水介质长期作用下的粉煤灰性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水介质长期作用的低钙湿态粉煤灰是我国及世界范围内大量长期堆存于灰场、资源化利用严重滞后的燃煤固体废弃物,有关低钙湿灰资源化利用的研究结果较多,主要是将其用于道路路基稳定、建筑制品生产及活性激发,但对粉煤灰与水长期接触后基本性能变化研究奇缺。对湿灰性能变化的研究,有利于燃煤电厂可持续发展,更有利于环境保护。
     针对现有研究方法中,无法获得水介质作用前后同批次粉煤灰,从而难以反映水介质长期作用过程对粉煤灰性能影响的研究难点,本文通过实验室模拟制备低钙湿灰的方法,对比研究了粉煤灰性能随与水接触时间长短的变化规律。试验采用仪器分析及粉煤灰用做掺合料时性能测试方法,对长龄期(5年)与水介质作用粉煤灰的性能及其变化进行分析,并得出以下研究结果:
     1)低钙湿灰长期与水接触发生一定程度的自水化反应,颗粒被水化产物所覆盖而变得粗化,进而使粉煤灰早期矿物减水作用明显降低,需水量比降低约10%,但仍可满足作为一般混凝土掺合料时的需水性要求。粉煤灰与水接触后其体积稳定性得到改善,但自水化过程也导致了粉煤灰烧失量增加;2)低钙粉煤灰长时间与水接触后,其基本矿物组成及其晶体结晶度大小基本无变化;长时间(最长为3年)与水介质作用的低钙粉煤灰,大部分颗粒仍保持原有形态,但少数颗粒表面出现侵蚀现象,具体表现为粉煤灰颗粒内部晶态颗粒逐渐暴露,颗粒外部外形规则的晶体受水侵蚀后颗粒尺寸变小,氧化钙含量决定了粉煤灰与水作用过程中形态发生变化的大小;3)湿灰活性在与水作用前5个月内下降明显,降低值可达5%以上,但不超过10%,后期活性降幅较小。粉煤灰与水接触后,其早期水化速度降低,后期水化速度加快。湿灰体系呈碱性,在与水介质作用前几天碱性增加迅猛,随后呈现缓慢降低趋势,氧化钙含量越高,后期碱性降速越大;4)较高的环境温度(95℃)在加快粉煤灰自水化同时,又有激发粉煤灰活性的作用,但粉煤灰活性整体仍表现为降低的趋势;排灰介质成分、酸碱性、静态/动态浸泡方式对湿灰活性影响不明显。细度对粉煤灰与水作用早期的活性影响较小,但导致其后期活性下降明显;氧化钙含量越高,粉煤灰活性下降速度和幅度也越大; 5)虽然低钙湿灰用于混凝土时矿物减水作用同原状干灰相比,有明显降低,但混凝土坍落度经时损失得到改善。掺加长期与水介质作用的湿灰的新拌混凝土泌水性及其与外加剂的适应性同掺加原状干灰新拌混凝土无明显差异;6)用长期与水介质作用的粉煤灰拌制的混凝土强度早期明显降低,后期降幅趋缓:掺加与水介质作用5个月粉煤灰混凝土强度抗压强度比下降约5%,掺加30%的与水介质作用时间为36个月粉煤灰,其混凝土抗压强度比仍可达到75%;掺加与水介质作用时间为5年粉煤灰混凝土28d抗压强度比与掺加湿排36个月粉煤灰混凝土几近一致。长期湿排粉煤灰硬化混凝土耐久性试验结果表明,其耐久性发展趋势与原状干灰类似。
     本文研究结果说明长期与水介质作用的低钙湿排粉煤灰,虽然使得混凝土大部分性能降低,但仍可满足作为水泥混凝土掺合料时的性能要求。
The long-term wetting fly ash of low-calcium is a kind of spreading industrial solid waste of coal power plants that is packed in stacks both at home and abroad, and they are slightly used. Researchs on low-calcium wetting fly ash were aboundent, which were generally focused on road pavement, building products and application after activation. But there is a bad shortage of investigation on its basic properties after long-term wetting. A well investigation on its property change will be helpful both for the sustanible development of power plants and the environment protection.
