硫酸盐侵蚀条件下混凝土损伤演化机理及其内膨胀力模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋环境下,硫酸盐侵蚀是混凝土结构耐久性降低的主要原因之一。当混凝土材料在硫酸盐侵蚀作用下,孔隙中的水化产物会与渗入的硫酸根离子发生反应生成一种称为水化硫铝酸钙晶体,俗称“钙矾石”。由于生成的钙矾石晶体体积大约为反应前水化铝酸钙体积的2.5倍,因此,钙矾石晶体会对混凝土产生挤压作用,当由于钙矾石晶体所产生的内膨胀力所引起的孔隙边缘的拉伸应力超过混凝土材料的抗拉强度时,将导致混凝土材料微损伤的成核。因此,本文主要研究在混凝土材料在硫酸盐侵蚀条件下损伤演化机理,以及由于钙矾石晶体体积膨胀所造成的内膨胀力模型。
     本文第一章对混凝土材料在硫酸盐侵蚀下耐久性问题的研究进行了综述,主要包括四个部分:混凝土在海水侵蚀下的研究进展;材料损伤理论的研究进展;混凝土材料动态本构关系的研究进展以及本文即将开展的工作。第二章通过细观力学的方法,假定混凝土材料为二相复合材料,再假定混凝土基体的本构模型可以近似用标准线性固体模型来描述,通过对单轴压缩载荷作用下混凝土材料的分析计算发现材料的微损伤成核与孔洞边缘产生的拉伸应力相关,当孔洞边缘的拉伸应力超过材料的抗拉强度时,材料发生微损伤成核。第三章结合已有的混凝土在硫酸盐侵蚀条件下超声波演化及混凝土密度演化结果,分析了不同侵蚀条件下损伤的演化规律。通过分析超声波波速演化实验结果,得出其主要有三个方面的影响因素:一、混凝土材料的继续水化;二、钙矾石晶体的生长对混凝土材料孔隙的填充;三、由于钙矾石晶体的生长产生的内膨胀力所导致微裂纹的演化。结果表明混凝土材料在硫酸盐侵蚀下,侵蚀溶液浓度、混凝土材料的水灰比对Poisson比演化有重要影响。第四章通过运用细观力学方法得到了混凝土在硫酸盐侵蚀条件下的内膨胀力与混凝土材料膨胀应变之间的关系。结果表明,用波尔兹曼函数能够较好的表述整个侵蚀过程当中内膨胀力随时间的演化情况。第五章,采用内变量理论,导出了在单轴应力条件下松弛时间、材料初始弹性模量率相关的非线性粘弹性本构关系的迭代形式,并给出其收敛条件。以此为基础,建立了混凝土材料损伤耦合的非线性粘弹性本构关系。该本构关系可以较好地反映实验结果,并发现材料的松弛时间、材料的初始弹性模量具有明显的率相关性。第六章对全文进行了总结,并对需继续进一步进行的工作进行了展望。
Sulfate attack is one of the main factors to reduce the durability of concrete structures in marine environment. When sulfate ions diffuse in pores of concrete, the chemical reaction between the hydration solution of concrete and sulfate ions may take place, therefore, ettringite crystal may nucleate and grow in these pores, and this kind of ettringite is also called as“delayed ettringite”. Usually, volume of delayed ettringite is about 2.5 times bigger than the volume of reactant hydrated calcium aluminate. Therefore, the expansion forces will be induced by delayed ettringite crystal, and the expansion strain of concrete will be produced by the delayed ettringite. If the tensile stress around the voids of concrete caused by the internal expansion force is greater than the tensile strength, the nucleation of damage will take place. Hence, the mechanism of damage nucleation of concrete under sulfate attack is studied, and the model of internal expansion force is also suggested.
     In chapter 1, problems of concrete durability are summarized, which includes three parts: progress of researches on concrete in marine environment; researches on the damage theory of materials; researches on the constitutive relation of concrete under impact loading.
     In chapter 2, we assume that concrete is a two-phase composite, and the constitutive relation concrete matrix may be approximately described by the standard linear solid model. The stress analysis about the surface of microvoids in concrete is performed. It is found that the tensile stress may appear at the void surface even the concrete is under the action of uniaxial compressive load. If that tensile stress is greater than the tensile strength of concrete, the nucleation of micro-cracks may take place.
     In chapter 3, damage evolution of concrete immersed in solution of sodium sulfate of different concentrations is investigated by means of the experiment results of the variation of density and wave velocity of ultrasonic propagated in samples of concrete. The variation of wave velocity of ultrasonic is mainly caused by three factors. The first factor is the continuation of hydration of concrete, and the second one is the effect of delayed ettringite to filling concrete. These two factors may lead to the increase of average modulus of the material and wave velocity of ultrasonic. The third factor is damage evolution, and the wave velocity of ultrasonic will decrease because of the decrease effective modulus due to the erosion damage. The results show that the Poisson’s ratio is significantly affected by the concentration of sulfate solution and water-cement ratio of concrete.
