Nakatani, et al. Effect of line heating factors on Generated by Triangle Heating (in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2003, 193 (6):75~83.
    [12] T. Terasaki, K. Yamaguchi, T. Nomoto, et al. Study on Transverse Shrinkage and Angular Distortion Generated by Line Heating (in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2003, 193 (6):65~74.
    [13] J. G. Shin, J. H. Lee, S. K. Park. A Numerical Thermoplastic Analysis of Line Heating Processes for Saddle-type Shells with the Application of an Artificial Neural Network[J]. Journal of Ship Production, 1999, 15(1):10~20.
    [14] J. G. Shin, J. H. Lee. Nondimensionalized Relationship between Heating Conditions and Residual Deformations in the Line Heating Process[J]. Journal of Ship Research, 2002, 46(4): 229~238.
    [15] J. G. Shin, C. H. Ryu, J. H. Nam. A Comprehensive Line-Heating Algorithm for Automatic Formation of Curved Shell Plates[J]. Journal of Ship Production, 2004, 20(2):69~78.
    [16] J. G. Shin, Y. G. Kim, J. H. Nam. An Integrated Approach to Determine Optimal Process Information ofLarge Scale Line Heating Process with Deformation Simulation[J]. Journal of Ship Production, 2004, 20(4): 211~220.
    [17]刘玉君,赵洪福,王桂荣.水火弯板影响成型因素的实验定性分析[J].大连理工大学学报, 1994, 34(1): 45~49.
    [18]刘玉君,纪卓尚.实船板水火加工成型数据库系统[J].中国海洋平台, 1996(3): 127~131.
    [19]雷云天.水火弯板工艺参数的实验研究[D].大连:大连理工大学, 1997.
    [20]松原茂夫.數值制禦逐次成形法[J].塑性と加工,1994,35(11):1258~1263.
    [21]莫健华,刘杰,黄树槐.汽车大型覆盖件的数字化成形技术[J].塑性工程学报,2001,8(2):14~16.
    [22]松原茂夫.半球头工具にょゐ薄板の逐次逆張出し成形[J].塑性と加工, 1994,406(35): 1311~1316.
    [23]松原茂夫.板材の逐次逆張出し成形(その3)—數值制禦工作機械にょゐ成形ツステの研究XI[C].第45回塑性加工連合講演會論文集,1994: 765~768.
    [24]松原茂夫.板材の逐次逆張出し成形(その4)—數值制禦工作機械にょゐ成形ツステの研究第14報[C].第46回塑性加工連合講演會論文集,1995: 31~32.
    [25] Shim M. S, Park J. J. The formability of aluminum sheet in incremental forming[J]. Journal of Materials Processing Technology, 2001, 113: 654~658.
    [26] Kim Y. H, Park J. J. Effect of process parameters on formability in incremental forming of sheet metal[J]. Journal of Materials Processing Technology, 2002, 130: 42~46.
    [27] Kim T. J., Yang D. Y. Improvement of formability for the incremental sheet metal forming process[J]. International Journal of Mechanical Sciences, 2000, 42: 271~286.
    [28] Yoon S. J, Yang D. Y. Investigation into a new incremental forming process using an adjustable punch set for the manufacture of a doubly curved sheet metal[J]. Proceedings of the Institution of Mechanical Engineers B, Journal of Engineering Manufacture, 2001, 215: 991~1004.
    [29] Jeswiet J, Hagan E. Rapid prototyping of a headlight with sheet metal[J]. Canadian Institute of Mining, Metallurgy and Petroleum, 2001:109~ 114.
    [30] Jeswiet J, Hagan E. Incremental single point forming with a tool post[J]. Canadian Institute of Mining, Metallurgy and Petroleum, 2001:103~108.
    [31]方漪,戴昆,王仲仁等.板材数控增量成形过程的研究[J].塑性工程学报,1999,(3): 49~55.
    [32]戴昆,苑世剑,王仲仁等.轴对称件多道次数控点成形过程的理论分析[J].塑性工程学报,1998, (2): 26~32.
    [33] Dai K, Wang Z R, Fang Y. CNC incremental sheet forming of an axially symmetric specimen and the locus of optimization[J]. Journal of Materials Processing Technology (Netherlands),2000, (102): 164~ 167.
    [34]毛峰.金属板材数控渐进成形关键技术研究[D].武汉:华中科技大学,2005.
