基于压缩谱理论的高效超分辨波达方向估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多重信号分类(MUSIC)算法的提出,波达角估计迎来了超分辨发展阶段的崭新一页。时至今日,超分辨波达角估计技术在经历了三十余年的发展后已取得了异常辉煌的研究成果,然而随着应用的深入,人们发现理论上性能接近完美的超分辨算法在实际工程应用中依然存在稳健性差、计算量大、对阵列结构依赖性强等诸多缺陷。
     为了推进超分辨波达角估计技术的工程化进度,本文以某工程项目为研究依托,以超分辨实施的高效性和算法原理适用的广泛性为研究向导,进行全面研究和深入创新,重点解决现存主流算法运算量大、对阵列结构和信号形式依赖性强的缺点,从而为超分辨技术向实际工程应用的转化提供参考。本文的主要研究内容和工作创新如下:
     基于共轭镜像辐射源思想提出了空间谱对称压缩的全新概念,进而发展了一维对称压缩超分辨算法,即SC-MUSIC算法。大量仿真实验表明:对称压缩算法继承了标准MUSIC算法对于天线阵列结构的任意适应性,改善了原算法对靠近目标的分辨力,同时将原算法的计算量至少降低了一半。为将SC-MUSIC算法推广到任意平面阵,提出了变换域DOA概念并发展了2D-SC-MUSIC算法和TD-SC-MUSIC算法。
     基于子空间扰动和泰勒级数近似原理分析了对称压缩类算法的“非渐进”理论性能,在此过程中,提出了两种用于求解对称压缩类DOA估计器噪声子空间的新算法,即求和分解算法和求积分解算法。基于这两种新算法,证明了对称压缩类DOA估计器的一致性和无偏性,给出了对称压缩类DOA估计器均方误差(MSE)的封闭表达式。
     利用空间角度划分、子空间映射及变换域DOA等技术提出了高阶压缩谱概念,发展了HC-MUSIC和2D-HC-MUSIC两种高阶压缩算法。高阶压缩算法是对对称压缩算法的理论深化,其相比于对称压缩类算法进一步降低了计算量并改善了分辨力。在高阶压缩类算法关键技术的突破过程中,提出了两种求取高阶压缩谱噪声子空间的新算法,即连续求和分解算法和连续求积分解算法。相比于现存算法,这两种算法的计算量更小,应用范围更广。
     依据连续求和定理,利用子空间扰动和泰勒级数近似原理对高阶压缩类算法的“非渐进”理论性能展开了研究,从理论上证明了高阶压缩类DOA估计器的一致性和无偏性,给出了新估计器的MSE表达式,同时揭示了新估计器MSE和经典MUSIC算法MSE的内在联系。
     将实值运算和阵列结构的任意性折衷,提出了半实值超分辨DOA估计的概念,发展了两种基于半实值运算的超分辨算法,即SU-MUSIC算法和Capon-Like算法。新算法利用阵列接收数据协方差矩阵实部和虚部分裂处理获取信号DOA,不但获得了与同类实值算法相同的计算效率和估计性能,而且摆脱了算法对于阵列结构的依赖性。在推导新算法的过程中,以理论分析揭示了协方差阵整体子空间分解、求逆与实虚部分裂后子空间分解、求逆之间的内在数学关系。
The years since the publication of the Multiple Signal Classification (MUSIC)algorithm have witnessed a growing research interest in super-resolution techniquesfor estimating the direction of arrival (DOAs) of multiple signals. With more thanthirty years of great developments, brilliant achievements have been published forsuper-resolution DOA estimate. Unfortunately, growing examinations demonstratethat most of the state-of-the-art approaches in fact suffer from poor robustness,prohibitive computational complexity and fatal dependence on array configurationsin engineering, although they indeed perform almost perfectly in laboratories.
     Aiming to make super-resolution estimators more implemental in practice, thispaper, which is supported by the national project, considers the problem of DOAestimation with the concerns of low computational cost as well as no dependence onarray geometries, showing numerical novel algorithms for super-resolution DOAestimate as well as offering a theoretical basis for real-world applications. The pri-mary contributions of this paper can be summarized as follows:
     A new concept of symmetrical compressed (SC) spectral is proposed based onthe idea of mirror virtual sources, giving a SC-MUSIC estimator for finding1-DDOAs of multiple narrow-band signals. Like the conventional MUSIC, SC-MUSICis suitable for arbitrary linear array structures, but it involves a factor2on the red-uction of complexity. Numerical simulations illustrate that SC-MUSIC also showsimproved resolution probability for closely-spaced sources as compared to MUSIC.SC-MUSIC is extended to estimate2D DOAs with arbitrary plane array geometriesbased on another newly developed concept of transformed domain DOA (TD-DOA),leading to a corresponding2D-SC-MUSIC algorithm accordingly.
