营养液漂浮育苗移栽棉高产与高效栽培的生物学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖南农业大学棉花研究所在国内外棉花、烟草、蔬菜和花卉育苗方法的基础上创建了一项新的棉花育苗移栽方法——棉花营养液漂浮育苗技术。该育苗技术通过采用多孔聚乙烯泡沫育苗盘为载体,以混配基质为支撑,以营养液水体为苗床进行漂浮育苗,能使优良棉种的出苗率超过95%,成苗率达到90%以上,移栽后易成活,与其它育苗移栽方式相比具有省工、省力、节本和增产等优点。本研究以农杂66为试验材料,从棉花不同生长发育时期的植物形态学、生理生化特征以及产量形成等方面对营养液漂浮育苗的移栽方式及在大田生产表现进行详细的研究,以阐明营养液漂浮育苗移栽棉高效栽培及高产形成的生物学基础,为新型棉花育苗移栽技术的推广应用提供理论基础。
     1营养液漂浮育苗移栽前后棉株形态和生理生化特性分析
     通过田间移栽试验表明,营养液漂浮育苗棉苗适宜的移栽苗龄为2叶1心至4叶1心,最佳的移栽苗龄为3叶1心。
     以营养钵育苗方法为对照,对处于3叶1心时期棉苗移栽前和移栽至大田30 d后的形态特征比较分析表明,营养液漂浮法育成苗棉苗在移栽前的茎叶鲜重、茎叶干重、根冠比高于对照;移栽至大田后,则明显低于对照;而棉苗的根系鲜重、根系干重、根体积、根长、主根长、根半径、根表面积和一、二级侧根数及叶面积于移栽前和移栽至大田后均高于对照。可见,营养液漂浮法育成的棉苗根系发达,移栽至大田后能更好的促进根的生长。对棉苗移栽前后的生理生化分析发现,营养液漂浮育苗棉苗的根系TTC还原强度在移栽前显著高于对照;移栽至大田30 d后,棉苗的根系TTC还原强度则低于对照,但无明显差异;根系伤流量于移栽前和移栽至大田后均低于对照;棉苗根系超氧化物歧化酶(SOD)、过氧化物酶(POD)活性和丙二醛(MDA)含量在移栽前均明显高于对照,移栽至大田30 d后则低于对照,而根系过氧化氢酶(CAT)活性于移栽前和移栽后均低于对照;而棉苗根系脯氨酸含量于移栽前和移栽至大田后均显著高于对照。棉苗叶片的SOD和POD活性移栽前均显著高于对照,移栽至大田后,则明显低于对照;叶片中CAT活性在移栽前后均明显高于对照;棉苗叶片MDA含量在移栽前低于对照,而移栽至大田后明显高于对照。
     2营养液漂浮育苗不同移栽处理棉株形态和生理生化特征比较
     以营养钵育苗方法为对照,对处于3叶1心时期的棉苗在移栽时采用了不同处理。结果表明,浇根特优和粘Bt生根粉移栽棉株的株高、茎叶鲜重、茎叶干重在移栽大田30d后显著高于其它处理及相应的营养钵育成的棉苗(对照);浇根特优移栽棉株的根冠比显著高于其它处理及对照;粘Bt生根粉、浇根特优和带基质移栽棉株的主根长、根长和根体积显著高于其它处理及对照;移栽至大田后,粘Bt生根粉和带基质移栽的根半径明显小于其它处理及对照;粘Bt生根粉移栽棉株的根表面积为最高,其次为浇根特优和带基质移栽的棉株。对不同试验处理的棉苗进行了生理生化特性分析,浇根特优移栽棉苗的根系TTC还原强度为最佳,其次为粘Bt生根粉和带基质移栽的棉苗,与对照的差异均达极显著水平;4种不同处理移栽棉苗根系脯氨酸的含量均显著高于对照,但在4种不同处理间的营养液漂浮育苗移栽棉苗根系脯氨酸的含量无明显的差异;浇根特优和粘Bt生根粉移栽棉株根系的SOD、POD和CAT酶活性显著高于其它处理及对照;浇根特优、粘Bt生根粉和带基质移栽棉株根系的MDA含量明显低于对照,而不带基质移栽棉株根系的MDA含量明显高于对照。移栽至大田后,浇根特优和粘Bt生根粉移栽棉株叶片的SOD、POD和CAT酶活性显著高于其它处理及对照;浇根特优、粘Bt生根粉和带基质移栽棉株叶片的MDA含量明显低于对照,不带基质移栽棉株叶片的MDA含量明显高于对照。
     3营养液漂浮育苗移栽棉形态特征及产量性状表现
     营养液漂浮育苗移栽棉的根系发达,从苗期至吐絮期期间的根系鲜重及干重、主根长、根长、根体积、根半径、根表面积以及一、二级侧根数均明显大于相应的营养钵育苗移栽棉株(对照);从苗期至吐絮期,营养液漂浮育苗移栽棉的地上部分鲜重均显著高于对照,分别比对照增加43.91%、88.62%、49.72%、37.24%、85.30%和36.93%;棉株的茎叶干重也显著高于对照,分别比对照增加45.34%、72.21%、47.47%、37.03%、73.45%和59.71%。营养液漂浮育苗移栽棉的始蕾期、始花期比对照提早了3-5 d;子叶节茎粗比对照增粗;单株有效果枝数增加2-3个,成铃数增加8.3%,蕾铃脱落率降低3.2个百分点;营养液漂浮育苗移栽棉的皮棉产量比对照增加155.0 kg·hm~(-2),籽棉产量和皮棉产量与对照差异均达到显著水平。
     4营养液漂浮育苗移栽棉在不同生长发育时期生理生化特性分析
     与营养钵育苗移栽棉株相比,营养液漂浮育苗在初花期、盛花期、结铃期和吐絮期,营养液漂浮育苗移栽棉的根系TTC还原强度均显著高于对照,分别比对照提高2.2%、6.7%、12.6%和20.7%;苗期至吐絮期,营养液漂浮育苗移栽棉叶片的可溶性糖和蛋白质含量明显高于对照;叶片叶绿素含量增加,气孔导度降低;从苗期至吐絮期,营养液漂浮育苗移栽棉叶片的蒸腾速率分别比对照低25.9%、20.1%、15.9%、12.8%、15.5%和4.2%;苗期至结铃期,光合速率分别比对照提高0.87%、6.31%、4.18%、3.6%和2.02%,但差异不显著;另外,营养液漂浮育苗移栽棉叶片的游离脯氨酸含量逐渐增加,游离氨基酸含量和硝酸还原酶活性均高于对照。
     在棉花苗期至初花期,营养液漂浮育苗移栽棉根系SOD、CAT活性均低于对照,但与对照无明显差异;盛花期至吐絮期,棉株根系SOD、CAT活性均显著高于对照;苗期至吐絮期,营养液漂浮育苗移栽棉根系POD活性均明显高于对照;苗期至盛花期,营养液漂浮育苗移栽棉根系MDA含量均明显高于对照,但在结铃期至吐絮期则低于对照。苗期至吐絮期,营养液漂浮育苗移栽棉叶片SOD活性分别比对照增加5.2%、7.5%、8.8%、9.3%、29.5%和5.8%;蕾期至吐絮期,棉株叶片POD活性分别比对照增加10.0%、1.3%、5.9%、3.3%和0.3%;苗期至结铃期,棉株叶片CAT活性均低于对照,但与对照无明显差异;吐絮期,营养液漂浮育苗移栽棉叶片CAT活性则显著高于对照;蕾期至吐絮期,营养液漂浮育苗移栽棉叶片MDA含量均低于对照。
     初花期至结铃期,营养液漂浮育苗移栽棉根系的GA_3含量均明显高于对照;苗期至蕾期,营养液漂浮育苗移栽棉根系的IAA含量均低于对照;初花期至吐絮期,棉株根系的IAA含量均显著高于对照;苗期至吐絮期,棉株根系的ABA含量均低于对照,而棉株根系的ZR含量均显著高于对照。从苗期至盛花期,营养液漂浮育苗移栽棉叶片的GA3含量均低于对照;结铃期至吐絮期,棉株叶片的GA_3含量均显著高于对照;苗期至蕾期,营养液漂浮育苗移栽棉叶片的IAA含量均高于对照;初花期至吐絮期,棉株叶片的IAA含量均明显低于对照;苗期至吐絮期,棉株叶片的ABA含量均明显高于对照;棉株叶片的ZR含量均明显低于对照,但无显著性差异。
     从苗期至吐絮期,营养液漂浮育苗移栽棉根系的氮、磷、钾含量均显著高于对照;苗期至吐絮期,营养液漂浮育苗移栽棉功能叶的氮、磷含量均高于对照,棉株叶片钾的含量均低于对照,但无显著差异。
Based on the present seedling nursery methods of cotton, vegetable, and tobacco in domestic and abroad, a new cotton seedling nursery technology, the floating nursing seedling in nutrient water-bed (FNSNWB) is developed by Cotton Research Institute of Hunan Agricultural University. Cotton seeds are sown in patented mix media carried in a porous polyethylene plate which is floated on nourishing water according to the technology of FNSNWB. The seedling emergence of cotton is above 95% and stand rate above 90% by the new method. Compared with other seedling nursing technologies, the FNSNWB has many advantages with low cost, high efficiency, labor-saving and yield increasing. The FNSNWB has achieved greatly and was applied so far in Hunan, Hubei, Jiangxi, Anhui and Xinjiang provinces since 2005. In order to explore the biological base for transplanting the cotton seedlings from FNSNWB with high yield and efficiency, a cultivar Nongza 66 was used as the materials to be investigated the plant performance in the field from seedling to boll opening stages at morphological and physiological-biochemical levels in the present paper.
     1 Analysis of seedling mophology and physiological and biochemical attributes before and after transplanting