    [35]裴继斌.船用钢板激光弯曲成形机理及成形规律的研究[D].大连:大连理工大学,2008.
    [36] Namba Y. Laser forming in space. Proceeding of the International Conference on lasers’85[C], Osaka, Japan, 1986: 403~407.
    [37] Stuart Paul Edwardson. A Study into the 2D and 3D Laser Forming of Metallic Components[D]. The University of Liverpool, Liverpool, UK, 2004.
    [38] J. Magee. Laser Forming of Aerospace Alloys[D]. University of Liverpool, 1999.
    [39] Bao, J., Yao, Y. L. Analysis and prediction of edge effects in laser bending[J]. Journal of Manufacturing Science and Engineering, Feb. 2001, 123: 53~61.
    [40] F. Vollertsen, M. Geiger, W. M. Li. FDM- and FEM- simulation of laster forming: a comparative study[C]. Advanced Technology of Plasticity, 1993: 1793~1798.
    [41] N. Alberti, L. Fratini, F. Micari, M. Cantello, G. Savant. Computer Aided Engineering of a laser assisted bending processes[C]. in Laser Assisted NetShape Engineering 2, Proceedings of the LANE'97, 1997, 2: 375~382.
    [42] Y. C. Hsiao, H. Shimizu, L. Firth, W. Maher, K. Masabuchi. Finite Element Modelling Of Laser Forming[C]. in Proceedings of the International Congress On Applications of Lasers and Electro-Optics, (ICALE097), 1997, A: 31~40.
    [43] J. Kraus. Basic processes in laser bending of extrusions Using the Upset ting Mechanism[C]. in Laser Assisted Net Shape Engineering 2, Proceedings of the LANE'97, 1997, 2: 431.
    [44] G. Yu, K. Masubuchi, T. Maekawa, N. M. Patrikalakis. Thermomechanics of laser forming of metal plates[C]. Massachusetts Institute of Technology (MIT) Fabrication Memorandum 99-1. November 1, 1999.
    [45] W. Li, Y L. Yao. Effects of Strain Rate in Laser Forming[C]. Proceedings of ICALEO'99, 1998, F: 107~116.
    [46] W. Li, Y. L. Yao. Numerical and Experimental Investigation of Laser Induced Tube Bending[C]. Proceedings of ICALEO 2000, 2000, D: 53~62.
    [47] K. C. Lee, J. Lin. Transient Deformation of Thin Metal Sheets During Pulsed Laser Forming[J]. Optics & Laser Technology, 2002, 34: 639~648.
    [48] G. Thomson, M. Pridham. Material Property Changes Associated with Laser Forming of Mild Steel Components[J]. Journal of Materials Processing Technology, 2001, 118: 40~44.
    [49] M. Merklein, M. Geiger. A Comparative Study of Two Different Laser Regarding the Mechanical Properties of Aluminium Alloys[C]. Laser Assisted Net Proceedings of the LANE'200, Erlangen, Germany, 2001.
    [50] M. Merklein, T. Hennige, M. Geiger. Laser Forming of Aluminium and Aluminium Alloys-Microstructural Investigation[J]. Journal of Materials Processing Technology, Vol. Forming Mechanisms Shape Engineering 3, 2001, 115: 159~165.
    [51]李国祥.喷丸成形[M].北京:国防工业出版社, 1982.
    [52]曾元松,黄遐,李志强.先进喷丸成形技术及其应用与发展[J].塑性工程学报,2006, 13(3): 23~29.
    [53] S Ramati, G Levasseur, S Kennerknecht. Single Piece Wing Skin Utilization via Advanced Peen Forming Technology[C]. Proceedings of the 7th international conference on shot peening (ICSP-7), Warsaw, Poland, 2000:207~213.
    [54] F Wüstefeld, W Linnemann, S Kittel. Towards Peen Forming Process Automation[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002:44~52.
    [55] A Friese. Metal Finishing News. World’s largest shot peening machine installed at Airbus plant, 2004(5) :189~220.
    [56] Yuansong Zeng. Finite Element Simulation of Shot Peen Forming[C]. Proceedings of the 8th international conference on shot peening(ICSP-8), Garmisch-Partenkirchen, Germany, 2002:554~560.