     The non-asymptotic performance of SC-MUSIC is theoretically analyzed byusing the theory of subspace perturbation and Taylor’s expansion series, for whichtwo approaches convenient for computing the noise subspace of SC-Musicale alsopresented. These two methods are referred to as sum-decomposition algorithm andproduct-decomposition algorithm, respectively. With the above results, the unbiase-dness and consistency of SC-MUSIC are theoretically proved. Furthermore, a clos-ed-form expression is derived to predict the Mean Square Error (MSE) of DOA es- timate by SC-MUSIC, which agrees closely with simulations.
     A novel concept of High-order compressed (HC) spectral is proposed based onseveral key techniques including spatial dividing, subspace mapping and TD-DOA,leading to two promising estimators named HC-MUSIC and2D-HC-MUSIC, res-pectively. Although HC-MUSIC can be taken as a further developed version of SC-MUSIC, the former shows a much better efficiency to the latter, and the foundationsof the two algorithms are significantly different. During the derivations of HC-MU-SIC, two new methods for calculating the noise subspace of HC-MUSIC are pres-ented, which are named as continuous sum-decomposition algorithm and continuousproduct-decomposition algorithm, respectively. Compared with existent techniques,the proposed approaches involve much lower computational load, and can be alsoused with more scenarios.
     The unbiasedness, consistency as well as the MSE for DOA estimation by HC-MUSIC is asymptotically analyzed with a finite number of snapshots, based on con-tinuous sum-decomposition algorithm. Furthermore, the relationship between MSEfor DOA estimate by conventional MUSIC and that by the newly proposed HC-MU-SIC estimator is theoretically discussed.
     A new concept of DOA estimate with semi-real-valued operations is proposedby combining real-valued computations with arbitrary array structures, leading totwo novel efficient estimators named SU-MUSIC algorithm and Capon-Like tech-nique, respectively. Both the two methods exploit results behind only either the realpart-or the imaginary part-of the array output covariance matrix (AOCM), givingequivalent reductions on complexity as well as much more applicability on arrayconfigurations as compared to their real-valued versions. Besides, numerical resultsproduced during the derivations of SU-MUSIC and Capon-Like estimators firstlyreveals the mathematical relationships among the subspace decomposition-and theinverse-on the entire AOCM as well as those on only the real part-or the imaginarypart-of AOCM.
引文
[1] J. Krim and M. Viberg. Two decades of array signal processing[J], IEEE SignalProcess. Maga.1996,13(4):67-94.
    [2] T. Chen. Highlights of statistical signal and array processing[J], IEEE SignalProcess. Maga.1998,9(1):21-64.
    [3] J. C. Chen, K. Yao, and R. E.Hudson. Source localization and beamfoming[J],IEEE Signal Process. Maga.2002,19(2):30-39.
    [4] S. Haykin, J. P. Reilly, V. Kezys, E. Vertatschitsch. Some aspects of array signalprocessing[C], IEE Proc.-F,1992,139(1):1-26.
    [5] Y. Cao, Z. Zhang, F. Dai, R. Xie. Direction of arrival estimation for monostaticmultiple-input multiple-output radar with arbitrary array structures[J], IET Ra-dar, Sonar&Navigation,2012,6(7):679-686.
    [6] Wentao Shi, Jianguo Huang, Yunshan Hou. Fast DOA estimation algorithm forMIMO sonar based on ant colony optimization[J], Journal of Syst. Engineer.&Electron.,2012,23(2):173-178.
    [7] H. Puska and J. Iinatti. Serial search code acquisition using smart antennas withsingle correlator or matched Filter[J], IEEE Trans. Commn.,2008,56(2):299-307.
    [8] C. C. Tai, A. C. Chang. DOA estimation in the asynchronous DS-CDMA system[J], IEEE Trans. Antennas Propag.,2003,51(1):40-47.
    [9] A. Dreher, N. Niklasch, F. Klefenz, and A. Schroth. Antenna and receiver sys-tem with digital beamforming for satellite navigation and communication[J],IEEE Trans. Microwave Theory Tech.,2003,51(7):1815-1821.
    [10]F. Foroozan, A. Asif. Time reversal based active array source localization[J],IEEE Trans. Signal Process.,2011,59(6):2655-2668.
    [11]Wen-Jun Zeng, Xi-Lin Li. High-resolution multiple wideband and nonstationarysource localization with unknown number of sources[J], IEEE Trans. Signalproces.,2010,58(6):3125-3136.
    [12]F. G. Yan, M. Jin, X. L. Qiao. Source localization based on symmetrical MUSICand its statistical perfor mance analysis[J], Sci. China Inf. Sci.,2013,56(6):062307:1-062307:13.
