聚丙烯腈纤维聚合物水泥砂浆性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的土木工程建设发展迅猛,在新建工程项目不断增加的同时,对现有结构的修复加固已引起工程界的广泛重视。由于各种原因所引起的建筑结构失效和功能失效,不仅影响了人们的正常生活,而且造成了巨大的经济损失。为此,研制适合混凝土表面修补加固的新型材料,延长建筑物的使用寿命,减少维修成本具有重要的意义。本文将研究的聚丙烯腈纤维聚合物水泥砂浆是一种具有抗折强度高、粘结强度高和收缩小的高性能复合砂浆,是一种新型高性能修补加固材料。
     本文研究聚合物胶粉和聚丙烯腈纤维对砂浆和易性及物理力学性能的影响,选择了合适的胶粉品种,确定胶粉及纤维的适宜掺量。在此基础上,进一步研究了纤维聚合物水泥砂浆的粘结性能、干缩性能和抗冻性能,并对其机理进行了分析。
     研究表明,聚合物胶粉提高了砂浆抗折强度,砂浆的柔韧性变好,但抗压强度降低。其中胶粉P1改善的作用效果更好,其合适掺量在1.0%-1.5%。在聚合物砂浆中加入聚丙烯腈纤维,可进一步改善新拌砂浆的施工和易性,随纤维掺量的增加保水性更好,无泌水现象。在适宜掺量范围内,聚丙烯腈纤维可以提高聚合物砂浆的抗折强度及柔韧性,但对抗压强度影响不大。当胶粉掺量为1.0%、1.5%,聚丙烯腈纤维掺量为0.8%、1.0%时,纤维聚合物水泥砂浆的综合物理性能最佳。聚合物胶粉能提高砂浆的拉伸粘结强度,胶粉掺量在1.0%-2.0%比较合适,可以明显提高其粘结强度;复掺聚合物胶粉和聚丙烯腈纤维,砂浆的粘结性能更好,随着纤维掺量增加,粘结强度增大。聚合物胶粉和聚丙烯腈纤维可减小砂浆的干缩率和提高砂浆的抗冻性能,相对于普通砂浆,聚合物砂浆和纤维聚合物砂浆的干缩率分别降低了16.7%,25.1%。经过30次冻融循环后,普通砂浆的抗折强度损失了28.9%,单掺聚合物胶粉1.5%,抗折强度损失了12.8%;双掺聚合物胶粉和聚丙烯腈纤维时,抗折强度只损失了7.8%-10.1%。
As the construction of civil engineering is developing rapidly in China, new construction projects increase. At the same time, repairing and reinforcing the structure existed has aroused great attention from the engineering sector. The structural failure and function loss caused by various reasons not only affect people's normal life, but also bring enormous economic losses. Therefore, developing new materials suitable for surface repairing and strengthening of concrete, extending the service life of buildings and reducing the maintenance cost are significant. The cement-mortar of polyacrylonitrile (PAN) fiber polymer studied in this paper is a high-performance composite mortar with high flexural strength, high adhesive strength and small contraction. It is also a new repairing and strengthening material with high performance.
     The influences, from polymer gelatine powder and PAN fiber, on workability and physical mechanical properties of mortar were studied in this paper. Appropriate dosage of PAN fiber and gelatine powder selected properly was confirmed. Based on this, further study on adhesive property, dry-shrinkage performance and frost resistance of fiber polymer cement-mortar were taken and related mechanisms were analyzed.
     The results showed that the polymer gelatine powder could increase the flexural strength of mortar, improve the flexibility but decrease the compressive strength of mortar. P1 improved with a better effect and its appropriate dosage was between 1.0% and 1.5%. Adding PAN fiber to the polymer mortar could make a further improvement to the construction workability of the fresh mixed mortar. In addition, the water holding capacity became better when the fiber dosage increased, with no bleeding phenomenon. When the dosage was at a suitable range, PAN fiber could improve the flexural strength and flexibility of the polymer mortar, but had little effect to the compressive strength. When the dosage of gelatine powder was between 1.0% and 1.5%, the dosage of PAN fiber was between 0.8% and 1.0%, the fiber polymer cement-mortar had the best comprehensive performance. Polymer gelatine powder could also improve the tensile adhesive strength of mortar and obviously improved when its dosage was between 1.0% and 2.0%. Compound doped the polymer gelatine powder and PAN fiber, the adhesive property of mortar became better. Besides, the adhesive strength improved as the dosage of fiber increased. Polymer gelatine powder and PAN fiber could also reduce the dry-shrinkage rate and improve the frost resistance of mortar. The dry-shrinkage rate reduced by 16.7% of the polymer mortar while 25.1% of the fiber polymer mortar, compared with ordinary mortar. After 30 freeze-thaw cycles, the flexural strength lost 28.9% of ordinary mortar,12.8% of mortar single-doped polymer gelatine powder with 1.5% dosage, while just 7.8%-10.1% of mortar double-doped polymer gelatine powder and PAN fiber.