    [57] S A Meguid, G Shagal, J C Stranart. 3D FE Analysis of Peening of Strain-rate Sensitive Materials Using Multiple Impingement Model[C]. International Journal of Impact Engineering, 2002,27:119~134.
    [58] Jochen Schwarzer, Volker Schulze, Otmar Vohringer. Finite Element Simulation of Shot Peening A Method to Evaluate the Influence of Peening Parameters on Surface Characteristics[C]. Proceedings of the 8th international conference on shot peening(ICSP-8), Garmisch-Partenkirchen, Germany, 2002. 507~515.
    [59] Tao Wang, Jim Platts. Finite Element Impact Modeling for Shot Peen Forming[C]. Proceedings of the 8th international conference on shot peening(ICSP-8), Garmisch-Partenkirchen, Germany, 2002: 540~546.
    [60] Reiner Kopp, Jrgen Schulze. Optimising the Double-sided Simultaneous Shot Peen Forming[C]. Proceedings of the 8th international conference on shot peening(ICSP-8), Garmisch-Partenkirchen, Germany, 2002: 227~233.
    [61] Y F Al-Obaid. Three Dimensional Dynamic Finite Element Analysis for Shot Peening Mechanics[J]. Computers and Structures, 1990, 36 (4):681~689.
    [62] L V Grasty. Shot Peen Forming Sheet Metal: Finite Element Predition of Deformed Shape[J]. Journal of engineering manufacture, 1996, 210: 361~366.
    [63] Andrew Levers, Alan Prior. Finite Element Analysis of Shot Peening[J]. Journal of Materials processing technology, 1998, 80-81: 304~308.
    [64] P L Blackwell, M D Griffiths, et al. A Computer Modeling Capability for Shot Peen Forming[J]. Metal Finishing News, 2004, 5(3): 12~14.
    [65] P O’Hara. Peen forming-A Developmenting Technique[C]. Proceedings of the 8th international conference on shot peening ( ICSP28), Garmisch -Partenkirchen, Germany, 2002: 215~226.
    [66] James J Daly, James R Harrison, Lloyd A Hackel. New Laser Technology Makes Lasershot Peening Commercially Affordable[C]. Processing of the 7th international conference on shot peening (ICSP-7), Warsaw, Poland, 2000: 379~386.
    [67] Bat Cap Sud. Ultrasonic Shot Peening[J]. Metal finishing news, 2003, 4 (5):6~7.
    [68]野本敏治.多点フしス法にとゐ船体外板の曲げ加工に关すゐ基础的研究[J].日本造船学会论文集第170号,1991,587~598.
    [69]中岛尚正.针金束を用いた金型?电极の研究[J].日本机械学会志,1969,72(603):32~40.
    [70]北野广雄等.钢板曲げ加工用萬能調整式プレス機械の研究[D].日本:京都大学,1961.
    [71]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自動化に关する研究(第一报基础の研究)[J].日本造船学会论文集,1972(132):481~501.
    [72]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第二报实用化研究) [J].日本造船学会论文集,1973(133):291~305.
    [73]世古成道,熊本盛秀等,三条プレスの开发[J],三菱重工技报,1976,13(6):64~72.
    [74] Yasuhiro Iwasaki,Hiroshi Shifa,Yoshiharu Taura.Forming of the Three-Dimensional Surface with a Triple-Row-Press[J].Advanced Technology of Plasticity,1984:483~488.
    [75]井关日出男等.由柔性工具进行局部成形的方法[D].日本第42回塑性加工联合讲演会论文集,1991:265~266.
    [76]井关日出男,加腾和典等.通过柔性工具进行逐次成形的方法[D].平成4年度塑性加工春季讲演会论文集,1992:527~530.
    [77]大冢守三等.多点成形法にょる船体外板の曲げ加工[D].平成8年度塑性加工春季讲演会论文集,1996:512~513.
    [78] David.E.Hardt,B.chen.Control of A Sequential Brakeforming Process[J].Control Manuf.:Process Rob.Syst,1983:246~253.
    [79] David . E . Hardt , R . Davis Webb . Closed-Loop Control of Three-Dimensional Sheet Forming[J].Comput.-Based Fact.Autom,1984:381~387.
    [80] Michael Hale , David . E . Hardt . Dynamic Analysis and Control of a Roll Bending Process[J].Proc.Am.Control Conf.,1986(1):578~586.