     To avoid the gererally-existed research threshold in determining the property changes--- obtaining the same batch of dry fly ash that has the same composition with the long-term wetting one, a simulative wetting process was carried out in lab. The rules of wetting age on its properties were expermentally performed. A five-year long time wettingg fly ash was analysed instrumentally and its performance when used as concrete mixture was also carried out. The results showed that:
     1) Due to the self-cementing process to some degree, low-calcium fly ash particles were coated with hydration production after a long-term contacting with water. Meanwhile, the particle size became coarser and its distribution became broader. Even though a 10% reduction in water requirement was occured due to its deduction in water-reducing effect after the early period of wetting, it could still fullfill the water requirement when used as a concrete mixture. Fly ash became much more sound after wetting, while its loss on ignition grew up which was attributed to its hydration process; 2) The distinction of the minerals and crystallizing degree of low-calcium fly ash before and after wetting was neglectable. After a long time wetting process( 3 years at most), major part of the low-calcium fly ash kept their original morphology while some others were erodened and their inner crystal particles became seen while the out part of regular crystals became smaller, all of which was directly influenced by its CaO content.3) A more than 5% but less than 10% activity loss occurred due to a first five-month of wetting, while the later period of activity loss became smaller. After a wetting process, the early hydration process was decelerated while the later hydration could be accelerated. The alkalinity of wetting fly ash was higher than 7, which surged up swiftly during the first serval days of wetting and declined slowly afterwards. It also showed that the higer content of CaO, the much swift of the declination of its alkalinity. The alkalinity peak of low-calcium was postponed when compared with high-calcium ash. 4) A high wetting temperature(95℃) quickened the self-cementing process, during which the fly ash was also activated, but the activity of it was lowered. The chemical composition, water acidity, static or dynamic state of wetting water effected the activity slightly. The finer of the wetting fly ash, the lower of its later-period of activity, and its fineness had little function on its early activity changes. The declination speed and span of activity became wider with the content of CaO became higher. 5) Though there was a noticable declination of water reducing effect of low-calcium fly ash due to long-term wetting, but the slump loss lowered down while the bleeding and adaptation with admixture were quite the same with dry fly ash. 6) The early strength of long-term wetting fly ash concrete decreased rapidly but the later strength declined gentaly: The specific compressive strength of concrete with fly ash wetting for 5 months decreased by 5% while concrete with 30% fly ash wetting for 36 monthes still reached 75%, and there was no visible strength discrepancy of fly ash concrete wetting for 3 and 5 years at 28d. The durability of long-term wetting fly ash concrete was quite the same with dry ash ones.
     Though most concrete performance with long-term low-calcium wetting fly ash are declined, it can still be used as an admixture when applied in concrete supplimentarily.
引文
[1]我的钢铁. http://www.mysteel.com/gc/gjsc/rdjps/2008/10/08/110630,1879076.html [ED/OL]. 2008-10-08.
    [2]中国环保网. http://news.qq.com/a/20090226/001483.htm[ED/OL], http://www.chinaenvironment.com,2008-6-2.
    [3] BP Statistical Review of World Energy. June, 2008. http:// www.bp.com/statisticalreview[ED/OL].
    [4]解居臣.中国电力工业对煤炭需求的分析[J].煤炭加工与综合利用,2004,4:4-6.
    [5]中华人民共和国国家统计局.中国统计年鉴2006[R].北京:中国统计出版社,2007.
    [6]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [7]陈旭红,苏慕珍,殷大众.粉煤灰分类与结构及活性特点[J].水泥,2007,6:8-12.
    [8]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.
    [9]季程煜.燃煤电厂除灰系统的应用及比较[J].电站辅机,1994,Z1:24-28.
    [10]申文平,薛继勇,李晓光.电除尘器在燃煤锅炉中的应用[J].河南化工,2008,25(2):43-44.
    [11]许华,臧清.电厂大型机组除渣系统探讨(续)[J].水利电力机械,2005,8-13.
    [12] C.L. Carlsson, D.C. Adriano.Environmental impacts of coal combustion residues[R].J. Environ. Qual. 1993,22: 227-247.
    [13]董金道.国内外粉煤灰综合利用的现状及发展前景[J].油田节能,2002,13(4):8-13.
    [14]王立刚.粉煤灰的环境危害与利用潜力[J].能源与环保,2000,3:45-46.
    [15]杨红彩,郑水林.粉煤灰的性质及综合利用现状与展望[J].中国非金属矿工业导刊,2003,4:38-42.
    [16]张怀渝,王化新,吴素琼.四川省粉煤灰中天然放射性含量及安全性评价[J].四川农业大学学报,1999,17(3):304-308.