     The transplanting experiments showed that the seedlings fostered by the methodof FNSNWB from two to four full-expanded leaves stages were suitable for transplanting into the field, and the best stage was seedlings with three full-expanded leaves.
     Compared with the method of nutritive bowls nursing seedling (NBNS, control), the fresh and dry weight of shoot, ratio of root to shoot were increased by FNSNWB before transplanting, but reduced after transplanting into the field. The fresh and dry weight of roots, root volume, root length, main root length, radius of root, root area, the first and second lateral roots, leaf area were much more before and after transplanting into the field. So the roots of seedling cultivated by FNSNWB developed greater before and after transplanting into the field. Analysis of seedling roots at physiological and biochemical level showed that the TTC reductive intensity in roots of seedlings with FNSNWB before transplanting were higher than that of the seedling with NBNS. While the TTC reductive intensity in roots of transplants in the field was lower than that of the seedling with NBNS after transplanting into the field for 30 days. The root flooding was lower, but the proline contents in roots were greater than that of the control before and after transplanting into the field. Before transplanting, superoxide dismutase (SOD), peroxidase (POD) activities and malondialdehyde (MDA) contents in roots were higher than the control, while were lower after transplanting into the field for 30 days. Meanwhile, catalase(CAT) activities in seedling roots before and after transplanting into the field were higher than that of the control. The results showed that the activities of SOD and POD in seedling leaves were significantly higher than that of the control, but became lower after transplanting into the field. The MDA content in seedlings leaves were lower before transplanting, but were greater than that of the control after transplanting into the field.
     2 Comparing of transplanting the seedlings with different treatments at morphological, physiological and biochemical levels
     The results showed that the plant height, fresh and dry weight of shoot of cottonseedlings treated with Gen-te-you and ABT were better than that of two other treatments and control. The ratio of root to shoot of the seedling treated with Gen-te-you were the highest among the four different treatments. The main root length, root length, root volume were increased by Gen-te-you treatment. The largest root area was the ABT treatment, and better the Gen-te-you and media treatments. After transplanting into field, the radius of roots of seedlings treated with ABT and cultural media were reduced when compared with the method of NBNS and other treatments. Compared with control, the fresh and dry weight of shoot, ratio of root to shoot got large before transplanting, but reduced after transplanting into field. The fresh and dry weight of roots, root volume, root length, main root length, radius of root, root area, the first and second lateral roots, leaf area were much more than that of the control before and after transplanting into field.
     Among the four treatments, the TTC reductive intensity in roots of seedlings treated with Gen-te-you was the highest, and cultural media treatment was the better, which were significantly higher than that of the seedlings cultured by the method of NBNS. There were significant difference between treatments and control in root proline contents, which was no significant difference among different treatments, before and after transplanting into field. The results showed that the SOD、POD and CAT activities in roots of seedlings treated with Gen-te-you, ABT and cultural media were the best among the four treatments and control. The MDA contents in roots of seedlings treated with Gen-te-you, ABT and cultural media were lower than that of the control, and the MDA content in naked roots without cultural media was higher than that of the control. After transplanting into field, the SOD、POD and CAT activities in leaves of seedling treated with Gen-te-you and ABT were the best among the two other treatments and the control. The MDA contents in leaves of cotton seedlings treated with Gen-te-you, ABT and cultural media were lower than that of the control, and the treatment without cultural media was higher than that of the control.