    [81] R.D.Webb,D.E.Hardt.A Transfer Function Description of Sheet Metal Forming for Process Control[J].Journal of Engineering for Industry,1991,113:44~52.
    [82] David E.Hardt,Mary C.Boyce,Karl B.Ouster hout.A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts[J].Comput.-Based Fact.Autom,1993,69~76.
    [83] D.F.Walczyk,D.E.Hardt.Design and analysis of reconfigurable discrete dies for sheet metal forming[J].Journal of Manufacturing System,1998,17(6):436~454.
    [84]李明哲,赵晓江等.多点分段成形中的几种成形方法[J].中国机械工程,1997,8(1):87~90.
    [85]李明哲,苏世忠,李广权.金属板材无模多点成形专用CAD/CAM/CAT软件的开发[J].中国机械工程,1997,8(3):298~342.
    [86]陈建军,李明哲.多点分段成形技术应用研究[J].哈尔滨工业大学学报,2000,32(4):65~67.
    [87] Li Mingzhe,LiuYuhong,et al.Multi-Point Forming:A Flexible Manufacturing Method for a 3-D Surface Sheet[J].Journal of Materials Processing Technology ,1999,87:277~280.
    [88] Li Mingzhe,Liu Chunguo,Chen Qingmin.Research on Multi-Point Forming of Three-Dimensional Sheet Metal Parts[C].6th International Conference on Technology of Plasticity,Nuremberg,Germany,1999,1:189~194.
    [89] Li Mingzhe,Liu Chunguo,Cai Zhongyi.A Dieless Forming Technique for Sheet Metal[C].'99 international Conference on Science and Technology,Seoul,Korea,1999,7.
    [90] Li Mingzhe,Su Shizhong.The Flexible System for Manufacturing Three Dimensional Curved Sheetwith Technology of Multi-point forming[C].ICAMT’99 Proceedings of 1999 International Conference on Advanced Manufacturing Technology,Science Press New York,ltd,1999:294~297.
    [91] Cai Zhongyi,Li Mingzhe.Optimum path forming technique for sheet metal and its realization in multi-point forming[J].Journal of Materials Processing Technology,2001,110:136~141.
    [92]崔相吉,蔡中义,李明哲.板材三维曲面零件的多点成形理论与方法[J].兵工学报,2002,23(4):521~524.
    [93] Cai Zhongyi,Li Mingzhe,Feng Zhaohua.Theory and method of optimum path forming for sheet metal[J].Chinese Journal of Aeronautics,2001,14(2):118~122.
    [94] Zhong-Yi Cai,Ming-Zhe Li.Multipoint forming of three-dimension the sheet metal and the control of the forming process.International Journal of Pressure Vessels and Piping 2002,79:289~296.
    [95] M.Z.Li,Z.Y.Cai,et al.multi-point forming technology for sheet metal.International Journal of processing technology,2002,129:333~338.
    [96]隋振.多点成形中的快速调形与成形过程自动化研究[D].长春:吉林大学,2004.
    [97] Zhongyi Cai, Shaohui Wang, Xudong Xu, Mingzhe Li. Numerical simulation for the multi-point stretch forming process of sheet metal[J]. Journal of materials processing technology, 2009, 209: 396~407.
    [98]李广权,李达,李东平,李明哲.板材多点成形时复杂边界条件的研究[J].哈尔滨工业大学学报,2000,32(5):75~77.
    [99]蔡中义,李明哲,陈建军.板材多点成形隐式算法数值模拟专用软件及关键技术[J].哈尔滨工业大学学报,2000,32(4):82~88.
    [100]苏世忠,李明哲,陈建军.有限元多晶体模型模拟铝板多点成形过程[J].哈尔滨工业大学学报,2000,32(4):117~119.
    [101]李明哲,李淑慧,柳泽,陈建军,李广权.板材多点成形过程起皱现象数值模拟研究[J].中国机械工程,1998,9(10):34~38.
    [102]李雪,李明哲,蔡中义.多点成形过程中弹性介质对成形质量的影响[J].哈尔滨工业大学学报,2005,37(2):194~197.
    [103]宋雪松,蔡中义,李明哲.板材多点成形过程中成形力的数值模拟[J].吉林大学学报(工学版),2004,34(2):226~231.
    [104]孙刚,李明哲,蔡中义.多点成形时工艺方式与工件压痕的关系研究[J].材料科学与工艺,2004,12(4):360-363.