    [13]J. C. Chen, R. E. Hudson and K. Yao. Maximum-likelihood source localizationand unknown sensor locationestimation for wideband signals in the nearfield[J],IEEE Trans. Signal Process.,2002,50(8):1843-1854.
    [14]张小飞,汪飞,徐大专.阵列信号处理的理论和应用[M],国防工业出版社,2011年11月第1版.
    [15]Harry van Trees. Optimum Array Processing Optimum array processing[M],wiley-intersicence,2002,2001-2050.
    [16]R. O. Schmidt. Multiple emitter location and signal parameter estimation[J],IEEE Trans. Antennas Propag.,1986,34(3):276-280.
    [17]A. Paulraj, R. Roy, and T. Kailath. A subspace rotation approach to signal para-meter estimation[J], IEEE Trans. Signal Process.,1986,74(6):1044–1046.
    [18]P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound[J],IEEE Trans. Acoust., Speech, Signal Process.,1989,37(5):720-741.
    [19]P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound:further results and comparisons [J], IEEE Trans. Acoust., Speech, Signal Pro-cess.,1990,38(12):2140-2150.
    [20]M. Viberg and A. L. Swindlehurst. Analysis of the combined effects of finitesamples and model errors on array processing performance[J], IEEE Trans.Signal Process.,1994,42(11)3073-3083.
    [21]P. Stoica, Z. Wang and J. Li. Extended derivation of MUSIC in presence ofsteering vector errors[J], IEEE Trans. Signal Process.,2005,53(3):1209-1211.
    [22]Y. Li and M. H. Er. Theoretical analyses of gain and phase error calibration withoptimal implementation for linear equispaced array[J], IEEE Trans. Signal Pro-cess.,2006,54(2):712-723
    [23]A. Ferrreol, P. Larzabal and M. Viberg. Statistical analysis of the MUSIC algori-thm in the presence of modeling errors, taking into account the resolution proba-bility[J], IEEE Trans. Signal Process.,2010,58(8):4156-4166.
    [24]Aifei Liu, Guisheng Liao. Cao Zeng, Zhiwei Yang, Qing Xu. An eigenstructuremethod for estimating DOA and sensor gain-phase errors[J], IEEE Trans. SignalProcess.,2011,59(12):5944-5956.
    [25]Liu Hong-Sheng, Xiao Xian-Ci. The study of DOA estimation error caused bysensors position error of planar array[C],20066th International Conference onITS Telecommunications Proceedings,2006,6,405-407.
    [26]Fu Li, R. J. Vaccaro. Sensitivity analysis of DOA estimation algorithms to sen-sor errors[J], IEEE Trans. Aerosp. Electron. Syst.,1992,28(3):708-717.
    [27]Siqian Liu, Hongxiang Li, Bei Gou. DOA estimation error and resolution loss inlinear sensor array[C], IEEE Proc.47th CISS,2013,3:20-22.
    [28]J. W. Anthonyand Friedlander. Effects of modeling errors on the resolution thre-shold of the MUSIC algorithm[J], IEEE Trans. Signal Process.,1994,42(6):1519-1526.
    [29]A. Swindlehurst, T. Kailath. A performance analysis of subspace-based methodsin the presence of model errors-Part I: The MUSIC algorithm[J], IEEE Trans.Signal Process.,1992,40(7):1758-1774.
    [30]A. Swindlehurst and T. Kailath. A Performance analysis of subspace-basedmethods in the presence of model error. II: Multidimensional algorithms[J],IEEE Trans. Signal Process.,1993,41(9):2882-2890.
    [31]A. Kangas, P. Stoica, T. Soderstrom. Finite sample and modelling error effectson ESPRIT and MUSIC direction estimators[J], IEE Pro-Radar, Sonar Naviga-tion,1994,141(5):249-255.
    [32]Y. I. Abramovich, V. G. Gaitsgory, N. K. Spencer. Stability of manifold ambig-uity resolution in DOA estimation with nonuniform linear antenna arrays[C],IEEE Proc.ICASSP,2000,5:3117-3120.
    [33]Wing-Kin Ma, Tsung-Han Hsieh, and Chong-Yung Chi. DOA estimation ofquasi-stationary signals with less sensors than sources and unknown spatialnoise covariance: akhatrirao subspace approach[J], IEEE Trans. Signal Process.,2010,58(4)2168-2180.
    [34]Lu Lu, Hsiao-Chun Wu. Robust expectation–maximization eirection-of-arrivalestimation algorithm for wideband source signals[J], IEEE Trans. VehicularTechnology,2011,60(5):2395-2400.
    [35]S. B. Hassen, F. Bellili, A. Samet, S. Affes. DOA estimation of temporally andspatially correlated narrowband noncircular sources in spatially correlated whitenoise[J], IEEE Trans. Signal Process.,2011,59(9):4108-4121.