     3 Cotton plant morphology and yield components in the field
     Compared with the control, the plant roots developed better during the whole growth period, and the fresh and dry weight of roots, main root length, root length, root volume, radius of root, root area, the first and second lateral roots were increased from the stage of seedling to boll opening. The fresh weight of shoot in cotton plants with FNSNWB increased by 43.91%, 88.62%, 49.72%, 37.24%,85.30% and 36.93%, respectively, from seedling to boll opening stage. Meanwhile, the dry weight in shoot of cotton plants with FNSNWB increased by 45.34%, 72.21%, 47.47%, 37.03%, 73.45% and 59.71% , respectively, from seedling to boll opening stage using Nongza 66 as experimental material. In comparison with NBNS, the dates of the first squaring and anthesis of cotton transplants in the field by FNSNWB were earlier from 3 to 5 days, the diameter of cotyledon node were 0.45 cm bigger, the fruiting branches was 2 to 3 more, the boll retention was 8.3% higher, and the squares and bolls shedding were 3.2% lower than that of the control. Therefore, the yield of cotton transplants with FNSNWB in the field was increased by 155.0 kg·hm~(-2).
     4 Analysis of physiological and biochemical characteristics of cottontransplants at different growth and development stages in the field
     Compared with NBNS, the TTC reductive intensity in root system fromfirst-flowering to boll opening stages was 2.2%, 6.7%, 12.6% and 20.7% greater, respectively, and the soluble protein and sugar in leaf were obviously higher than that of the control during the whole growth period. The chlorophyll content in leaves of cotton plants raised by FNSNWB was increased and the stomatal conductance was decreased. The transpiration in leaf of cotton plants from seedling to boll-opening stages was 25.9%, 20.1%, 15.9%, 12.8%, 15.5% and 4.2% was lower, while the photosynthetic efficiency were 0.87%, 6.31%, 4.18%, 3.6% and 2.02% from seedling to boll setting stage, respectively, higher than that of the control, the differences was not significant. Meanwhile, the proline and the free amino acid contents and nitrate reductase activity in cotton leaves were increased by FNSNWB.
     From seedling to squaring stage, the activities of SOD and CAT in cotton roots by FNSNWB were lower than that of the NBNS, but there is no obvious difference. From full bloom to boll opening stage, the activities of SOD and CAT activities in cotton roots by FNSNWB were higher than that of the NBNS. From seedling to boll opening stage, the activities of POD in cotton roots by FNSNWB were higher than that of the NBNS. From seedling to full bloom stage, the MDA contents in cotton roots by FNSNWB were higher than that of the NBNS. However, the MDA contents in cotton roots by FNSNWB were lower than that of the NBNS from boll setting to boll opening stage.
     Compared with the cotton transplants by NBNS, the activities of SOD in leaves of cotton transplants by FNSNWB were increased by 5.2%,7.5%,8.8%,9.3%,29.5% and 5.8%, respectively, from seedling to boll opening stage. Meanwhile, the activities of POD in cotton leaves were increased by 10.0%,1.3%,5.9%,3.3% and 0.3%, respectively, from squaring to boll opening stage. The activities of CAT in cotton leaves were lower than that of transplants by NBNS, but there was no obvious difference. There is significantly different in CAT activities in cotton leaves between FNSNWB and NBNS at boll opening stage. The MDA contents in cotton leaves were lower than that of the control from squaring to boll opening stage.
     The content of GA3 in root of cotton transplants were higher than that of the control from early flowering to boll setting stage. Compared with NBNS, the content of IAA in transplant roots were reduced from seedling to squaring stage. And the contents of IAA were higher than that of the control from early flowering to boll opening stage. Meanwhile, the contents of ABA and ZR in transplant roots from seedling to boll opening stage were lower than that of the control. The results showed that the content of GA3 in transplant leaves were lower than that of the transplants by NBNS from seedling to full bloom stage. And the content of GA3 were higher than that of the control from full bloom to boll opening stage. Compared with the transplants by NBNS, the contents of IAA in leaves were increased from seedling stage to squaring stage. And the contents of IAA in leaves of cotton plants from early flowering stage to boll opening stage were lower than that of the control. Meanwhile, the contents of ABA in leaves of transplants from seedling stage to boll opening stage were higher, and the contents of ZR in leaves of transplants from seedling stage to boll opening stage were lower than that of the control.
     Generally, during cotton whole growth period, the contents of N,P and K in plant roots were higher than that of control. Compared with the transplants by NBNS, the contents of N and P in cotton leaves were increased from seedling stage to boll opening stage. And the content of K in leaves of cotton plants was lower than that of the NBNS, but the difference was not significant.
引文
[1]车艳波,汤一卒,纪从亮.我国棉花育苗技术进展与展望[J].中国棉花,2002,29(12):2-4.
    [2]封俊.棉花营养钵育苗机械化移栽技术[J].河南农业科学,2003,(1):17-18.
    [3]刘艺多.育苗移栽棉花高产栽培新技术[M].南京:江苏科学技术出版社,1999,88-93.
    [4]董召荣,庞良夏,束维正,等.江淮丘陵地区棉花育苗技术研究[J].安徽农学通报,2000,6(1):31-33.
    [5]中国农业科学院棉花研究所主编.中国棉花栽培学[M].上海:上海科学技术出版社,1984,136-140.
    [6]华东农业科学研究所特用作物系.棉花营养钵育苗移栽[J].华东农业科学通报,1995,(3):17-21.
    [7]孙济中,陈布圣.棉作学[M].北京:中国农业出版社,1998,231-237.
    [8]刁操铨.作物栽培学各论[M].北京:中国农业出版社,1994,241-264.
    [9]刘永平,李洪芹,刘金华.棉花株型增产机理分析[J].河北农业大学学报,2000,29(1):9-11.
    [10]朱烨,倪金柱,端术鑫,等.棉花营养钵育苗移栽的研究与应用[A].国际棉花学术论文集[C].北京:中国农业科技出版社,1993,427-432.
    [11]宋家祥.棉花芦管育苗新技术研究:Ⅰ.芦管育苗对棉苗素质的影响[J].江苏农学院学报,1998,19(4):1-6.
    [12]宋家祥,顾世梁,陆建飞.棉花芦管育苗新技术研究:Ⅲ.芦管育苗对棉苗物质积累与分配的影响初报[J].江苏农业研究,1999,20(3):41-45.
    [13]宋家祥,顾世粱,陆建飞.棉花芦管育苗新技术研究:Ⅳ.芦管育苗移栽对棉花产量形成影响研究初报[J].江苏农业研究,2000,21(1):20-24.