    [105]钱直睿.多点成形中的几种关键工艺及其数值模拟研究[D].长春:吉林大学,2007.
    [106]谭富星.带孔网板多点成形过程数值模拟研究[D].长春:吉林大学,2009.
    [107]汪华,周贤宾.飞机蒙皮多点成形用复合柔性垫层的结构参数优化[J].航空学报,2007,28(6):1482~1486.
    [108]罗红宇,李东升,曾元松,邹方,白雪飘.蒙皮拉形可重构柔性模具模面生成系统开发及应用研究[J].塑性工程学报,2006,13(6):61~65.
    [109]白雪飘,曾元松,吴为,李志强.典型双曲率零件柔性多点模具蒙皮拉形技术研究[J].塑性工程学报,2007,14(6):105~113.
    [110]杨沿平,黄智,莫旭辉,胡燕平.基于曲面离散化方法的模具曲面制造关键技术与装备[J].中国机械工程,2003,14(24):2099~2101.
    [111]张琦.金属板材多点“三明治”成形的数值模拟及实验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [112]李明哲,崔相吉,邓玉山.多点成形技术的现状与发展趋势[J].锻压装备与制造技术, 2007(5): 15~18.
    [113]莫施宁.弯板机和矫正机[M].北京:机械工业出版社. 1985.
    [114] A. H.格罗莫娃等.成批生产中板材和型材零件的制造[M].北京:国防工业出版社. 1964.
    [115] N.E.Hansen,O.Jannerup.Modeling of Elastic-plastic Bending of Beams Using a Roller bending machine[J].Transactions of the ASME , August, 1979,101:304~310.
    [116] E. Trostmann, N. E. Hansen, et al. General Scheme for Automatic Control of Continuous Bending of Beams[J]. Transactions of the ASME, June, 1982, 104: 173.
    [117] D. E. Hardet, M. A. Roberts, et al. Closed-Loop Shape Control of a Roll-Bending Process[J]. Transactions of the ASME , December, 1982, 104: 317.
    [118] M.M.SeddeiK,J.B.Kennedy.Deformation in hollow structural section (HSS) member subjected to cold-bending[J].Int.J.Mech.Sci.,1987,29(3):195~212.
    [119]胡卫龙.卷板机新的驱动方式[J].锻压机械,1985(1):26.
    [120]胡卫龙.非对称式卷板机工作力的计算[J].锻压技术,1987(3):37.
    [121]胡卫龙.水平下调式卷板机最佳弯边位置的确定[J].机械工艺师,1988(10):24.
    [122]斯厚达.滚弯成形薄板圈形零件的回弹分析与计算[J].机械工艺师,1994(10):31~32.
    [123]王晓林.金属板弹塑性非圆弧弯曲回弹的计算[J].塑性工程学报,1996(3):27~33.
    [124]徐辅仁.船体板成形后曲率与三辊弯板机中心辊进给量的关系[J].中国造船,1991(1):85~100.
    [125]舒东海.三辊弯板机自动控制模型的建立与实验研究[D].武汉:武汉水运工程学院,1993.
    [126] M. Hua, I. M. Cole, K. Baines, et al. A formulation for determining the single-pass mechanics of the continuous four-roll thin plate bending process[J]. Journal of material processing technology, 1997,67: 189~194.
    [127] M. Hua, K. Baines, I. M. Cole. Bending mechanisms, experimental techniques and preliminary tests for the continuous four-roll plate bending process[J]. Journal of material processing technology, 1995,48: 159~172.
    [128] S.Roggendorff,J.Haeusler.Plate bending:three rolls and four rolls compared[J].Welding and metal fabrication,(July/August)1979:353~357.
    [129]上海市造船公司国外资料编译组.国外造船设备选辑[M].上海:上海科学技术情报研究所,1974:90~92.
    [130] Gang Yang,Ken-ichiro Mori and Kozo Osakada.Determination of forming path in three-roll bending using FEM simulation and fuzzy reasoning[J].Journey of Material Processing Technology,1994,45(1-4):161~166.
    [131]茅云生,向胜,邵天芬.板材滚弯成形理论及自动控制的研究进展[J].船海工程,2001(6):28~31.
    [132]肖聚亮,闫祥安,王国栋,李佳.基于PMAC的卷板机数控系统的研究与开发[J],机床与液压,2002(6):85~87.