     In chapter 4, theory of micromechanics is adopted to obtain the relation between the internal expansion stress and expansion strain of concrete under the sulfate attack. The result indicates that Boltzmann foundation can preferably character the evolution of expansion strain and internal expansion stress.
     In chapter 5, theory of internal variable is used to establish a rate-independent non-liner viscous-elasticity constitutive model, and this model is given by an iterative form. The condition of convergence of the iterative form is analyzed. Based on this model, a new 3-D non-linear viscoelastic constitutive relation of concrete is suggested by considering the damage evolution. It is found that this constitutive model can perfectly describe the experimental results. It is also found that the strain rate will significantly affect the relaxation time and initial modulus of concrete.
     In chapter 6, the conclusions of this research are summarized, and the further research work is analyzed.
引文
[1]梁爽.海洋环境对混凝土结构影响的试验研究[D].南京:南京理工大学硕士论文,2006.
    [2]赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
    [3]王铁成,郭小强,阎西康,海水侵蚀环境下混凝土结构耐久性的研究[J],东南大学学报vol.32(2002),251-253,增刊.
    [4]冯乃谦.高性能混凝土[M].科学出版社,1994.
    [5]朱宏军,程海丽,姜德民,特种混凝土和新型混凝土[M],化学工业出版社,2004.
    [6] Chen J.K., Jiang M.Q., Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion [J]. Construction & Building Materials, 23 (2009), 812~816.
    [7]蒋正武,王莉洁,钢筋混凝土的环境侵蚀与表面防护技术[J],防腐科学与防护技术,2004,16(5):309-312 .
    [8]张风臣,马保国,谭洪波,蹇守卫,不同环境下水泥基材料硫酸盐侵蚀类型和机理[J],济南大学学报,2008,22(1):33-37.
    [9] Ann KY, Song HW, Chloride threshold level for corrosion of steel in concrete[J] Corrosion Science, 2007, 49: 4113~4133.
    [10] Chen D, Mahadevan S, Chloride-induced reinforcement corrosion and concrete cracking simulation [J]. Cement & Concrete Composites, 2008, 30: 227~238.
    [11] Yang CC, The relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials [J]. Cement and Concrete Research, 2006, 36: 1304~1311.
    [12] Tong L and Gj?rv OE,Chloride diffusivity based on migration testing [J]. Cement and Concrete Research, 2001, 31: 973~982.
    [13] Zhang JJ, Zhou XZ, Wu ZM, A simple method for predicting the chloride diffusivity of cement paste [J]. Materials and Structures, 2010, 43(1-2):99~106.
    [14] Wang Y,Li LY, Page C L, Modeling of chloride ingress into concrete from a saline environment [J]. Building and Environment, 2005, 40:1573~1582.
    [15] Nishimura T and Raman V, Corrosion behavior of reinforcing steel in concrete for nuclear facilities exposed in high chloride and low pH environment [J]. Journal of Nuclear Materials, 2010, 397: 101-118.
    [16]金伟良,张奕,吕忠达,氯盐环境中混凝土结构耐久性研究进展,第四届海峡两岸结构与岩土工程学术研讨会[C],2007.
    [17]马惠珠,李宗奇,混凝土中钙矾石的形成[J],建筑科学,2007,23(11):105-110.
    [18]彭家惠,楼宗汉,钙矾石形成机理的研究[J],硅酸盐学报,2000,28(6):511-515.
    [19]马惠珠,邓敏,朱建强,混凝土中钙矾石的重结晶[J],材料导报,2007,21(F05):353-355.
    [20] Zhang Minghua,Chen Jiankang,Zhu Jue,Chen Jiangying Experiment evaluation on modulus of equivalent homogeneous ettringte [J]. Acta Mechanica Solida Sinica,2009,22(4):320~327.
    [21] Marchand J, Samson E, Maltais Y, Beaudoin JJ, Theoretical analysis of the effect of weak sodium sulfate solution on the durability of concrete [J], Cement & Concrete Composites, 2002(24), 317~329.
    [22] ozière E., Loukili A., Hachem R. El, Grondin F., Durability of concrete exposed to leaching and external sulphate attacks [J], Cement and Concrete Research, 2009(39), 1188~1198.
    [23]蒋敏强,陈建康,杨鼎宜,硫酸盐侵蚀水泥砂浆动弹性模量的超声检测[J],硅酸盐学报,33 (2005), 126-132.
    [24] Pipilikaki P, Papageorgiou D., Dimitroula M., Chaniotakis E., Katsioti M., Microstructure changes in mortars attacked by sulfates at 50C [J], Construction and Building Materials, 23(2009), 2259~264.
    [25]陶岚,邵继新,候文虎,双掺”磨细矿渣粉和粉煤灰对混凝土抗硫酸盐侵蚀性能的影响研究[J].粉煤灰综合利用,2009年第3期.
    [26]周明学马正梅肖兴恒,粉煤灰对水泥抗硫酸盐性能的影响研究[J],混凝土与水泥制品,2009年第5期,21-23.