    [17] Pushan Shah, Vladimir Strezov, Kathryn Prince et al. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel, 2008, 87(10-11):1859-1869.
    [18]朱法华,张景荣,荣鸿敏,张文华.粉煤灰中污染物质的淋溶释放模型[J].环境科学学报,1996,16(2):203-210.
    [19] Pushan Shah, Vladimir Strezov, Kathryn Prince et al. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel, 2008, 87(10-11):1859-1869.
    [20]杨建国,邓芙蓉,赵虹,岑可法.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报,2006,26(17):122-126.
    [21] Stanislav V. Vassilev, Rosa Menendez, Mercedes Diaz-Somoano et al. Phase-mineral andchemical composition of coal ?y ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates[J], Fuel, 2004,83:585-603.
    [22] M. Cheriaf, J. Cavalcante Rocha, J. Péra. Pozzolanic properties of pulverized coal combustion bottom ash[J]. Cement and Concrete Research, 1999,29: 1387-1391.
    [23] J. Payá, J. Monzó, M.V. Borrachero, E. Peris, et al. Mechanical treatments of fly ashes. Part. III: Studies on strength developmentof ground fly ashes (GFA)-cement mortars[J]. Cement and Concrete Research,1997,27 (9):1365-1377.
    [24]王运泉,张建平,郑燕君.粉煤灰组成特点及其系统分类[J].环境科学研究,1998,6:1-4.
    [25]周志宏,朱振江,黄兆敏.粉煤灰中微珠含量及其性能试验研究[J].粉煤灰,1999,6:13-15.
    [26]刘振生.湿排高炭粉煤灰中炭的浮选[J].粉煤灰综合利用,1994,3:36-38.
    [27]钱觉时,吴传明,王智.粉煤灰的矿物组成(上)[J].粉煤灰综合利用,2001,1:26-31.
    [28]钱觉时,王智,吴传明.粉煤灰的矿物组成(中)[J].粉煤灰综合利用,2001,2:37-41.
    [29]钱觉时,王智,张玉奇.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001,4:24-28.
    [30]赵庆新,孙伟,郑克仁,陈惠苏,秦鸿根,刘建中.粉煤灰掺量对高性能混凝土徐变性能的影响及其机理[J].硅酸盐学报,2006,34(4):446-451.
    [31]林震,陈益民,苏姣华,郭海华,张文生,张洪滔.外掺磨细矿渣与粉煤灰的水泥基材料的亚微结构研究[J].硅酸盐学报,2000S1, 28卷增刊1:6-10.
    [32]张永娟,张雄.粉煤灰水泥堆积效应与其抗压强度的关系[J].建筑材料学报2007,10(1):43-47.
    [33]马保国,李相国,梁文泉,叶群山,王信刚,朱洪波.粉煤灰矿渣复合水泥强度协同效应的研究[J].水泥,2004,2:1-4.
    [34]钱觉时,范英儒,徐锋.粉煤灰活性激发试验研究[J].硅酸盐建筑制品,1994,6:16-18.
    [35] J.Paya, J.Monzo, M.V.Borrachero, E.Peris-Mora. Mechanical treatments of fly ash. PartⅠ:Physico-chemical characterization of ground fly ashes[J]. Cement and Concrete Research,1995, 25(7):1469-1479.
    [36]张美香,马保国,罗忠涛,鄢佳佳,蹇守卫.激发剂对湿排粉煤灰活性激发的影响[J].混凝土,2006,12:49-50.
    [37]王智,卢浩,钱觉时,孟志良.减水剂作用下粉煤灰活性激发基本系统中石灰形态因素的研究[J].重庆建筑大学学报,1999,21(1):38-41.
    [38] Zhe Lu, M. Mercedes Maroto-Valer, Harold H. Schobert et al. Role of active sites in the steam activation of high unburned carbon fly ashes[J]. Fuel, 2008, 87:2598-2605.
    [39] Yang Min, Qian Jueshi, Pang Ying. Activation of fly ash–lime systems using calcined phosphogypsum[J]. Construction and Building Materials, 2008, 22:1004-1008.
    [40]钱觉时,肖保怀,袁江,王智.粉煤灰-石灰-硫酸盐系统[J].新型建筑材料,1998,8:19-21.
    [41]王智,郑洪伟,钱觉时,汪宏涛.硫酸盐对粉煤灰活性激发的比较[J].粉煤灰综合利用,1999,3:15-18.