    [133]左敦稳,王珉,刘奎,傅仕伟.双轴柔性滚弯技术的实验研究[J].南京航空航天大学学报,1998,30(5):473~478.
    [134]孙卫祥,左敦稳,曹振中.双轴柔性滚弯数控系统的研究与开发[J].机械制造与研究,2002(5):28~31.
    [135]闫静,王珉,左敦稳.异形截面管双轴柔性滚弯技术理论分析与试验研究[J].机械工程学报, 2004, 40(11):169~173.
    [136]胡军峰,杨建国,方洪渊,傅卫.滚弯过程的三维动态仿真模拟[J].塑性工程学报,2005,12(3):51~55.
    [137]邵春雷,顾伯勤.利用ABAQUS/Explicit进行三辊弯板机板材成形数值模拟[J].石油化工设备, 2006,35(2):62~65.
    [138]闫静,左敦稳,王珉.双轴柔性滚弯技术的有限元分析[J].机械科学与技术, 2003,22(2):203~205.
    [139] Weilong Hu, Z. R. Wang. Theoretical analysis and experimental study to support the development of a more valuable roll-bending process[J]. Journal of machine tools and manufacture, 2001,41:731~747.
    [140] Jun Zeng, Zhaoheng Liu, Henri Champliaud. FEM dynamic simulation and analysis of the roll-bending process for forming a conical tube[J]. Journal of materials processing technology, 2008,98:330~343.
    [141]申林,等.国外金属旋压发展概况[ C] .第一届旋压技术交流文集,1999.
    [142]赵云豪.旋压技术现状[J].锻压技术,2005(5): 95~100.
    [143]王仲仁,等.旋压技术的新水平[J].航天制造技术,1984,( 2) : 55~58.
    [144]吕炎.锻压成形理论与工艺[M].北京:机械工业出版设, 1991: 273~275.
    [145]阎群.数控旋压机床道次规划与实时控制的沿究与实现[D].北京:北京科技大学,2001.
    [146]马庆田. DW326型CNC旋压成形机[J].世界制造技术与装备市场,1994(4): 37.
    [147]王玉辉,夏琴香,杨明辉,程秀全.数控旋压机床的发展历程及其研究现状[J].锻压技术,2005(4):97~100.
    [148]陈企芳,等. 30吨立式数控带轮旋压机床[C].第八届全国旋压技术交流会论文集,1999.
    [149]张顺福,等.国产旋压设备的发展和应用[J].金属成形工艺,2003(12): 1~3.
    [150]夏琴香,张淳芳,吴风照,梁淑贤. XPD型系列数控旋压机床[J].锻压机械,1997, (4):30~31.
    [151]夏琴香.三维非轴对称零件旋压成形工艺及设备[J].新技术新工艺,2003, (12):33~35.
    [152] G. Sebastiani, A. Brosius, R. Ewers, et al. Numerical investigation on dynamic effects during sheet metal spinning by explicit finite-element-analysis[J]. Int. Journal of Materials Processing Technology. 2006,177:401~403.
    [153] BAI Qian, YANG He, ZHAN Mei. Finite element modeling of power spinning of thin-walled shell with hoop inner rib[J]. Transactions of Nonferrous Metals Society of China. 2008,18: 6~13.
    [154] M. Zhan, H. Yang, J. H. Zhang, et al. 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning[J]. Int. Journal of Material Processing Technology. 2007,187-188:486~491.
    [155] Q. X. Xia, X. Q. Cheng, Y. Hu, et al. Finite element simulation and experimental investigation on the forming forces of 3D non-axisymmetrical tubes spinning[J]. Int. Journal of Mechanical Sciences. 2006,48: 726-735.
    [156] JIANG Shu-yong, REN Zheng-yi, WU Bin, et al. General issues of FEM in backward ball spinning of thin-walled tubular part with longitudinal inner ribs[J]. Transactions of Nonferrous Metals Society of China. 2007,17:793-798.
    [157]山下勇,加藤和典,遠藤順一.可撓ロ—ルにょる復曲面の成形加工の研究(第1報可撓ベンディングロ—ル機の試作)[C].第37回塑性加工連合講演會.橫滨,1986:345~348.