    [36]Fu Li, Vaccaro, R. J. Performance degradation of DOA estimators due to unkn-own noise fields[J], IEEE Trans. Signal Process.,1992,40(3):686-690.
    [37]Tao Li, Nehorai, Arye. Maximum likelihood direction finding in spatially colo-red noise fields using sparse sensor arrays[J], IEEE Trans. Signal Process.,2011,59(3):1048-1062.
    [38]A. G. Jaffer. Maximum likelihood direction finding of stochastic sources: A se-perable solution[C], IEEE Proc. ICASSP,1988,2893-2896.
    [39]Barabell A. J. Improving the resolution performance of eigenstructure-baseddirection-finding algorithms[C], IEEE Proc. ICASSP, pp.336-339, Apr.1983.
    [40]Hua Y., Sarkar T. K. On SVD for estimating generalized eigenvalues of singularmatrix pencil in noise[J], IEEE Trans. Signal Process.,1991,39(4):892-900.
    [41]Xu and Kailath. Fast subspace decomposition[J], IEEE Trans. Signal Process.,1994,42(3):539-551.
    [42]Z. Ying, and Boon Poh Ng. MUSIC-Like DOA Estimation without Estimatingthe Number of Sources[J], IEEE Trans. Signal Process.,2010,58(3):1668-1676.
    [43]F. Belloni, A. Richter, and V. Koivunen. DOA estimation via manifold separa-tion for arbitrary array structures[J], IEEE Trans. Signal Process.,2007,55(10):4800–4810.
    [44]V. C. Soon, Y. Huang. An analysis of ESPRIT under random sensor uncertainty-es[J], IEEE Trans. Signal Process.,1992,40(9):2353-2358.
    [45]V. Vasylyshyn. Improving the performance of Root-MUSIC via pseudo-noiseresampling and conventional beamformer[C],2011conf. on Microwaves, Radarand Remote Sensing Symposium(MRRS),2011,8(2):309-312.
    [46]J. Capon. High-resolution frequency-wavenumber spectrum analysis[C], IEEEPro-.1969,57(8):1408-1418.
    [47]J. P. Burg. Maximun entropy spectral analysis[C],37th meeting of the AnnualInternational SEG Meeting, Oklahoma City,1967:383-393.
    [48]B. P. Ng. Constraints for linear predictive and minimum-norm methods in bear-ing estimation[C], IEE Proc Radar Signal Process.,1990,137(3):187-192.
    [49]G. H. Golub and H. Chares Van Loan. Matrix Computations[M], Baltimore, MD:The johns Hopkins University Press,1996.
    [50]S. Akkar, F. Harabi, A. Gharsallah. Improved reactance domain unitary propa-gator algorithms for electronically steerable parasitic array radiator antennas[J],IET Microwave., Antennas&Propag.,2013,7(1):112-116.
    [51]Zhuang X. B., Cui X. W., Lu M. Q., Feng Z. M. Low-complexity method forDOA estimation based on ESPRIT[J], Journal of Syst. Engineering and Elect-ron.,2010,21(5):729-733.
    [52]Xian Sheng Guo, Qun Wan, Wan-Lin Yang. Fast DOA tracking of coherentlydistributed sources based on subspace updating[C], International Conference onRadar,2006.8(1):16-19.
    [53]J. S. Goldstein, I. S. Reed, and L. L. Scharf. A multistage representation of thewiener filter based on orthogonal projections[J], IEEE Trans. Infor. Theory,1998,44(7):2943–2959.
    [54]C. E. Davila and M. Azmoodeh. Efficient estimation of the signal subspacewithout eigendecomposition[J], IEEE Trans. Signal Process.,1994,42(1):236-239.
    [55]J. T. Karhunen and J. Joutsenalo. Sinusoidal frequency estimation by signalsubspace approximation[J], IEEE Trans. Acoust., Speech, Signal Process.,40(12):2961–2972,1992.
    [56]Guangmin Wang, Jingmin Xin, Nanning Zheng, and A. Sano. Computationallyefficient subspace-based method for two-dimensional direction estimation withL-shaped array[J], IEEE Trans. Signal Process.,2011,59(7):3197-3212.
    [57]M. A. Hasan, M. R. Azimi-Sadjadi, and A. A. Hasan. Rationalinvariant sub-space approximations with applications[J], IEEE Trans. Signal Process.,2000,48(11):3032–3041.
    [58]M. Rbsamen, and A. B. Gershman. Direction-of-arrival estimation for nonuni-form form sensor arrays: from manifold separation to Fourier domain MUSICmethods[J], IEEE Trans. Signal Process.,2009,57(2):588-599.
    [59]F. G. Yan, M. Jin, X. L. Qiao. Low-complexity DOA estimation based oncompressed MUSIC and its performance analysis[J], IEEE Trans. SignalProcess.,2013,61(8):1915-1930.