    [42]张贤传,王结斌,郎业鹏,侯文华.高掺量海排粉煤灰蒸养砖的研制[J].砖瓦,2006,6:43-44.
    [43]张玲玲,赵丽萍,徐刚.粉煤灰烧结砖分类及发展[J].砖瓦世界,2006,4:7-8.
    [44] C.S. Poon, X.C. Qiao, Z.S. Lin.Pozzolanic properties of reject fly ash in blended cement pastes[J].Cement and Concrete Research, 2003, 33:1857-1865.
    [45]贺鸿珠,周敏,邱贤林.2007年上海市粉煤灰综合利用现状与对策[J].粉煤灰,2008,4:3-5.
    [46] HASSETT D J, EYLANDS K E, PFLUGHOEFT-HASSETT D F. Fundamental behavious of fly ash: heat of hydration [A]. 12th International Symposium on Coal Combustion By-Product Management and Use [C], Orlando, Florida, 1997. 26-30.
    [47]蒋林华,林宝玉,蔡跃波.高掺量粉煤灰水泥胶凝材料的水化性能研究[J].硅酸盐学报,1998,26(6):695-701.
    [48] C.S. Poon, D.W.S. Ho, A feasibility study on the utilization of r-FA in SCC[J].Cement and Concrete Research, 2004,34 :2337-2339.
    [49]杨革新,陆春,李英明等.高碳湿排粉煤灰掺烧普通页岩砖的开发利用[J].粉煤灰,2004,16(2):40-41.
    [50]张宝才.高碳高铝湿排粉煤灰生产水泥试验研究初探[J].粉煤灰,2000,12(5):23-23.
    [51]鄢朝勇.低等级湿排粉煤灰在中低强度混凝土中的应用研究[J].新型建筑材料,2005,4:23-24.
    [52] C.S. Poon, X.C. Qiao, Z.S. Lin, Pozzolanic properties of reject fly ash in blended cement pastes[J].Cement and Concrete Research, 2003,33:1857-1865.
    [53] X.C. Qiao, C.S. Poon,C. Cheeseman. Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems[J].Waste Management, 2006,26(2):141-149.
    [54] Antiohos, S.K. Papageorgiou, Chaniotakis. E, Mechanical and durability characteristics of gypsum-free blended cements incorporating sulphate-rich reject fly ash[J].Cement and Concrete Composites, 2007,29(7):550-558.
    [55]孟春明,李军发.粉煤灰填筑路基浅析[J].山西交通科技,2005, S2:9-11.
    [56]李时亮.扬州电厂湿排粉煤灰作为填料的工程特性及压实质量检测方法试验研究[J].路基工程,2003,5:37-40.
    [57]张广,玄东兴.湿排粉煤灰在混凝土路面中的应用[J].粉煤灰综合利用,2006,2:38-40.
    [58] Ksaibati, K.; Sayiri, S. R. K. Utilization of Wyoming Bottom Ash in Asphalt Mixes[J].Mountain-Plains Consortium, Fargo, ND., 2006:106.
    [59]鄢朝勇,李国栋.用湿排粉煤灰配制高强粉煤灰水泥的研究[J].粉煤灰综合利用,2001,3:22-23.
    [60]鄢朝勇.用低等级粉煤灰制造高活性粉煤灰胶凝材料的研究[J].国外建材科技,2003,6:50-51.
    [61]鄢朝勇.用活化低等级粉煤灰开发绿色新型胶凝材料的试验研究[J].工业建筑,2002,12:46-48.
    [62]鄢朝勇.低等级湿排粉煤灰在中低强度混凝土中的应用研究[J].新型建筑材料,2005,4:23-24.
    [63]任新玲.湿排灰混凝土强度特性的研究[J].山西交通科技,2003,6:11-13.
    [64]张美香,余松柏,胡利民,冯晓东,张攸沙,黄劲,田建平.电石渣对湿排粉煤灰活性预激发作用[J].混凝土与水泥制品,2008,4:17-19.
    [65]马保国,罗忠涛,张美香,蹇守卫,王信刚.湿排粉煤灰机械活化效应及其机理研究[J].混凝土,2006,10:7-9.
    [66]张风臣,马保国,蹇守卫.利用海水湿排粉煤灰制备新型承重墙体材料[J].四川建筑科学研究,2008,34(5):147-151.