    [14]宋家祥,陆建飞,顾世梁.棉花芦管育苗新技术研究:Ⅴ.芦管育苗对棉苗养分吸收与分配的影响初报[J].江苏农业研究,2000,21(3):28-33.
    [15]宋家祥,陆建飞,顾世粱.棉花芦管育苗新技术研究:Ⅵ.棉花芦管育苗移栽技术[J].江苏农业研究,2001,22(1):32-34,62.
    [16]束林华,沈建辉,纪从亮,等.棉花芦管育苗栽培技术实验初报[J].江苏作物通讯,1999,(2):74-76.
    [17]刘永棣.棉花纸管营养钵育苗法[J].中国棉花,2002,29(4):39.
    [18]杨铁钢,谈春松.棉花工厂化育苗技术及其高产高效技术规程[J].河南农业科 学,2003,(9):23-24.
    [19]杨铁钢,谈春松.棉花工厂化育苗技术及其高产高效技术规程[J].北京农业,2004,(4):33-34.
    [20]毛树春,韩迎春,王国平,等.棉花无土育苗技术(一)[J].中国棉花,2006,33(2):41.
    [21]毛树春,韩迎春,王国平,等.棉花“两无两化”栽培技术研究新进展[J].中国棉花,2004,31(11):29.
    [22]毛树春,韩迎春,王国平,等.棉花无土育苗技术(二)[J].中国棉花,2006,33(3):21.
    [23]毛树春,韩迎春,王国平,等.棉花无土育苗技术(三)[J].中国棉花,2006,33(4):34-35.
    [24]毛树春,韩迎春,王国平,等.棉花基质系列化育苗技术[J].中国棉花,2007,34(2):38-40.
    [25]毛树春,韩迎春,王国平,等.棉花工厂化育苗和机械化移栽技术[J].中国农业科学,2006,39(11):2395.
    [26]毛树春,韩迎春,王国平,等.棉花基质育苗和裸苗移栽存在问题及克服办法[J].中国棉花,2007,34(3):32-33.
    [27]毛树春,韩迎春,王国平,等.棉花工厂化育苗和机械化移栽技术研究进展[J].中国棉花,2007,34(1):6-7,9.
    [28]陈德华,张祥,吴云康,等.棉花塑料穴盘轻型育苗和移栽新技术[J].中国棉花,2004,31(10):26-27.
    [29]徐立华,张培通,杨长琴,等.机械化微钵育苗棉花生长发育特性研究初报[J].中国棉花,2007,34(4):11-12.
    [30]陈金湘,刘海荷,熊格生,等.棉花水浮育苗技术[J].中国棉花,2006,33(11):24-25.
    [31]陈金湘,刘海荷,熊格生.棉花水浮育苗技术(上)[J].湖南农业,2007,(3):14.
    [32]陈金湘,刘海荷,熊格生.棉花水浮育苗技术(下)[J].湖南农业,2007,(4):13.
    [33]陈金湘,刘海荷,熊格生.棉花水浮育苗的优势及其技术[J].农业科技通讯,2007,(12):115-117.
    [34]纪从亮.江苏省发展优质棉生产的思路与实践[J].江西棉花,2001,23(10):3-9.
    [35]汤一卒,王宏武,韩道辉,等.棉花双杆栽培优质高效技术[J].中国棉花,2004,31(7):5-7.
    [36]孙学振,施培,张红,等.棉花育苗移栽与地膜覆盖高产栽培技术研究进展[J].中国农学通报,1999,15(2):42-46.
    [37]喻树迅,魏晓文,赵新华.中国棉花生产与棉花发展[J].棉花学报,2000,12(6):327-329.
    [38]杨青华,韩锦峰,贺德先.液体地膜育苗对棉花生育与产量的影响研究[J].棉花学 报,2004,16(4):216-222.
    [39]王立国,卞海云,孟亚利.麦棉两塾双高产条件下棉株养分和干物质的累积与分配[J].棉花学报,2005,17(4):247-248.
    [40]周治国,孟亚利,施培.种植方式对麦套中早熟直播棉棉铃发育的影响[J].棉花学报,1998,10(6):329-333.
    [41]陈奇恩,南殿杰,马良吉.棉田塑膜地膜覆盖的环境效应[J].中国农业科学,1982,25(4):43-50.
    [42]Charles W K,Robert L H.Cotton growth and development under different tillage systems[J]Crop Science,2001,41:1162-1168.
    [43]朱斌,王国平,刘晓燕,等.棉花工厂化无土育苗在江苏东台地区的应用探讨[J].江苏农业科学,2006,(2):35-36.
    [44]何永垠,王国平,龙庆海,等.棉花工厂化无土育苗在东台地区的应用和探讨[J].中国棉花,2006,33(3):25-26.
    [45]中国农业科学院棉花研究所.棉麦套作试验[R].安阳:中国农业科学院棉花研究所,1959.
    [46]中国农业科学院棉花研究所.棉麦套作试验[R].安阳:中国农业科学院棉花研究所,1961.
    [47]中国农业科学院棉花研究所栽培组.北方棉区粮棉套种的问题和经验[J].棉花,1977,(4):29-30.
    [48]刘昌新.黄淮海棉区麦棉两熟制栽培技术[J].农业科技通讯,1982,(11):10-11.
    [49]刘昌新,陆绪华.中棉所10号棉花品种夏播栽培技术研究简结[R].安阳:中国农业科学院棉花研究所,1982.
    [50]陆绪华.黄淮海棉区麦棉两熟制概述[J].中国棉花,1987,14(3):2-3.
    [51]毛树春,邢金松,宋美珍,等.黄淮海棉区棉麦两熟光能流与物质流研究,Ⅰ.共生期棉行光分布与日总量[J].棉花学报,1995,7(4):226-232.
    [52]毛树春,宋美珍,张朝军,等.黄淮海棉区棉麦两熟光能流与物质流研究,Ⅲ.麦棉共生期复合群体作物层温度分布与总积温[J].棉花学报,1997,9(4):183-192.
    [53]毛树春,宋美珍,庄军年,等.黄淮海平原棉麦共生期棉田土壤温度效应的研究[J].中国农业科学,1998,31(6):18-24.
    [54]毛树春,韩迎春,宋美珍,等.套作棉花共生期需水规律研究[J].棉花学报,2003,15(3):155-158.
    [55]蒋玉琴.麦(油)后移栽棉生长优势与栽培技术改进[J].江西棉花,1998,20(6):24-26.