    [60]Z. Xiao fei, X. Lingyun, X. Lei, X. Dazhuan. Direction of departure (DOD) anddirection of arrival (DOA) estimation in MIMO radar with reduced-dimensionMUSIC[J], IEEE Signal Process. Lett.,2010,14(12):1161-1163.
    [61]H. Jin, M. N. S. Swamy, M. O. Ahmad. Joint DOD and DOA estimation forMIMO array with velocity receive sensors[J], IEEE Signal Process. Lett.,2011,18(7):399-402.
    [62]W. Yung-Yi, C.Jiunn-Tsair and F. Wen-Hsien. TST-MUSIC for Joint DOA-Delay estimation[J], IEEE Trans. Signal Process.,2001,49(4):721-729.
    [63]L. Jen-Der, F. Wen-Hsien, W. Yung-Yi and C. Jiunn-Tsair. FSF MUSIC for JointDOA and frequency estimation and its performance analysis[J], IEEE Trans.Signal Process.,2006,54(12):4529-4542.
    [64]Yung-Yi Wang, Liang-Cheng Lee, Shih-Jen Yang, Jiunn-Tsair Chen. A treestructure one-dimensional based algorithm for estimating the two-dimensionaldirection of arrivals and its performance analysis[J], IEEE Trans. AntennasPropag.,2008,56(1):178-188.
    [65]计征宇,杨向华.基于FFT与MUSIC的改进DOA估计算法[J],系统仿真学报,2010,22(2):487-490.
    [66]蒋毅,刘章文,古天祥. MUSIC法的有限域单向快速频率搜索[J],电子科技大学学报,2008,37(2):241-243.
    [67]C. J. Lam, A. C. Singer. Bayesian beamforming for DOA uncertainty: theoryand implementation[J], IEEE Trans. Signal Process.,2006,54(11):4435-4445.
    [68]闫锋刚,刘帅,金铭,乔晓林.基于MUSIC对称压缩谱的快速DOA估计[J],系统工程与电子技术,2012,4(11):2198-2202.
    [69]闫锋刚,金铭,乔晓林.适用于任意阵列的变换域二维波达角快速估计算法[J],电子学报,2013,41(5):936-942.
    [70]闫锋刚,刘帅,金铭,乔晓林.基于降维噪声子空间的二维阵列快速DOA估计算法[J],电子与信息学报,2012,34(4):832-837.
    [71]闫锋刚,金铭,乔晓林.基于子空间映射的二维波达角估计算法[J],电子学报(外审).
    [72]S. Marcos and M. Benidir. On a high resolution array processing method non-based on the eigenanalysis approach[C], IEEE ICASSP,1990:2955-2958.
    [73]J. M. Xin and S. Akira. Computationally efficient subspace-based method fordirection-of-arrival estimation without eigendecomposition[J], IEEE Trans.Signal Process.,2004,52(4):876–893.
    [74]E. D. Carlos and A. Masoud. Efficient estimation of the signal subspace withouteigendecomposition[J], IEEE Trans. Signal Proces.,1994,42(1):236–239.
    [75]K. S. Arnab and W. Xia. Minimum-norm Method without eigendecomposition[J], IEEE Signal Process. Lett.,1994,1(1):12–14.
    [76]B. G. Alex. Direction of arrival estimation using generalized minimum normapproach[J], Electron. Lett.,1991,27(16):122-126.
    [77]T. E. Victor, B. G. Alex. Fast algorithm for minimum-norm direction-of-arrivalestimation[J], IEEE Trans. Signal Process.,1994,42(9):2389-2394.
    [78]A. H. Mohammed, R. A. Mahmood, A. H. Ali. Rational invariant subspaceapproximations with applications[J], IEEE Trans. Signal Process.,2000,48(11):3032-3041.
    [79]B. Zhi-qiang, W. Shun-jun, Z. Lin-rang. A Novel and low complexity ESPRITmethod[J], Journal of electron.&info. technology,2007,29(9):2042-2046.
    [80]Z. Xuebin, C. Xiaowei, L. Mingquan, F. Zhenming. Low-complexity method forDOA estimation based on ESPRIT[J], Journal of syst. engineering and electron.,2010,10(5):2042-2046.
    [81]M. L. Yang, B. X. Chen, X. Y. Yang. Conjugate ESPRIT algorithm for bisaticMIMO radar[J], Electronics Lett.,2010,46(25):1692-1694.
    [82]X. Zhang, and D. Xu. Low-complexity ESPRIT-based DOA estimation for colo-cated MIMO radar using reduced-dimension transformation[J], Electronics Lett.,2011,47(4):283-284.