    [158]山下勇,加藤和典,遠藤順一.可撓ロ—ルにょる復曲面の成形加工の研究(第3報成形形狀に及ぼすロ—ル幅の影響)[C].昭和63年度塑性加工春季演講會.北九州,1988:505~508.
    [159] K. H. Kim, H.J. Roh, M. S. Han, et al. Finite element analysis of the incremental dual curvature bending of a plate in a line array roll set[C]. The 9th International Conference on Technology of Plasticity. Gyeongju, Korea, 2008: 1065~1069.
    [160] D. S. Shim, D. Y. Yang, M. S. Han, et al. Experimental study on manufacturing doubly curved plates using incremental rolling process[C]. The 9th International Conference on Technology of Plasticity. Gyeongju, Korea, 2008: 2378~2383.
    [161]李明哲,胡志清,蔡中义,龚学鹏.自由曲面工件多点连续成形方法[C].机械工程学报. 2007,43(12):155~159.
    [162]胡志清.连续多点成形方法、装置及成形实验研究[D].长春:吉林大学,2008.
    [163] M. Z. Li, Z. Q. Hu, Z. Y. Cai, X. P. Gong, Research on New Spinning Process based on the Principle of Continuous Multipoint Forming[C]. 9th International Conference on Technology of Plasticity, Gyeongju, Korea, 2008: 2360~2365.
    [164] Z. Q. Hu, M. Z. Li, Z. Y. Cai, X. P. Gong, Continuous flexible forming of three-dimensional surface parts using bendable rollers[J]. Int. J. Materials Science and Engineering A. 2009, 499: 234~237.
    [165]龚学鹏,李明哲,胡志清.使用可弯曲辊的三维曲面卷板成形过程数值模拟.吉林大学学报(工学版),2008,38(6):1310~1314.
    [166]龚学鹏,李明哲,胡志清.三维曲面柔性卷板成形技术及其数值模拟.北京科技大学学报,2008,30(11):1296~1230.
    [167] Lee H., Kobayashi S. New solution to rigid-plastic deformation problems using a matrixmethod[J]. Trans. ASME, J. Engineering Industries,1975,95:865~873.
    [168] Marcal,P.V.and King,I.P. Elastic-plastic analysis of two-dimension stress system by the finite element method[J],Int.J.Mech.Sci.,1967,9:143~155.
    [169] Hibbit H. D., etc. A finite element formulation for problems of large strain and large displacement[J], Int. J. Solids Structures,1970,6:1069~1086.
    [170] Osias J. R.,etc. Finite elasto-plastic deformation—I[J], Int. J. Solids Structures, 1974, 10:321~339.
    [171] McMeeking R.M., Rice J.R. Finite element formulation for problems of large elastic-plastic deformation[J], Int. J. Solids Structures,1975,11:601~615.
    [172] Arlinghaus, F. J., Frey. W. H., etc. Finite element modeling of a stretch formed part[J]. Computer Modeling of sheet Metal Forming Process. The Metallurgical Society, Warrendale. P. A, 1985: 51~64.
    [173] Tang, S. C., etc. Sheet metal forming modeling of automobile body panels[J],ASM, Int.,1988:185~193.
    [174]陈中奎,施法中,黄迪民.板材冲压成形过程有限元分析原型系统的开发[J].计算机辅助设计与制造,1999(6):44~46.
    [175]胡平,卫教善.冲压成形模具分析软件—KMAS[J].模具制造,2004(6):9~11.
    [176]王勖成.有限单元法[M].北京,2003.
    [177]余希同,章亮炽.塑性弯曲理论及其应用[M].北京,1992.
    [178]陈喜悌.板材多点成形的起皱和回弹数值分析[D].长春:吉林大学,2004.
    [179]赵海鸥. LS-DYNA动力分析指南[M].北京,2003.
    [180] J W Hutchinson. Plastic bucking[J]. Advances in Applied Mechanics, 1974, 14:67~144.
    [181] K W Neale, P Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metal[J]. International Journal for Numerical Methods in Engineer, 1990,30:1595~1608.
    [182]蔡中义,李明哲,宋雪松.无压边多点成形中起皱的分析与控制[J].塑性工程学报,2003,10(5):14~19.
    [183]俞汉清,陈金德.金属塑性成形原理[D].北京,1999.
    [184]杨明辉,梁佰祥,夏琴香,阮锋.旋压技术分类及应用[J].机电工程技术,2004,33(4):14~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700