    [67]扶名福,谢帮华,胡明玉,陈文俊.湿排粉煤灰在墙体材料中的应用研究[A].第16届全国结构工程学术会议论文集(第Ⅱ册)[C], 2007.
    [68]相会强,杨宏,巩有奎,张杰.改性粉煤灰去除磷酸盐的试验研究及机理分析[J].环境科学与技术,2005,28(5):18-20.
    [69]薛志成.采用粉煤灰预处理印染废水的色度[J].纺织科技进展,2007,4:58.
    [70]刘艳军,李亚峰,张佩泽.改性粉煤灰处理含铬废水的研究[J].工业安全与环保, 2008,34(6):7-9.
    [71]李亚峰,刘艳军,李亭亭.改性粉煤灰处理模拟含磷废水试验[J].沈阳建筑大学学报(自然学版),2008,24(3):451-454.
    [72] Bayat B.Comparative study of adsorption properties of Turkish fly ashes II[J].Journal of Hazardous Materials,2002,95(6):275-290.
    [73] Satapathy, B.K., Ramana Rao, D.V. Adsorption efficiency of high carbon fly ash[J].Research and Industry, 29(3):188-190.
    [74] Ubbrìaco, P.; Traini, Angela; Manigrassi, D. Characterization of FDR fly ash and brick/lime mixtures[J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(1):301-305.
    [75]边炳鑫.粉煤灰空心微珠分选及其综合利用研究[M].徐州:中国矿业大学出版社,1996.
    [76]汪克进.湿排对粉煤灰性质影响的研究[D].重庆:重庆大学,2005.
    [77] HASSETT D J, EYLANDS K E, PFLUGHOEFT-HASSETT D F. Fundamental behavious of fly ash: heat of hydration [A]. 12th International Symposium on Coal Combustion By-Product Management and Use [C], Orlando, Florida, 1997: 26-30.
    [78]刘娟红,宋少民.颗粒分布对活性粉末混凝土性能及微观结构影响[J].武汉理工大学学报,2007,29(1):26-29.
    [79] Sun Wei , Yan Handong, Zhan Binggen,Analysis of mechanism on water-reducing effect of fine ground slag, high-calcium fly ash, and low-calcium fly ash[J].Cement and Concrete Research, 2003,33:1119-1125.
    [80] Halit Yaz?c?, Mert Yücel Yard?mc?, Serdar Ayd?n et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimesr[J].Construction and Building Materials. 2009, 23(3):1223-1231.
    [81]薛永杰,侯浩波,查进.高烧失量粉煤灰对水泥浆体的力学和耐久性能的影响研究[J].粉煤灰,2007,4:24-26.
    [82]马立国,杨瑞辉,王瓒.粉煤灰品质评价方法研究[J].粉煤灰综合利用,2005,5:9-12.
    [83]张道玲,李启令.粉煤灰特性与需水量比关系的神经网络模拟[J].建筑材料学报, 2006,5(2):190-193.
    [84]佘家骅,沈旦申.池灰粉煤灰资源的质量剖析研究[J].粉煤灰,1995, 2:9-13.
    [85]贺鸿珠.四大燃煤电厂灰场Ⅲ级粉煤灰的性能[J].粉煤灰,1995,4:32-37.
    [86]李时亮.粉煤灰颗粒组成的特点及其对工程性质的影响[J].路基工程,2003,增刊:19-21.
    [87]杨瑞海,陆文雄.复合胶凝材料水泥体系水化机理的研究[J].新世纪水泥导报,2007,4:50-51.
    [88] Zalihe Nalbantog?lu. Effectiveness of Class C fly ash as an expansive soil stabilizer[J].Construction and Building Materials,2004,18:377-381.
    [89]肖文俊.高钙粉煤灰微观形貌及微珠活性[J].粉煤灰综合利用,1999,4:42-46.
    [90]游宝坤,李乃珍.膨胀剂及其补偿收缩混凝土[M],北京:中国建材工业出版社,2005,第1版.
    [91] G. J. McCarthy, J.K. Solem, O. Manz et al. Use of database of chemical, mineralogical and physical fly ash and its utilization as a mineral admixture in concrete. In:Materials Research Society Symposia Preceedings, 1990,178:3-31.
    [92] Zalihe Nalbantog?lu. Effectiveness of Class C fly ash as an expansive soil stabilizer[J]. Construction and Building Materials,2004,18:377-381.