    [83]Stocia P, Nehorai A. Performance comparison of subspace rotation and MUSICmethods for direction estimation[J], IEEE Trans. Signal Process.,1991,39(2):446-453.
    [84]B. D. Rao, K. V. S Hari. Performance analysis of Root-Music[J], IEEE Trans.Acoust., Speech, Signal Process.,37(12):1939-1949.
    [85]M. Pesavento, A. B. Gershman, Z. Q. Luo. Robust array interpolation usingsecond-order cone programming[J], IEEE Signal Process Lett.,2002,9(1):8-11.
    [86]P. Hyberg, M. Jansson, and B. Ottersten. Array interpolation and bias reduction[J], IEEE Trans. Signal Process.,2004,52(10):2711-2720.
    [87]P. Hyberg, M. Jansson, and B. Ottersten. Array interpolation and DOA MSE re-duction[J], IEEE Trans. Signal Process.,2005,53,(12):4464-4471.
    [88]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M],清华大学出版社,2004年11月第1版:384-385.
    [89]B. Friedlander. Direction finding using an interpolated array[C], IEEE ICASSP.,1990,5:2951-2954.
    [90]B. Friedlander, A. J. Weiss. Direction finding using spatial smoothing with In-terpolated arrays[J], IEEE Trans. Aerosp. Electron. Syst.,1992,28(2):574-587.
    [91]A. J. Weiss, M. Gavish. Direction finding using ESPRIT with interploted arrays[J], IEEE Trans. Signal Process.,1991,140(4):1473-1478.
    [92]A. J. Weiss, B. Friedlander. Performance analysis of spatial smoothing with in-terploted arrays[J], IEEE Trans. Signal Process.,1993,41(4):1881-1892.
    [93]R. O. Schmidt, Multilinear array manifold interpolation[J], IEEE Trans. SignalProcess.,1992,40(4):857-866.
    [94]B. Friedlander, A. J. Weiss. Direction finding for wide-band signals using an in-terpolated array[J], IEEE Trans. Signal Process.,1993,41(4):1618-1634.
    [95]孙学军,张高毅,唐斌,甘泉.基于二次虚拟内插的圆阵接收2D-DOA分离估计[J],电子与信息学报,2008,30(8):1890-1892.
    [96]Ming L. A. Toeplitz-Induced mapping technique in sensor array processing[J],IEEE Trans. Signal Process.,1995,43(5):1128-1139.
    [97]齐崇英,陈志杰,张永顺,陈西宏.基于投影预变换的快速DOA估计算法[J],系统工程与电子技术,2006,28(4):525-528.
    [98]Wang Yongliang, Chen Hui, Wan Shanhu. An effective DOA method via virtualarray transformation[J], Sci. China Inf. Sci.,2001,44(1):75-82.
    [99]F. Belloni, A. Richter, and V. Koivunen. Extension of root-MUSICto non-ULAarray configurations[C], IEEE ICASSP.,2006, France, May,14-19.
    [100] M. A. Doron, and E.Doron. Wavefield modeling and array processing, PartI-Spatial sampling[J], IEEE Trans. Signal Process.,1994,42(10):2549-2559.
    [101] M. A. Doron, and E. Doron. Wavefield modeling and array processing, PartII-Algorithms[J], IEEE Trans. Signal Process.,1994,42(10):2560-2570.
    [102] M. A. Doron, and E. Doron. Wavefield modeling and array processing, PartIII-Resolution capacity[J], IEEE Trans. Signal Process.,1994,42(10):2571-2580.
    [103] M. Costa, A. Richter, F. Belloni, and V.Koivunen. Polynomial rooting-baseddirection finding for arbitrary array configurations[C],5th IEEE Sensor Arrayand Multichannel Signal Processing Workshop,2008.58-62.
    [104] M. Costa, V. Koivunen, and A. Richter. Low complexity azimuth and elevationestimation for arbitrary array configurations[C], IEEE ICASSP.,2009,4:2185-2188.
    [105]赵超,袁业术.基于流行分离的DOA估计算法[J],科技导报,2008年第18期。
    [106]卢海杰,章新华,熊鑫.流形分离在非均匀圆阵上的应用[J],兵工学报,2011,32(9):10-13
    [107] Jie Pan, Jianjing Zhou. Beamspace PM-Root-MUSIC for Uniform CircularArray Based on MST[C], International Joint Conference on ComputationalSciences and Optimization,2009, April,1:24-26.
    [108]潘捷,周建江,汪飞.基于流形分离技术的稀疏均匀圆阵快速DOA估计方法[J],电子与信息学报,2010,32(4):964-966.
    [109] J. Zhuang, W. Li and A. Manikas. Fast root-MUSIC for arbitrary arrays[J],Electron. Lett.,2010,46(2):174-176.