    [56]余隆新,周明炎,羿国香,等.油后移栽棉保优丰产增效关键栽培技术[J].湖北农业科学,2006,45(6):720-721.
    [57]张友平,罗在华,彭烈浩,等.油后移栽棉的生育特点及配套高产栽培技术[J].江西棉花,2004,26(4):24-26.
    [58]张美良,肖文俊,程锦,等.油后移栽棉高产生育规律及配套栽培技术[J].江西农业科技,1992,(4):10-14.
    [59]朱烨.棉花营养钵育苗移栽技术[J].农业科技通讯,1983,(2):20-22.
    [60]倪金柱,编著.中国棉花栽培科技史[M].农业出版社,1993.
    [61]齐宏立,石跃进,赵金仓,等.棉花无土育苗移栽试验初报[J].中国棉花,1998,25(8):15.
    [62]宋家祥,陆建仪,顾世梁.芦管育苗移栽对棉花生育与产量影响研究初报[J].江苏农业研究,1999,20(1):15-18.
    [63]毛树春.图说棉花无土育苗无载体裸苗移栽关键技术[M].北京:金盾出版社,2005.
    [64]毛树春,韩迎春,王国平,等.促根剂及其制备方法和应用:中国,ZL02153630.9[P].2005-11-9.
    [65]毛树春,韩迎春,王国平,等.一种无土育苗基质:中国,ZL03 149367.X[P].2006-9-13.
    [66]毛树春,韩迎春,王国平,等.一种半自动移栽机:中国,ZL200620022720.9[P].2007-3-27.
    [67]毛树春.育苗移栽新技术示范在新疆——接替地膜覆盖的新途径,治理残膜污染的新曙光[EB/OL],[2007-5-26].中国棉花生产景气报告第120期,http://www.ccppi.com.cn.
    [68]承泓良.移栽地膜棉高产优质高效初析[J].中国棉花,1997,24(4):4-6.
    [69]纪从亮.移栽地膜棉的高产机理及配套栽培技术[J].中国棉花,1998,25(6):2-4.
    [70]李付广,章力建,崔金杰,等.我国棉田生态系统立体污染及其防治对策[J].棉花学报,2005,17(5):299-303.
    [71]奚惠达,何钟佩,李丕明.新生长延缓剂N,N-二甲基哌啶鎓氯化物对棉花生长发育的影响[J].中国棉花,1981,8(5):33-37.
    [72]李丕明.加强棉花化学控制技术的研究[J].中国棉花,1982,9(2):10-15.
    [73]何钟佩,李丕明,李召虎,等.中国棉花化学控制栽培工程的建立和发展[J].植物学通报,1995,12(专辑):83.
    [74]田笑明.兵团精准农业技术体系的建立及在棉花上的大面积应用[J].中国棉花,2005,32(增刊):9-12.
    [75]汪若海.当前我国棉花增产的几项关键技术措施[J].中国棉花,1994,21(12):2-4.
    [76]何仲佩.中国棉花化学控制栽培工程的建立和发展[J].植物学通讯,1995,12(12):10-12.
    [77]徐立华.植物生长调节剂在江苏省棉花栽培中的研究与应用[J].棉花文摘,1992,(2):4-6
    [78]蒋国柱,邓绍华,潘晓康.棉花优质高产最佳结铃模式及其调节技术[J].中国棉花,1987,14(5):25-27.
    [79]牛曰华,董合忠,李维江,等.去早果枝对抗虫棉产量、品质和早衰的影响[J].棉花学报,2007,19(1):52-56.
    [80]李伶俐,马宗斌,房卫平,等.稀植留叶枝棉花的光合特性和产量及品质研究[J].棉花学报,2007,19(1):8-12.
    [81]陈奇恩.棉花生育规律与优质高产高效栽培[M].北京:中国农业出版社,1997.
    [82]黄俊麒.中国棉作学[M].北京:中国农业出版社,1998.
    [83]毛树春.棉花高产优质高效栽培技术理论研究新进展[J].中国棉花,1998,25(6):21-23.
    [84]张末喜,毛树春.棉花高产优质高效栽培技术途径[J].中国棉花,1998,25(11):24-26.
    [85]孙学振.我国棉花高产栽培技术理论研究现状与展望[J].中国棉花,1999,26(4):2-7.
    [86]宋家祥.论高产棉花的同步栽培[J].江苏农学院学报,1984,5(4):17-20.
    [87]江苏省科委.棉花高产优质经济栽培模式研究[C].论文汇编,1987.
    [88]徐立华.棉花栽培新技术的研究与应用[M].北京:中国农业出版社,1998.
    [89]徐立华.棉花叶枝发生的生物学特性研究[J].中国棉花,1999,26(1):19-20.
    [90]雷荣荣,陈波浪,盛建东,等.钾营养对棉花生长发育与生理特性的影响[J].新疆农业大学学报,2008,31(3):69-72.
    [91]孟兆江,卞新民,刘安能,等.调亏灌溉对棉花生长发育及其产量和品质的影响[J].棉花学报,2008,20(1):39-44.
    [92]别墅,唐仕芳,肖汉斌,等.移栽地膜棉生态生物学效应及配套栽培技术[J].中国棉花,1998,25(10):16-17.
    [93]张培通,徐立华,何循宏,等.棉花无土育苗棉苗移栽后的生长表现初报[J].中国棉花,2005,32(11):12-14.
    [94]张保民,孙本普,王广照,等.麦套棉花与纯作棉花的生物学差异[J].河南农业科学,2006,(10):32-35.
    [95]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273.
    [96]沉允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1998.
    [97]原红娟.地膜覆盖对棉花苗期至蕾期的生理特征影响研究[J].安徽农业科学,2008,36(7):2655-2656.
    [98]刘连涛,李存东,孙红春,等.棉花不同叶位主茎叶衰老特征的研究[J].棉花学报,2008,20(2):123-127.
    [99]段留生,何钟佩.DPC对棉花叶片发育及活性氧代谢的影响[J].棉花学报,1996,8(6):312-315.
    [100]邬飞波,李秀英,许馥华.短季棉与中熟棉生理特性的比较研究[J].棉花学报,2000,12(5):242-246.
    [101]张丽欣.四种菜叶衰老期间呼吸、乙烯产生、IAA和过氧化物酶的变化及其相互关系[J].植物生理学报,1988,14(1):81-87.
    [102]喻树迅,黄祯茂,姜瑞云,等.几个短季棉品种叶片衰老特征的研究[J].棉花学报,1994,6(增刊):31-35.
    [103]沈法富,喻树迅,范术丽.棉花叶片衰老过程中激素和膜脂过氧化的关系[J].植物生理与分子生物学学报,2003,29(6):589-592.