引文
1 沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料.中国建材工业出版社.2004:1-2
    2 邓宗才.高性能合成纤维混凝土.科学出版社.2003:1-5
    3 G.L. Guerrini. Applica of High-Performance Fiber-Reinforced Cement-Based Composites. Applied Composite Materials.2000, (7):195-207
    4 M.U.K. Afridia, Y. Ohamab, M.Z. Iqbalc. A Note on the Comparison of Crack Resistance of Ca(OH)2 Crystal of Unmodified and Polymer-Modified Mortars in Carbonated Atmosphere. Cement and Concrete Research.2001, (31): 1643-1645
    5 C. Maltese, C. Pistolesi, A. Lolli, A. Bravo. Combined effect of Expansive and Shrinkage Reducing Admixtures to Obtain Stable and Durable Mortars. Cement and Concrete Research.2005, (35):2244-2251
    6 C. James, M. Miltenberger. Tensile Bond Strength of Polymer Modified Mortars. Materials in Civil Engineering.1999, (2):1-5
    7 G. Barluenga, F. Hernandez-Olivares. SBR Latex Modified Mortar Archeology and Mechanical Behavior. Cement and Concrete Research.2004, (34):527-535
    8 Li Zongjin, Wei Xiaosheng, Li Weilai. Preliminary interpretation of Portland Cement Hydration Process Using Resistivity Measurements. Materials Journal. 2003,(3):18-20
    9 O. Yoshihiko, D. Katsunor. Self-Repair Mechanism for Micro Cracks in Epoxy-Modified Mortars. Proceedings of the Third Asia Symposium on Polymer in Concrete. Shanghai, P. R. of China,2000:180-185
    10吴敬龙.聚合物改性砂浆性能试验研究.哈尔滨工业大学硕士论文.2006:2-4
    11 A. Colak. Properties of Plain and Latex Modified Portland Cement Pastes and Concretes with and without Super Plasticizer. Cement and Concrete Research, 2005,35(8):1510-1521
    12 A. Jennia, R. Zurbriggen, L. Holzer, M. Herwegha. Changes in Microstructures and Physical Properties of Polymer-Modified Mortars During Wet Storage. Cement and Concrete Research.2006, (36):79-90
    13 J. M Gao, Qian C. X, Wang B, et al. Experimental Study on Properties of Polymer Modified Cement Mortars with Silica Fume. Cement and Concrete Research.2002,32(1):41-45
    14林玉梅,罗伍文.聚合物改性抗裂防渗砂浆的试验.新型建筑材料.2007, (3):33-37
    15 D.G. Waters. Polymer-modified Cementations Mixtures for Repair. Concrete Repair Bulletin.1995,8(5):18-21
    16 J.H. Kim, R.E. Robertson. Prevention of Air Void Formation in Polymer Modified Cement Mortar by Pre-wetting. Cement and Concrete Research.1997, 27(2):171-176
    17田甜.水性环氧树脂乳液改性水泥砂浆性能的研究.湖南大学硕士学位论文.2006:27-38
    18王晓明,王培铭.聚合物干粉对水泥砂浆凝结时间的影响.新型建筑材料.2005,(3):51-53
    19 J. Suhuze, O. Killermann. Long-Term Performance of Redispersible Powers in Mortars. Cement and Concrete Research.2001,31(3):357-362
    20 A.A. P. Mansur, D.B. Santos, H.S. Mansur. A Micros Structural Approach to Adherence Mechanism of Polymer Modified Cement Systems to Ceramic tiles. Cement and Concrete Research.2007,37(2):270-282
    21 G.. Barluenga, F. Hernandez-Olivares. SBR Latex Modified Mortar Archeology and Mechanical Behavior. Cement and Concrete Research.2004,34(3): 527-535
    22 Y. Ohama. Polymer-Based Admixtures. Cement and Concrete Research.1998, 20(2):189-212
    23李芳,王培铭.不同水灰比下聚合物改性水泥砂浆的力学性能.化学建材,2006,(6):33-35