    [110] H. I. kenaga, K. I. chige, H. Arai. High-resolution and low-cost DOA estima-tion by modified Root-SUMWE method[C], International Symposium on Ante-nnas and Propagation(ISAP),2012,2(8):351-354.
    [111] H. Krim, P. Forster, J. G. Proakis. Operator approach to performance analysisof root-MUSIC and root-min-norm[J], IEEE Trans. Signal Process.,1992,40(7):1687-1696.
    [112] J. X. Wu, T. Wang, Z. Y. Suo, Z. Bao. DOA estimation for ULA by spectralCapon rooting method[J], Electron.Lett.,2009,45(1):84-85.
    [113] K. C. Huarng, and C. C.Yeh. A Unitary Transformation Method for Angle ofArrival Estiamtion[J], IEEE Trans. Signal Process.,1991,39(3):975-977.
    [114] D. A. Linebarger, R. D. DeGroat, and E. M. Dowling. Efficient direction find-ing methods employing forward-backward averaging[J], IEEE Trans. SignalProcess.,1994,42(8):2136-2145.
    [115] C. P. Mathews, M. D. Zoltowski. Eigenstrueture techniques for2-D angleestimation with uniform circular arrays[J], IEEE Trans. Signal Process.,1994,42(9):2395-2407.
    [116] M. Haardt, J. A. Nossek. Unitary ESPRIT: how to obtain increased estimationaccuracy with a reduced computational burden[J], IEEE Trans. Signal Process.,1995,43(5):1232-1242.
    [117] F. Roemer, M. Haardt. Multidimensional unitary tensor-ESPRIT for noncir-cular sources[C]. IEEE ICASSP.,2009,3:3577-3580.
    [118] J. Steinwandt, R.C. De Lamare, M. Haardt. Knowledge-aided direction find-ing based on Unitary ESPRIT[C], Fifth Asilomar Conference on Signals, Sys-tems and Computers(ASILOMAR),2011,11:613-617.
    [119] A. B. Gershman and M. Haardt. Improving the Performance of UnitaryESPRIT via Pseudo-Noise Resampling[J], IEEE Trans. Signal Process.,1999,47(8):2305-2308.
    [120] M. Pesavento, A. B. Gershman, M. Haardt. Unitary root-MUSIC with a real-valued eigendecomposition: a theoretical and experimental performance study[J], IEEE Trans. Signal Process.,2000,48(5):1306-1314.
    [121] A. B. Gershman, and P. Stoica. On unitary and forward-backward MODE[J],Digital Signal Process.,1999,9(2):67-75.
    [122] K. Mahata, and T. Soderstrom. ESPRIT-Like estimation of real-valued sinus-oidal frequencies[J], IEEE Trans. Signal Process.,2004,52(5):1161-1170.
    [123] J. Selva. Computation of spectral and root MUSIC through real polynomialrooting[J], IEEE Trans. Signal Process.,2005,53(5):1923-1927.
    [124] KIKUMA N., et al. Performance analysis of unitary Capon method for DOAestimation with high computational efficiency[C], ISAPProc.,2005,3:313-315.
    [125] N. Yilmazer, J. Koh, and T. K. Sarkar. Utilization of a unitary transform forefficient computation in the matrix pencil method to find the direction ofarrival[J], IEEE Trans. Signal Process.,2006,54(1):175-181.
    [126] S. Akkar and A. Gharsallah. Reactance domains unitary MUSIC algorithmsbased on real-valued orthogonal decomposition for electronically steerableparasitic array radiator antennas[J], IET Microw. Antennas Propag.,2012,6(2):223–230.
    [127] Z. Guimei, C. Baixiao and Y. Minglei. Unitary ESPRIT algorithm for bistaticMIMO radar[J], Electron. Lett.,2012,48(3):179-181.
    [128] F. G. Yan, M. Jin, S. Liu, X. L. Qiao. Real-valued MUSIC for efficient direc-tion estimation with arbitrary array geometries[J], IEEE Trans. Signal Process.,2014,62(6):1548-1560.
    [129] F. G. Yan, M. Jin, X. L. Qiao. Capon-like method for DOA estimation with re-duced complexity and increased accuracy[J], Electronics Lett.(Under revi ew).
    [130] G. Yujie and A. Leshem. Robust adaptive beamforming based on interferencecovariance matrix reconstruction and steering vector estimation[J], IEEETrans. Signal Process.,2012,60(7):3881-3885.
    [131] G. Bienvenu and L. Kopp. Decreasing high resolution method sensitivity byconventional beamformer preprocessing[C], IEEE ICASSP,1986,34(1):13-20.
    [132] C. Byrne, A. Steele. Sector-focused stability for high resolution array proce-ssing[C], IEEE ICASSP,1987,12:2340-2343.
