水牛精原干细胞的体外培养与鉴定及转基因干细胞的异种移植
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过研究培养条件(包括血清浓度、饲养层细胞及三种生长因子)对水牛精原干细胞(SSCs)增殖的影响,最终建立水牛SSCs体外增殖的培养体系。通过介导生长抑素RNA干扰的PB转座子转染SSCs,得到含目的基因片段的SSCs;在移植转基因SSCs至昆明鼠睾丸后,分析转基因SSCs的增殖与分化功能。该研究为克隆转基因水牛提供新途径;为SSCs的生物学特性、多潜能性及定向分化的表观遗传学和精子发生机理等研究提供技术平台;结合SSCs的冷冻保存,为水牛的种质资源保存提供新手段;为其他家畜和人的SSCs的研究提供理论参考。
     1.水牛精原干细胞的体外培养与分子标志探索
     水牛SSCs特异性分子标志的发展,体外培养条件的优化以及其多能性的保持,在水牛的选择性遗传修饰中具有重要的意义。本研究取4~5月龄杂交水牛(摩拉×沼泽,49条染色体)睾丸,经Western blot发现水牛睾丸中存在两种蛋白异构体(135kDa大片段和90kDa小片段),CDH1为水牛精原干细胞的特异性分子标志;免疫组织化学分析发现水牛睾丸精原细胞上存在CDH1的表达,且在体细胞中无表达。纯化后的精原干细胞(流式分析纯化富集效率达到53%)体外培养7天后,CDH1在细胞克隆中也检测到表达,。而且在精原干细胞体外培养过程中,不同生长因子组合对增殖影响的研究发现,与对照或仅添加单一生长因子组相比,共同添加20ng/mL GDNF、10ng/mL FGF2和1000U/mL LIF能显著提高水牛精原干细胞的克隆数(约提高2倍)和增殖率(约提高3倍),还能显著上调精原细胞特异性和多能性相关标志物(BCL6B, GFRA1和POU5F1)的mRNA表达水平,同时下调受体酪氨酸激酶(KIT)。本研究结果证实水牛存在CDHl特异性分子标志,可用于建立体外培养体系,从而有利于水牛的遗传修饰。
     2.生长抑素干扰载体转染BHK-21细胞及水牛SSCs克隆
     生长抑素(SS)在体内的主要作用是抑制生长激素(GH)的分泌,而抑制SS的分泌则可以促进动物的生长。如果干扰SSCs的SS基因后进行移植,可获得长期整合的转基因后代,从而得到生长状况良好的优异个体。但是,由于SSCs本身没有SS的分泌,所以对于干扰效果的验证需在其他SS分泌型细胞上实施。本研究设计并构建了3条针对SS基因序列的干扰片段,以PB载体介导经脂质体转染到BHK-21细胞(仓鼠肾成纤维细胞,经鉴定具备分泌SS的细胞)以沉默SS基因的表达,经过放射性免疫(RIA)和荧光定量PCR结果得知其中一个干扰载体在细胞水平的干扰效果十分明显,可达到50%以上。另外发现,在干扰生长抑素的表达后,BHK-21细胞的早期凋亡显著降低,细胞更多地进入S期。在体外干扰细胞的生长抑素表达是否影响生长抑素受体的变化目前未见报道,因此,我们检测了生长抑素基因五个受体表达量的变化。结果表明,生长抑素受体SSTR3的表达都下调。随后,应用RT-PCR和Western Blot方法检测与凋亡和周期相关的基因,发现Caspase-3、p21的表达水平都显著下调,而Bcl-2的表达水平则显著上调。这些结果表明,生长抑素可能通生长抑素受体2和3来调控Caspase-3与Bcl-2等基因的活动,从而促进BHK-21细胞的凋亡。选择干扰效果最佳的pshRNA-2质粒并优化转染方法后,成功转染SSCs,转染率达90%以上。
     3.转基因SSCs克隆的异种移植
     为了确认转染后SSCs干细胞的潜能,通过DBA染色鉴定证实异种移植小鼠睾丸曲细精管的基底膜上存在供体水牛精原细胞。为了探讨水牛精原干细胞移植到昆明小鼠后的增殖情况,首先对受体动物(昆明小鼠)注射不同剂量(30,35,40mg/kg体重)的白消安,以消除内源性精原细胞的干扰,依据体重、睾丸组织形态学和受体小鼠的睾酮激素水平综合评判消除效果,发现以40mg/kg体重的剂量为最优。之后将体外转染的水牛SSCs克隆(>58%纯度)打散重悬后,经显微注射到小鼠曲细精管内,在注射后1天、4天、1周、2周、3周、1个月和2个月,收集各实验组和对照组小鼠睾丸,应用扁豆凝集素(DBA)免疫组化和PCR方法检测供体精原细胞的存在,发现水牛睾丸细胞作为新鲜的供体,在受体鼠的睾丸曲细精管中可见形成圆形的细胞克隆,这表明精原干细胞在受体睾丸中成功增殖和克隆。但是2个月后,受体睾丸中克隆数减少,并且这些细胞表现为纤维组织细胞形态并失去了生精能力。以上结果说明,用白消安处理的昆明小鼠睾丸能够实现水牛精原干细胞的克隆和增殖,从而使其成为合适的动物模型进行评估水牛精原干细胞在受体小鼠中的增殖。水牛精原干细胞能够在受体小鼠睾丸中存活并增殖2个月。
By studying the different conditions (including serum concentrations, feeder cells and several types of growth factors) on the proliferation of SSCs buffalo, we eventually establish in vitro culture system for proliferation of SSCs. By PB transposon vector, SSCs has been transfected with the SS gene fragment. After transplantation of genetically modified SSCs to the recipient's testicles, we analysed the proliferation and differentiation of transgenic SSCs function on different time after transplatation. The study will provide new opportunities and pathways for clone and production of transgenic buffalo; provide a platform for research on other potential mechanisms of epigenetic biological characteristics of SSCs, directed differentiation and spermatogenesis; provide new tools for buffalo germplasm conservation by combination of cryopreserved SSCs; provide a theoretical reference for the study of other livestock and human SSCs.