    24王晓锋,张量.采用粉末聚合物改性的混凝土修补砂浆.新型建筑材料,2007,(3):293
    25 S. Pascal, A. Alliche, P. Pilvin. Mechanical Behavior of Polymer Modified Mortars. Materials Science and Engineering.2004,380(1/2):1-8
    26李建,王培铭,王茹.丁苯乳液改性水泥砂浆的力学性能与体积密度.建筑材料学报,2005,8(6):705-709
    27黄利频.聚合物干粉改性水泥砂浆力学性能的研究.福州大学学报.2006,34(4):555-559
    28黄利频,袁玲.聚合物干粉改性水泥砂浆性能及应用研究.武汉理工大学学报.2007,29(10):15-19
    29梅迎军,王培铭,梁乃兴等.丁苯乳液对水泥砂浆吸水率和碳化深度的影响及其机理.建筑材料学报.2007,10(3):276-281
    30 J. Schulz. Influence of Water-Cement Ratio and Cement Content on the Properties of Polymer-Modified Mortars. Cement and Concrete Research.1999, 29(6):909-915
    31钟世云,马英.聚合物改性自流平水泥砂浆的力学性能.建筑材料学报.2005,8(1):77-81
    32蒋隆敏,尚守平,黄政宇.一种适用于钢丝网水泥加固RC结构的纤维复合砂浆和界面剂.土木工程学报.2005,38(5):41-47
    33尚守平,蒋隆敏,张毛心.聚合物改性高强水泥砂浆的研究.湖南大学硕士学位论文.2008:6-7
    34 J. Pourchez, A. Peschard, P. Grosseau. HPMC and HEMC Influence on Cement Hydration. Cement and Concrete Research.2006,36(2):288-294
    35 J. Mirza, K.S. Mirza, R. Lapointe. Laboratory and Field Performance of Polymer of Polymer-Modified-Cement-Based Repair Mortars in Cold Climates. Const Build Mater.2002, (16):365-374
    36 S. Pascal, A. Aleichem. Mechanical Behavior of Polymer Modified Mortars. Materials Science and Engineering.2004, (308):1-8
    37马保国,吴媛媛,张风臣等.聚合物改性砂浆界面粘结特性的研究.材料导报.2009,23(6):62-64
    38 C. Valeria, M. Giacomo, T. Francesca. Evidence for Incorrect Intervention in Masonry Restoration. Cement and Concrete Composite.2003, (25):1157-1160
    39 M.U.K. Afridia, Y. Ohama, K. Demurab, M.Z. Lqbal. Development of Polymer Films by the Coalescence of Polymer Particles in Powdered and Aqueous Polymer-Modified Mortars. Cement and Concrete Research.2003, (33):1715-1721
    40邓宗才.高性能合成纤维混凝土.科学出版社.2003:67-69
    41段志华,付高鹏,张守元.聚丙烯纤维混凝土或砂浆的施工及力学性能.洛阳工学院学报.2002,23(2):16-18
    42龙娈珍,韩艳艳.聚丙烯腈纤维对砂浆变形性能的影响.武汉工业学院学报.2009,28(2):76-78
    43 C. Talbot, M. Pigeon, D. Beauore, et al. Influence of Surface Preparation on Long-Term Bonding of Shotcrete. ACI Materials Journal.1994,32(11), 560-566
    44 A. Caries, F. Saucier, J. Grander, et al. New-to-Old Concrete Bonding:Influence of Surfaces Type of New Concrete on Interface Micro structure. Cement and Concrete Research.1993,23(2):431-441
    45王少波,郭进军,张雷顺等.界面剂对新老混凝土粘结的剪切性能的影响.工业建筑.2001,31(11):35-38
    46程红强,张雷顺.新老混凝土粘结劈拉强度试验研究.河南科学.2003, 21(4):465-467
    47谢厚礼.新型粘结砂浆的配制与性能研究.重庆大学硕士学位论文.2005:35-38
    48罗白云,熊光晶,李庚英等.减缩剂改性新老混凝土修补界面层的细观结构与粘结强度.硅酸盐通报.2004,23(6):110-116
    49谢慧才,李庚英,熊光晶.新老混凝土界面粘结力形成机理.硅酸盐通报.2003,22(3):7-18
    50李庚英,熊光晶,谢慧才等.一种能改善新老混凝土粘结性能的界面剂.四川建筑科学研究.2000,26(4):44-46
    51刘丽芳,王培铭,杨晓杰.聚丙烯纤维参数对水泥砂浆干缩率的影响.建筑材料学报.2005,8(4):373-377
    52王英姿,赵帅,田颖,李国忠.聚丙烯纤维增强聚合物水泥砂浆的干缩性能研究.硅酸盐通报.2008,27(2):404-406
    53任慧韬,胡安妮,赵国藩.纤维增强塑料与混凝土粘结抗冻融性能研究.大连理工大学学报.2003,43(4):495-499.
    54唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究.沈阳建筑工程学院学报(自然科学版).2001,17(4):272-275
    55肖婷,方永浩.水泥基材料冻融破坏机理及特征.江苏建材.2004,(2):22-24
    56姜雪洁.纤维聚合物砂浆力学性能分析.建筑技术.2007,38(2):140-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700