    [133] H. Lee, M. Wengrovitz. Resolution threshold for beamspace MUSIC for twoclosely spaced emitters[J], IEEE Trans. Acoust., Speech, Signal Process.,1990,38(9):1545-1549.
    [134] M. D. Zoltowski, G. M. Kautz, S. D.Silerstein. Beamspace root-MUSIC[J],IEEE Trans. Signal Process.,1993,41(1):344-364.
    [135] Y. D. Guo, Y. S. Zhang and N. N. Tong. Beamspace ESPRIT algorithm forbistatic MIMO radar[J], Electron. Lett.,2011,47(15):876-878.
    [136] Z. Tian. Beamspace iterative quadratic WSF for DOA estimation[J], IEEESignal Process. Lett.,2003,10(6):176-179.
    [137] Fu. Li and H. J. Liu. Statistical analysis of beam-space estimation for directi-on of-arrivals[J], IEEE Trans. Signal Process.,1994,42(3):604-610.
    [138] P. Stoica, and A. Nehorai. Comparative performance study of elementspaceand beam-space music estimators[J], Signal Process.,1191,10(11):285-292.
    [139] S. Anderson, and A. Nehorai, Optimal dimension reduction for array proce-ssing generalized[J], IEEE Trans. Signal Process.,1995,43(8):2025-2027.
    [140] K. T. Wong, M. D. Zoltowski. Self-initiating MUSIC-based direction findingand polarization estimation in spatio-polarizational beamspace[J], IEEE Trans.Antennas Propag.,2000,48(8):1235-1245.
    [141] C. Charles, et al. Temporal and spatial sampling influence on the estimates ofsuperimposed narrowband signals: when less can mean more[J], IEEE Trans.Signal Process.,2004,44(12):3085-3098.
    [142] J. von Neumann. Functional operators II. The geometry of orthogonal spaces[J], in Ann. Math. Study. Princeton, NJ, USA: Princeton Univ. Press,1950,22.
    [143] S. Kayalar and H. Weinert. Error bounds for the method of alternating proje-ctions[J], Math. Control Signals Syst.,1988(1):43–59.
    [144] I. Halperin, The product of projection operators[J], Acta Sci.Math.,1962,(23):96-99.
    [145] Q. T.(Keith) Zhang. Probability of resolution of the MUSIC algorithm[J],IEEE Trans. Signal Process.,1994,43(4):978-987.
    [146] P. Stoica, and A. Nehorai. Performance study of conditional and unconditionaldirection-of-arrival estimation[J], IEEE Trans. Acoust., Speech, Signal Proc-ess.,1990,38(8):1783-1795.
    [147]张立杰,黄建国,史文涛,侯云山,正交投影阵列信号子空间估计方法[J],系统工程与电子技术,2009,31(09):2063-2066.
    [148] L. Huang, S. J. Wu, D. Z. Feng and L. R. Zhang. Low complexity method forsignal subspace fitting[J], Electron. Lett.,2004,40(14):847-848.
    [149] Fu Li, H. Liu, and R. J. Vaccaro. Performance analysis for DOA estimationalgorithms: unification, simplification, and observations[J], IEEE Trans.Aerosp. Electron. Syst.,1993,29(4):1170-1184.
    [150] Jun Liu, Xiangqian Liu, Xiaoli Ma. First-Order perturbation analysis ofsingular vectors in singular value decom-position[J], IEEE Trans. Signal Proc-ess.,2008,56(7):3044-3049.
    [151] P. Stoica, K. C. Sharman. Maximum likelihood methods fordirection-of-arrivalestimation[J], IEEE Trans. Acoust., Speech, Signal Process.,1990,38(7):1132-1143.
    [152] C. Proukakis, A. Manikas. Study of ambiguities of linear arrays[C], IEEE ICASSP.,1994,4:549-552.
    [153] K. C. Tan, Z. Goh. A detailed derivation of arrays free of higher rank ambigui-ties[J], IEEE Trans. Signal Process.,1996,44(2):351-359.
    [154] M. Wax and T. Kailath. Detection of signals by information theoretic criteria[J], IEEE Trans. Acoust., Speech, Signal Process.,1985,33(3):387-392.
    [155] J. H. Cozzens, M. J. Sousa. Source enumeration in a correlate signed environ-ment[J], IEEE Trans. Signal Process.,1994,42(2):304-317.
    [156] A. Di. Multiple sources location-a matrix decomposition approach[J], IEEETrans. Acoust., Speech, Signal Process.,1985,35(4):1086-1091.
    [157] H. T. Wu, J. Yang, F. K. Chen. Source number estimation using transformedgerschgorinradii[J], IEEE Trans. Signal Process.,1995,43(6):1325-1333.
    [158] W. Chen, J. P. Reilly. Detection of the number of signals in noise with bandedcovariance matrices[J], IEEE Trans. Signal Process.,1992,42(5):377-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700