    [104]Feller U K,el al.Leaf proleolylic actvities and senescence during grain developmenl of field-grown,corn(Zea mays L.)[J].Plans Physiol,1977,59:290-294.
    [105]芮琪,徐朗莱.小麦叶片暗诱导衰老期间内肤酶的特性(英文)[J].植物学报,2003,45(9):1049-1054.
    [106]高玲,叶茂炳,徐朗莱,等.小麦叶片老化期间内肤酶活力上升的影响因素[J].中国农业科学,1999,32(3):102-104.
    [107]董合忠,李维江,唐薇,等.不同抗虫棉基因型的光合生产和叶源特征[J].棉花学报,2005,17(6):328-333.
    [108]勾玲,闫洁,韩春丽,等.氮肥对新疆棉花产量形成期叶片光合特性的调节效应[J].植物营养与肥料学报,2004,10(5):488-493.
    [109]刘贤赵,康绍忠,绍明安.土壤水分与遮荫水平对棉花叶片光合特性的影响研究[J].应用生态学报,2000,11(3):377-381.
    [110]罗宏海,张亚黎,张旺锋,等.新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响[J].作物学报,2008,34(1):171-174.
    [111]杨青华,黄勇,王培中,等.液体地膜覆盖对棉花生理特性的影响[J].华北农学报,2005,20(4):32-35.
    [112]胡泽友,黄璜,卢向阳,等.棉花床土调制剂对棉苗生理特性的影响[J].湖南农业大学学报(自然科学版),2003,29(2):106-108.
    [113]李伶俐,马宗斌,王文亮,等.苗期喷施氮、锌肥对麦套夏棉某些生理特性及产量的影响[J].河南农业大学学报,2004,38(1):33-35.
    [114]杨青华,黄勇,马二培.液体地膜覆盖对棉花根系生长发育的影响[J].生态学杂志,2006,25(3):299-302.
    [115]杨青华,马宗斌,林同保,等.系统化学调控对抗虫棉生长发育的影响[J].河南农业大学学报,2003,37(4):339-342.
    [116]艾克拜尔.伊拉洪,周抑强,徐江.土壤水分对不同品种棉花叶片蒸腾及脯氨酸含量的影响[J].新疆农业科学,2000,(1):43-45.
    [117]李粉茹.水分胁迫对棉花叶片的影响[J].农业与技术,2005,25(6):61-63.
    [118]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [119]曹显祖,朱床森,顾自奋.关于杂交水稻结实率的研究[J].江苏农业科学,1981,(1):1-7.
    [120]宋松泉,傅家瑞.杂交水稻叶片衰老与膜脂过氧化作用的关系[J].中山大学学报,1995,(1):15-19.
    [121]周嘉槐,张智勇.茹敦俊,等.杂交水稻空批粒生理的研究[M].北京:科学出版社,1984,40-59.
    [122]魏道智,宁书菊.叶部激素变化与小麦的整体衰老[J].广西植物,2002,22(4):382-384.
    [123]毛树春,韩迎春,宋美珍,等.中棉所29栽培技术及其生理特性研究[J].棉花学报,2001,13(2):82-86.
    [124]杨淑慎,高俊凤,李学俊,等.杂交春性小麦叶片衰老与保护酶系统活性的研究[J].中国农业科学,2004,37(3):460-463.
    [125]孟亚利,王瑛,王立国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学,2006,39(11):2228-2236.
    [126]李跃强,盛承发.叶型超补偿下棉花叶中保护酶活性的变化[J].昆虫学报,2004,47(6):780-786.
    [127]赵春江,康书江,王纪华,等.植物内源激素对小麦叶片衰老的调控机理研究[J].华北农学报,2000,15(2):53-56.
    [128]李合生,孟庆伟,夏凯,等.现代植物生理学[M],北京:高等教育出版社,2002,232-238.
    [129]魏道智,戴新宾,许晓明,等.植物叶片衰老机理的几种假说[J].广西植物,1998,18(1):89-96.
    [130]Guinn G,Brummett D L.Leaf age,decline in photo- synthesis,and changes in abscisic acid,indole-3-acetic acid,and cytokinin in cotton leaves[J].Field Crops Research,1993,32:269-275.
    [131]沈法富,喻树迅,范术丽,等.不同短季棉品种生育进程中主茎叶内源激素的变化动态[J].中国农业科学,2003,36(9):1014-1019.
    [132]周相娟,姜微波,胡小松,等.赤霉素和乙烯对香菜叶片衰老的影响[J].北方园艺,2003,(3):54-56.
    [133]董志强,舒文华,翟学军,等.棉株不同器官中几种内源激素的变化及相关关系[J].核农学报,2005,19(1):62-67.
    [134]Marschner H.Mineral nutrition of higher plant[M].London:Academic Press,1986,673-676.
    [135]薛晓萍,陈兵林,周治国.栽培方式对棉花生长、产量和品质的影响[J].棉花学报,2007,19(6):440-445.
    [136]唐时嘉,罗有芳,张建辉,等.影响四川棉花产量和品质的土壤障碍因子研究,Ⅲ 紫色土棉花营养特性初步研究[J].西南农业学报,1993,6(2):55-62.
    [137]陈学贞,罗运选.氮磷钾及其交互作用对移栽棉花产量的影响[J].棉花学报,1989,1(1):55-64.
    [138]张旺锋,李蒙春.北疆高产棉花干物质积累与分配规律的研究[J].新疆农垦科技,1997,(6):1-2.
    [139]李蕾,娄春恒,文如镜,等.新疆不同密度下棉花N、P吸收及其分配研究[J].西北农业学报,1999,8(1):37-39.
    [140]伍维模,郑德明,董合林,等.南疆棉花干物质和氮磷钾养分积累的模拟分析[J].西北农业学报,2002,11(1):92-96.
    [141]曾文龙,吴敏.烤烟育苗方式和移栽叶龄的优化组合试验[J].福建农业科技,1999,(3):9-10.
    [142]陈金湘,熊格生,刘海荷,等.棉花水浮育曲技术的研究[A].中国棉花学会论文集[C],2006.191-195.
    [143]熊格生,陈金湘,唐海明,等.不同处理方法对棉花漂浮育苗棉苗生长发育的影响[J].湖南农业科学,2007,(6):88-90.
    [144]王正才,李颖,陈金湘.多效唑浸种对棉花营养液漂浮育苗幼苗生长的影响[J].作物研 究,2007,(2):124-125.
    [145]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,119-120,125-128,164-169,184-185,258-261.
    [146]艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8.