    [93]吴学礼.高钙粉煤灰水泥浆体的膨胀性能[J].建筑材料学报,1998,1(2):107-111.
    [94] Nikolaos K. Koukouzas, Rongshu Zeng. Mineralogy and geochemistry of Greek and Chinese coal fly ash[J]. Fuel , 2006,85: 2301–2309.
    [95] Sumio Horiuchi, Masato Kawaguchi, Kazuya Yasuhara. Effective use of fly ash slurry as fill material[J]. Journal of Hazardous Materials,2000,76(2-3):301-337.
    [96]梁波,邓荣基,丁立.粉煤灰作为填料的水稳性试验研究[J].路基工程,2000,2:20-22.
    [97]杨伯科.混凝土使用技术手册[M].长春:吉林科学技术出版社,1998.
    [98] Zayed, A. M. Blending of class F fly ashes[J]. Florida State Dept. of Transportation, Tallahassee. Research Center.;Federal Highway Administration, Tallahassee, FL. Florida Div., 64p, Aug 2000.
    [99] M. Antonia Lo′pez-Anto′n, Patricia Abad-Valle, Mercedes D?′az-Somoano et al. The influence of carbon particle type in fly ashes on mercury adsorption[J]. Fuel , 2009, 88(7): 1194-1200.
    [100]国家质量监督检验检疫总局.用于水泥和混凝土中的粉煤灰[S].北京:中国标准出版社,2005.
    [101] Robert C. Brown , Jeff Dykstra. Systematic errors in the use of loss-on-ignition to measure unburned carbon in fly ash[J]. Fuel,1995,74(4):570-574.
    [102] Sarbajit Ghosal, Jon L. Ebert, Sidney A. Self. Chemical composition and size distributions for fly ashes[J]. Fuel Processing Technology,1995, 44:8 l-94.
    [103]竹蕾,卢升高,何黎平.火电厂粉煤灰的矿物学、形态与物理性质[J].科技通报, 2004,20(7):359-363.
    [104] K. Tazaki, W. S. Fyfe, K. C. Sahu. Observations on the nature of fly ash particles[J]. Fuel, 1989, 68(6): 727-734.
    [105]贺行洋,陈益民,秦守婉等.湿磨处理对粉煤灰物化性能及胶砂强度的影响[J].武汉理工大学学报,2005,27(12):22-25.
    [106] Sidney Diamondc. Particle morphologies in fly ash[J]. Cement and Concrete Research, 1986, 16(4): 569-579.
    [107] Heemun Jang, Thomas H. Etsell. Mineralogy and phase transition of oil sands coke ash[J]. Fuel, 2006,85:1526-1534.
    [108] H.B. Vuthaluru, D. French. Ash chemistry and mineralogy of an Indonesian coal during combustion: Part II—Pilot scale observations[J]. Fuel Processing Technology, 2008, 89(6):608-621.
    [109] Stanislav V. Vassilev, Christina G. Vassileva , Mineralogy of combustion wastes from coal-fired power stations[J]. Fuel Processing Technology, 47, 3:261-280.
    [110]邵靖邦,邵绪新,王祖讷.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综合利用,1996,(6):37-41.
    [111] J.K. Tishmack, J. Olek, S. Diamond et al. Characterization of pore solutions expressed from high-calcium fly ash-water pastes[J]. Fuel, 2001,80: 815-819.
    [112]陈容,陈志源.高钙粉煤灰中游离氧化钙水化动力学研究[J].建筑材料学报,2000,3(2): 147-154.
    [113] David J. Hassett, Kurt E. Eylands . Heat of hydration of fly ash as a predictive tool[J]. Fuel,76(8):807-809.
    [114]胡曙光,何永佳,吕林女.Ca(OH)2解耦法对混合水泥中C-S-H凝胶的半定量研究[J].材料科学与工程学报,2006,24(5):666-669.
    [115] M.Tokyay and F.H.Hubbard. Mineralogical investigation of high-lime fly ashes.In:Fly ash, Silica Fume. Slag and Natural Pozzolans in Concrete, Proceedings Fourth International Conference, Istanbul, Turkey, May3-8,1992:65-77.
    [116]杨南如,钟白茜,董攀.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,12(2):155-164.
    [117]何智海,刘宝举,程智清,粱慧.蒸汽养护条件下水泥-粉煤灰复合胶凝材料的水化性能研究[J].混凝土,2005,12:7-10.