    [27]杨鼎宜,陈建康,徐敏,孙伟,叶健,淮河入海水道工程抗侵蚀混凝土的研究[J],混凝土与水泥制品,2003年第1期:15-18.
    [28]芦令超,李云超,王守德,叶正茂,程新,聚合物改性硫铝酸盐水泥抗硫酸盐侵蚀性能[J],建筑材料学报,2009,12(6):631-634.
    [29] Mironova M.K., Gospodinov P.N., Kazandjiev R. F., The effect of liquid push out of the material capillaries under sulfate ion diffusion in cement composites [J], Cement and Concrete Research, 32 (2002), 9-15.
    [30]赵顺波,杨晓明,受侵蚀混凝土内硫酸根离子扩散及分布规律试验研究[J],中国港湾建设,2009年第3期,26-30.
    [31]左晓宝,孙伟,硫酸盐侵蚀下的混凝土损伤破坏全过程[J],硅酸盐学报,37(2009),1063-1067.
    [32]余天庆,钱济成,损伤理论及其应用[M],国防工业出版社,1993.
    [33]余寿文,冯西桥,损伤力学[M],清华大学出版社,1997.
    [34]卢子兴,王嵩,李忠明,芦艾,刘静,空心微珠填充聚氨酯复合泡沫塑料的宏、细观力学性能[J],航空学报,2006,27(5):799-804.
    [35] Li,j., Weng G.J. Void growth and stress-strain relations of a class of viscoelastic porous materials[J]. Mesh Mater, 1995, 22:179.
    [36] Chen,J.K.,Huang,Z.P.,Mai,Y,W.A constitutive model of a particle reinforced viscoelastic composite materials with debonded microvoids[J].Acta Materialia,2003,51:3375-3384.
    [37] Chen,j.K.,Huang,Z.P., Min,Y. A constitutive theory of a particle reinforced viscoelastic composite materials with debonded microvoids[J]. Computation Materials Science, 2008, 41: 334-343.
    [38]何巨海,张子明,艾亿谋,倪志强,基于细观力学的混凝土有效弹性性能预测[J],河海大学学报,2008,36(6):801-805.
    [39]王春来,徐必根,李庶林,唐海燕,单轴受压状态下钢纤维混凝土损伤本构模型研究[J],岩土力学,2006,27(1):151-154.
    [40]刘海峰,宁建国,冲击荷载作用下混凝土材料的细观本构模型[J],爆炸与冲击,2009,29(3):261-267.
    [41]李杰,卢朝辉,张其云,混凝土随机损伤本构关系一单轴受压分析[J],同济大学学报,2003,31(5):505-509.
    [42] Chen, Jian-kang, Jiang Min-qiang, Zhu Jue, Damage evolution in cement mortar due to erosion of sulphate [J]. Corrosion Science,50(2008):2478~2483.
    [43]张盛东,混凝土本构理论研究进展与评述[J],南京建筑工程学院学报,2002年第3期,44-53.
    [44]杨挺青,粘弹性力学[M],1990,华中理工大学出版社.
    [45]王哲,林皋,混凝土的单轴率型本构模型[J],大连理工大学学报,2000,40(5):597-601.
    [46]冷飞,林皋,杜荣强,基于热力学定律的混凝土本构模型研究[J],工程力学,2008,25(2):144-167.
    [47]宁建国,商霖,孙远翔,混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J],力学进展,2006,25(3):389-405.
    [48] Liu T, Weyers RW, Modeling the Dynamic Corrosion Process in Chloride Contaminated Concrete Structures [J]. Cement and Concrete Research, 1998, 28(3): 365-379.
    [49] Zhu J, Jiang MQ, Chen JK, equivalent model of expansion of cement mortar under sulphate erosion [J]. Acta Mechanica Solida Sinica, 2008, 20(4): 327-332.
    [50] Santhanam M, Cohen MD, Olek J, Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results [J]. Cement and Concrete Research, 2002, 32: 915–921.
    [51] P.梅泰著.混凝土的结构、性能与材料[M],祝永年,沈威等译.上海:同济大学出版社,1991.11:94~95.
    [52] Huang ZP and Sun L, Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis [J]. Acta Mechanica, 2007, 190: 151~163.
    [53]胡顺洋,万天昌,李存笔,混凝土基体材料孔隙度的试验研究[J],山西建筑,2009,vol(35)36:168-169.
    [54]李英华,具有主动围压的水泥砂浆动态响应和冲击疲劳研究[D].宁波:宁波大学硕士论文.2006.
    [55]刘长春,粘塑性本构理论及其在混凝土中的应用[D].大连:大连理工大学博士论文,2007.
    [56]黄筑平,连续介质力学基础[M],2003,高等教育出版社.
    [57]孔庆云,张奇,白春华,闫华,混凝土板爆破作用数值分析[J],力学与实践,2005,27(3):56-59.
    [58]D.L. Grote, S.W.Park, M..Zhou, Dynamic behavior of concrete at high strain rates and press:Ⅰ.experimetnal characterization [J], international journal of impact engineering,25(2001):869~886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700