    [147]W.伯姆著,薛德榕译.根系研究法[M].北京:科学出版社,1985,178-181.
    [148]唐海明,陈金湘.漂浮育苗移栽棉花的产量构成及生理特性初探[J].棉花学报,2008,20(2):148-150.
    [149]罗广华,王爱国,郭俊颜.一些外源因素对大豆幼苗过氧化物岐化酶活性的影响[J].植物生理学报,1990,16(3):239-244.
    [150]沈波,王熹.籼粳亚种间杂交稻根系伤流强度的变化规律及其与叶片生理状况的相互关系[J].中国水稻科学,2000,14(2):122-124.
    [151]田晓莉,杨培珠.棉花根-冠关系的研究-根系伤流液及叶片中内源激素的变化[J].中国农业大学学报,1999,4(5):92-97.
    [152]韩锦峰,汪耀富.土壤水分对烤烟根系发育和根系活力的影响[J].中国烟草,1992,(3):14-17
    [153]Chaplin J.H,Miner.Production factors affecting chemical components of tobacco leaf[J].Tobacco Science,1980,(6):60-63.
    [154]刘发万,杨敏杰,钟节利,等.不同育苗移栽方式对辣椒经济性状的影响[J].北方园艺,2007,(12):8-10.
    [155]朱宏宇,高波,张苏萍,等.不同移栽方式对水稻产量及效益的影响[J].安徽农业科学,2007,35(29):9188-9190.
    [156]谢晓东,王伯伦,王术,等.水稻不同育苗移栽方式的比较研究[J].沈阳农业大学学报,2001,32(5):328-332.
    [157]王以慧,厉昌坤,董小卫,等.不同覆膜移栽方式对烤烟根系发育及烟叶产量和质量的影响[J].中国烟草科学,2006,(2):44-47.
    [158]张晓海,蔡寒玉.覆膜方式和移栽深度对烤烟产质量的影响[J].安徽农业科学,2006,34(3):505-506.
    [159]夏海乾,钱晓刚,杜德强,等.不同茎长移栽及施肥方式对烤烟前期生长发育的影响[J].安徽农业科学,2008,36(2):581-582.
    [160]张鹏程,陆引罡,远红伟,等.不同移栽方式对烤烟田间长势和产质影响的研究[J].安徽农业科学,2007,35(35):11491,11516.
    [161]杨祥田,林贤青,王旭辉,等.超级稻不同移栽方式对产量及抗病性的影响[J].浙江农业学报,2008,20(1):6-9.
    [162]Chowdhury R S,Chouduri M A.Hydrogenperoxide metabolism as an index of water stress tolerance in jute[J].Plant Physiology,1995,65:503.
    [163]Yao M S,Yang X H,Guo P Y.Effects of abscisic acid on water relationship and defensive enzymes activities in cotton seedling under water stress[J].Acta Gossypii Sinica,2005,17(3):141-145.(in Chinese)
    [164]Shen F F,Yu S X,Fan S L,et al.The relationship between hormone and membrance lipid peroxidation in cotton leaf during senescence[J].Acta Photophysiologica Sinica,2003,29(6):589-592.
    [165]常新刚,黄国勤,章秀福,等.江西绿肥-双季稻超高产种植模式与调控技术研究,Ⅰ.不同移栽方式对早稻生长发育及产量的影响[J].中国农学通报,2007,23(5):161-164.
    [166]Bolger T P,Upchureh D R.Memichael B L.Temperature effects on cotton root hydraulic conductance[J].Environmental and Experimental botany,1992,32(1):49-54.
    [167]Smith C W,Vairil J J.Double cropping cotton and wheat[J].Agronomy Journal,1982,74(5):862-865.
    [168]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273.
    [169]赵光伟.烤烟生长发育过程中叶片主要植物学特征的变化[J].西北农林科技大学学报(自然科学版),2007,35(9):63-66.
    [170]马聪.漂浮育苗对烤烟生长发育及产质的影响[J].河南农业科学,2003,(2):9-10.
    [171]姜益娟,郑德明,翟云龙.不同灌溉方式的棉花根系在土壤中的分布特征[J].塔里木大学学报,2008,20(1):1-5.
    [172]胡守林,郑德明,邓成贵,等.不同耕作方式棉花根系发育能力的研究[J].水土保持研究,2006,13(6):115-116,119.
    [173]吕宁,侯振安,龚江.不同滴灌方式下咸水灌溉对棉花根系分布的影响[J].灌溉排水学报,2007,26(5):58-62.
    [174]晋凡生,张俊仙.冬小麦不同栽培方式的生物学特性研究[J].山西农业科 学,1998,26(3):15-19.
    [175]梁建斌,刘今河,杨涛.不同耕作方式对玉米根系生长发育及土壤水分的影响[J].安徽农业科学,2006,34(11):2353-2354.
    [176]柳维扬,张建国,赵湛,等.不同耕作方式对玉米生长发育的影响[J].塔里木大学学报,2006,18(1):6-9.
    [177]熊格生,陈金湘,唐海明,等.棉花营养液漂浮育苗对移栽棉株植物学形态及产量构成因素的影响[J].江西农业大学学报,2008,30(2):199-202.
    [178]王立国,孟亚利,周治国,等.麦棉两熟双高产条件下麦棉复合根系生长的时空动态分布[J].作物学报,2005,31(7):888-896.
    [179]李永山,张凯,王晓璐,等.陆地棉品种根系特性与耐旱性关系的研究[J].棉花学报,2000,12(2):85-86.
    [180]李胄,范万发,刘有良.陆地棉根部性状及植株主要性状与皮棉产量的相关性研究[J].西北农业学报,2003,12(1):36-39.
    [181]Basal H,Smith C W,Thaxton P S,et al.Seedling drought tolerance in upland cotton[J].Crop Sci,2005,45:766-771.
    [182]Pace P F,Cralle H T,El-Halawany S H M,et al.Drought-induced changes in shoot and root growth of young cotton plants[J].Cotton Sci,1999,3:183-187.
    [183]郑之龙,肖晶荣.棉花密早矮膜栽培技术模型研究[J].新疆农业科学,1990,(4):156-159.
    [184]陆定志.叶片的衰老及其调节控制[M].北京:科学出版社,1983,20-52.
    [185]韩秋成,张月辰,李存东,等.耕作方式对棉花不同部位果枝叶衰老生理特性的影响[J].棉花学报,2008,20(1):29-33.
    [186]付国占,李潮海,王俊忠,等.残茬覆盖与耕作方式对夏玉米叶片衰老代谢和籽粒产量的影响[J].西北植物学报,2005,25(1):155-160
    [187]李洪勋,吴伯志.不同耕作方式对梯田玉米叶片的光合与蒸腾指标的影响[J].广西植物,2007,27(2):244-249.