    [118]吕鹏,翟建平,吕慧峰,付晓茹,聂荣,李琴.粉煤灰火山灰反应残渣的形貌及组成[J].硅酸盐学报,2005,33(5):627-631.
    [119] Barbara G. Kutchko, Ann G. Kim. Fly ash characterization by SEM–EDS[J]. Fuel, 2006,85 :2537-2544.
    [120] Rundong Li, Lei Wang, Tianhua Yang et al. Investigation of MSWI fly ash melting characteristic by DSC–DTA[J]. Waste Management, 2007,27:1383-1392.
    [121]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001 3:299-304.
    [122]谷章昭,乐美龙,伍劲夫,梁天仁,王维君,吴学礼,杨乃萍.粉煤灰活性的研究[J].硅酸盐学报,1982,10 (2):151-160.
    [123]郑洪伟,王智,钱觉时,李有光.流化床燃煤固硫渣活性评定方法[J].粉煤灰综合利用,2002,2:6-9.
    [124]黄士元,李志华,程吉平.粉煤灰-Ca(OH)2-H2O系统中的反应动力学[J].硅酸盐学报,1986,3:191-197.
    [125]王晓钧,杨南如,周洪庆.粉煤灰研磨过程中铝氧多面体结构变化的核磁共振研究[J].硅酸盐学报,2003,31(2):188-193.
    [126]王晓钧,杨南如,施书哲.磨机种类、水介质和机械热效应对粉煤灰研磨的影响[J].南京化工大学学报,2000,22(6):6-9.
    [127]王晓钧,陈悦,周洪庆.粉煤灰机械研磨过程中硅氧四面体结构的变化趋势[J].硅酸盐学报,2001,29(4):389-391.
    [128]于继寿,李仁福,隋成飞,赵传文.酸碱激发粉煤灰的研究[J].粉煤灰综合利用,2000(2):26-28.
    [129] Mustafa Arslan, Mustafa Boybay. The interaction of orthophosphoric acid and fly ash[J]. Resources, Conservation and Recycling.1999,9(4):295-310.
    [130]李平江,史美伦,陈志源.粉煤灰细度与其火山灰活性的关系[J].建筑材料学报,2004,7(2):207-209.
    [131]施惠生.高钙粉煤灰的本征特性与水化特性[J].同济大学学报(自然科学版),2003,12:1440-1442.
    [132]李坦平,周学忠.湿排粉煤灰的活性激发及其作为水泥混合材的试验研究[J].建筑发展导向,2005(6):45-48.
    [133] S. Go?i, A. Guerrero, M. P. Luxán, A. Macías. Activation of the fly ash pozzolanic reaction by hydrothermal conditions[J].Cement and Concrete Research, 2003,33(9):1399-1405.
    [134]王纯.除尘器手册[M].北京:化学工业出版社,2005,1:34.
    [135]孙明湖,咸惠军.海水排粉煤灰性质和利用研究[J].粉煤灰,2004,16(2):23-24.
    [136]余曼丽.海水粉煤灰的活性激发与氯离子固化机理研究[J].中国水泥,2008,1: 59-60.
    [137]曹红红,匡建新.激发剂作用下粉煤灰火山灰反应特征的研究[J].粉煤灰综合利用,1997,2:28-32.
    [138]王玉锁,叶跃忠,钟新樵等.新型混凝土早强剂的应用研究现状[J].四川建筑,2005, 25(4):105-106.
    [139]马丽雅,王斌,杨俊国.四川省酸雨时空分布特征[J].环境科学与管理,2008,33(4):26-29.
    [140] J. Paya, J. Monzo, M.V. Borrachero et al. Mechanical treatment of fly ashes.Part I: physico-chemical Characterization of ground fly ashes[J]. Cement and Concrete Research, 1995, 25(7):1469-1479.
    [141] A.L.A. Fraay, J.M. Bijen, Y.M. De haan. The reaction of fly ash in concrete, a critical examination[J].Cement and Concrete Research,1989,(19):235-246.
    [142]严捍东.矿物掺合料早期水化活性的测试和分析[J].材料科学与工程学报,2005, 23(3):388-393.
    [143] Tatsuhiko Saeki, Paulo J.M. Monteiro. A model to predict the amount of calcium hydroxide in concrete containing mineral admixtures[J]. Cement and Concrete Research, 2005,35:1914-1921.
    [144] Aiqin Wang, Chengzhi Zhang, Wei Sun. Fly ash effects II. The active effect of fly ash[J]. Cement and Concrete Research, 2004,34:2057–2060.
    [145] R. Vedalakshmi, A. Sundara Raj, S. Srinivasan. Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique[J]. Thermochimica Acta,2003,407:49-60.
    [146] David J. Hassett, Kurt E. Eylands . Heat of hydration of fly ash as a predictive tool [J]. Fuel , 76(8):807-809.
    [147] Suphi Ural, Comparison of fly ash properties from Afsin–Elbistan coal basin, Turkey, Journal of Hazardous Materials, Volume 119, Issues 1-3:85-92,17,March,2005.
    [148] F.M.Lea.水泥和混凝土化学(第三版)[M].北京:中国建筑工业出版社, l980:535-536.
    [149]袁润章,朱颉安,章丽云.评定粉煤灰的火山灰活性方法的研究[J].武汉建材学院学报,1982,(2):169-176.
    [150]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001, 4(3):299-305.
    [151] I. Jawed, J. Skalny. Hydration of tricalcium silicate in the presence of fly ash. In: Effects of fly ash Incorporation in Cement and Concrete (S. Diamond Ed.), Proceedings, Symposium N Annual meetings, November 16-18,1981:60-70.
    [152]李北星,胡晓曼,陈娟,何真.高掺量混合材复合水泥的水化性能[J].硅酸盐学报, 2004,10:1304-1309.
    [153]张惠玲,程蓓,杨惠.用结合水法评定粉煤灰水化活性程度[J].国外建材科技,2001,3:13-16.
    [154] H.F.W.Taylor. Cement Chemistry[M]. Academic press, London. 1990:142-152.
    [155] Halit Yazici. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures[J]. Building and Environment,2007, 42:2083-2089.
    [156]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1996,10.
    [157] S. Antiohos, S. Tsimas. Activation of fly ash cementitious systems in the presence of quicklime Part I. Compressive strength and pozzolanic reaction rate[J].Cement and Concrete Research,2004,34:769-779.
    [158] S. Antiohos, A. Papageorgiou, S. Tsimas. Activation of fly ash cementitious systems in the presence of quicklime.Part II: Nature of hydration products, porosityand microstructure development[J].Cement and Concrete Research,2006,36(12):2123-2131.
    [159]甄精莲,段仲源,柯国军,贾瑞晨.低等级湿排粉煤灰在混凝土中的应用[J].国外建材科技,2006,27(5):25-28.
    [160]鄢朝勇.低等级湿排粉煤灰在中低强度混凝土中的应用研究[J].新型建筑材料,2005,4:23-24.
    [161]张广.湿排粉煤灰在混凝土路面中的应用[J].粉煤灰综合利用,2006,2:38-40.
    [162] C.Plowman and J.G. Cabreta. The influence of pulverized fuel ash on the hydration reactions of calcium aluminate. In: Effects of fly ash incorporation in cement and concretes (S. Diamond Ed.). Proceedings, Symposium N Annual meetings, Nov. 16-18,1981:71-81.
    [163]朱德友.双掺技术在混凝土中的应用[J].安徽建筑,2004,5:102-103.
    [164]黄海滨,马长全,王振山.萘系高效减水剂与水泥、粉煤灰等掺合料适应性的试验研究[J].粉煤灰,2008,2:38-43.
    [165]刘斯凤,孙伟,林玮,赖建中.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080-1085.
    [166]余红发,孙伟,武卫锋,杨山,鄢良慧.普通混凝土在盐湖环境中的抗卤水冻蚀性与破坏机理研究[J].硅酸盐学报,2003,31(8):763-769.
    [167] K.O. Ampadu, K. Torii, M. Kawamura. Beneficial effect of fly ash on chloride diffusivity of hardened cement paste[J]. Cement and Concrete Research, 1999,29:585-590.
    [168] S.Y. Hong, F.P. Glasser. Alkali binding in cement pastes part I. The C-S-H phase[J]. Cement and Concrete Research,1999,29(12):1893-1903.
    [169]杨忠义.硅灰对碱-硅反应及膨胀的影响[J].水电站设计,2000,16(2):105-11.
    [170]谢友均,马昆林,龙广成,石明霞.矿物掺合料对混凝土中氯离子渗透性的影响[J].硅酸盐学报,2006,34(11):1345-1350.
    [171]程云虹,闫俊,刘斌.粉煤灰混凝土碳化性能试验研究[J].公路,2007,12:30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700