    [188]王静,杨德光,马凤鸣,等.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响[J].玉米科学,2007,15(6):57-59.
    [189]郭英,宋宪亮,王庆材,等.施钾对棉花苗期叶片内源激素与氧自由基代谢的影响[J].华北农学报,2006,21(1):59-62.
    [190]陈德华,何钟佩,徐立华,等.高产棉花叶片内源激素与氮磷钾吸收积累的关系及其对棉 铃增重机理的研究[J].作物学报,2000,26(6):659-665.
    [191]刘连涛,李存东,孙红春,等.棉花叶片衰老生理研究进展[J].中国农学通报,2006,22(7):316-321.
    [192]Raper C D.Relative growth and nutrient accumulation rates for tobacco[J].Plant and Soil,1977,46:473-486.
    [193]张旺锋,李蒙春.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95.
    [194]王克如,李少昆.新疆高产棉田氮、磷、钾吸收动态及模式初步研究[J].中国农业科学,2003,36(7):775-780.
    [195]余渝,冯忠新,黄庆辉,等.调控技术对新疆棉花形态诊断指标影响研究[J].新疆农业大学学报,2003,26(2):15-19.
    [196]Read S M,Northcote D H.Minimization of variation in the response to different protein of the coomassic blue gdye dinding:assay for protein[J].Anal Biochem,1981,116:53-64.
    [197]邹琦.植物生理学[M].北京:中国农业出版社,2000,54-55,58-59.
    [198]Koshita Y,Takahara T,Ogata T,et al.Involvement of endogenous plant hormones (IAA,ABA,GA_3) in leaves and flower bud formation of satsuma mandarin(Citrus unshiu Marc)[J].Sci Hortic,1999,79:185-194.
    [199]南京农业大学.土壤农化分析(第二版)[M].北京:农业出版社,1996,213-218.
    [200]程海林,张源根,阎继耀,等.干旱和复水对棉花叶片几种生理指标的影响[J].中国棉花,1996,23(2):17-18.
    [201]支金虎,伍维模,危常洲,等.水分与氮素对膜下滴灌棉花叶片叶绿素含量时空分布的影响[J].西北农业学报,2007,16(1):7-12.
    [202]孙静文,陈温福,曾雅琴,等.氮素水平对粳稻根系形态及其活力的影响[J].沈阳农业大学学报,2003,34(5):344-346.
    [203]徐惠风,金研铭,张春祥,等.向日葵叶片可溶性糖含量的研究[J].吉林农业大学学报,2000,22(1):23-25.
    [204]王书丽,郭天财,王晨阳,等.两种筋力型小麦叶、粒可镕性糖含量及与籽粒淀粉积累的关系[J].河南农业科学,2005,(4):12-15.
    [205]唐薇,罗振,温四民,等.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报,2007,19(1):28-32.
    [206]Reinink K,Groenwold R,Bootsma A.Gonotypical difference in nitrate content in Lactuca sativa L.and related species and correlation with dry matter content[J].Euphytica,1987,36(1):11-18.
    [207]杨万勤,王开运,宋光煜,等.水分胁迫对燥红土和变性土上生长的玉米叶片几种酶活性的影响[J].应用与环境生物学报,2003,9(6):588-593.
    [208]朱杭申,黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7-11.
    [209]Guinn G,et al.Influence of defruiting on the abscisic acid and indole-3-acetic acid contents of cotton leaves[J].Field Crops Res,1992,28:257-262.
    [210]李莉,黄子蔚,陈冠文,等.棉花苗期到盛花期倒四叶激素变化研究初报[J].干旱地区农业研究,2006,24(2):130.
    [211]Li R Q,Wang J P.Plant stress physiology[M].Wuhan:Wuhan University Press,2002.
    [212]刘广才.土壤水分含量与春小麦营养关系的研究[J].甘肃农业科技,1994,(2):25-27.
    [213]尹金来,周春霖,沈其荣,等.水稻水作与旱作条件下土壤和植物磷素有效性的研究[J].南京农业大学学报,2002,25(4):53-56.
    [214]Strong W M,Barry G.The availability of soil and fertilizer phosphorus to wheat and rape at differend water rigimes[J].Aust J Soil Res.1980,18:353-362.
    [215]Igramer P J.Plant and soil water relationship[M].New York:Mc Graw Hill,1969,482.
    [216]陈学贞,萝运选,刘国华 棉花规范化栽培研究.Ⅳ.氮磷钾的配合及其交互作用对移栽棉花产量的影响[J].湖南农学院学报,1989,15(3):13-20.
    [217]叶欣,王永东,李瑞雪.不同品种棉花干物质积累差异对比研究[J].西南农业大学学报(自然科学版),2004,26(6):750-752.
    [218]张翠翠,刘松涛,郭书荣.保水剂对土壤和棉花根系生长发育的影响[J].中国农学通报,2007,23(5):487-490.
    [219]陈贵,胡文玉.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46.
    [220]梁新华,史大刚.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响[J].干旱地区农业研究,2006,24(3):108-110.
    [221]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922-928.
    [222]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J].西 北植物学报,2002,22(2):285-290.
    [223]孙学成,谭启玲,胡承孝,等.低温胁迫下钼对冬小麦抗氧化酶活性的影响[J].中国农业科学,2006,39(5):952-959.
    [224]厚诚,邝炎华,陈日远.缺磷胁迫下长豇豆幼苗膜脂过氧化及保护酶活性的变化[J].园艺学报,2003,30(2):215-217.
    [225]张利红,李雪梅,陈强,等.铅对不同品种玉米幼苗抗氧化酶活性及根系活力的影响[J].吉林农业大学学报,2006,28(2):119-122.
    [226]王彦平,蒋平安,陈波浪,等.磷胁迫下不同品种棉花内源激素的动态变化[J].新疆农业科学,2008,45(3):522-525.
    [227]李广敏,史吉平,董永华,等.脱落酸和多效唑对水分胁迫条件下小麦幼苗活性氧代谢的影响[J].河北农业大学学报,1994,17(4):26-30.
    [228]姚满生,杨小环,郭平毅.脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J].棉花学报,2005,17(3):141-145.
    [229]Agarwal S,Sairam R K,Srivastava G C,et al.Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes[J].Biol Plant,2005,49(4):541-550.
    [230]张立桢,曹卫星,张思平,等.棉花干物质分配和产量形成的动态模拟[J].中国农业科学,2004,37(11):1621-1625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700