     1. Buffalo spermatogonial stem cells in vitro culture and molecular markers exploration
     Development of suitable selective marker for buffalo spermatogonial stem cells (SSCs), optimization of long term in-vitro culturing conditions and their pluripotent retention capacity in buffaloes can be of prime importance in selective genetic modifications of this species. In the present study, we identified CDH1as a specific marker for buffalo SSCs and revealed that it exists in two protein isoforms (large (135kDa) and small (90kDa) subunits) in the three-month-old cross-bred (Murrah×swamp,49chromosomes) buffalo testis. Furthermore, immunohistochemical analysis revealed that CDH1expression was present in spermatogonia but absent from somatic cells in testis. After7days of enrichment, expressions of CDH1were also detectable in in-vitro culture colonies (-53%enrichment efficiency by FACS). For long term culture of SSCs, proliferation studies with different factors showed that combination of20ng/mL GDNF,10ng/mL FGF2and1000U/mL LIF can significantly promote number of colonies (-2folds) and proliferation of buffalo SSCs (-3folds) compared to those of control or single treatment groups, furthermore, addition of these combination growth factors significantly up regulated the mRNA level of spermatogonial specific and pluripotency related markers (BCL6B, GFRA1, and POU5F1) while down regulated receptor tyrosine kinase (KIT). These findings indicate the identification of a new buffalo SSCs marker, furthermore, it may help in establishing culture that would help in genetic modifications of these buffaloes.
     2. Transfection of BHK-21and SSCs colonies with somatostatin RNAi vector
     Somatostatin (SS) play a major role in inhibiting the secretion of growth hormone (GH), so animal growth character can be promoted by inhibiting the secretion of SS. If we knock down SS gene out of SSCs, we can get long-term integration transgenic offspring through SSCs transplantion, and then furtherly get excellent individual in good growth condition. But previous studies in our laboratory have confirmed SSTR is not present in buffalo SSCs, so the moderating effects of need to be verified on other SS secreting cells. In this study, three PB delivered interference vector was designed and constructed for SS gene sequences, and lipo-mediated transfected into BHK-21cells (hamster kidney fibroblasts, identified by SS secreting cells). Result of radioimmunoassay (RIA) and fluorescence quantitative PCR (qPCR) showed that interference effects from one of the interfering carrier can reach more than50%at the cellular level. In addition, we found that the expression of somatostatin after RNAi, the early phase apoptotic of BHK-21cells significantly reduced, and showed more cells into S phase. The effects of Somatostatin in vitro interference on cell somatostatin receptor expression have not been reported, so we examined the changes in the expression of the five somatostatin receptors. The results showed that all somatostatin receptor expression was down regulated. Apoptosis and cell cycle-related genes were detected by RT-PCR and Western Blot, showing Caspase-3, p21and Bax expression levels were significantly reduced, while the expression of Bcl-2levels were significantly upregulated. These results suggest that somatostatin may regulate Caspase-3activity and Bcl-2/Bax genes through somatostatin receptor2and3to promote apoptosis in BHK-21cells. Through these results we have chosen the best interference pshRNA-2plasmid. After optimizing transfection methods coupled with SSCs in vitro conditions, we conducted successful SSCs transfection, which has laid a solid foundation for the production of transgenic animals.
     3. Transgenic SSCs colonies xenotranplantation
     For confirmation of their stem cell potential, DBA-stained cells were identified in the basal membrane of seminiferous tubules of xenotransplanted mice testis. In order to examine the propagation of buffalo spermatogonial stem cells following transplantation into Kunming mice. For preparation of recipient animals, we also optimized the dosage of busulfan in Kunming mice for successful depletion of endogenous spermatogenesis. This was followed by microinjection of enriched donor buffalo germ cells (58%purified) into mouse seminiferous tubules. After treatment with different doses of busulfan (30,35,40 mg/kg b.w.), we found that a dose of40mg kg-1is optimal for the ablative treatment. This optimization was based on body weight, testicular histomorphology, and testosterone level of recipient mice. After transplantation, mouse testes were analyzed at day1d,4d,1wk,2wk,3wk,1mo and2mo after transplantation with Dolichos biflorus agglutinin (DBA) immunohistochemistry and PCR for the presence of donor germ cells. As fresh explants, buffalo testes cells were observed as small colonies of round cells within mouse seminiferous tubules, indicating successful proliferation and colonization of germ cells, however, at2months, the number of colonies decreased although, these cells appeared as fibrous tissues and devoid of spermatogenic capacity. In conclusion, busulfan-treated Kunming mouse testis are capable of colonizing the buffalo germ cells, thus making it suitable model for evaluation and further development of buffalo germ cells transplantation in mice. The buffalo spermatogonial stem cells are able to be alive and propagated for2months in mouse testis.
引文
1.刘鹏.猪精原干细胞的分离,培养及转基因条件研究.[研究生学位论文].山东:山东师范大学,2009
    2.茆达干,杨利国,曹少先等.影响基因疫苗免疫效果的因素.中国免疫学杂志,2004,20(5):360-363
    3.茆达干,杨利国,叶荣,姜勋平.抑制素a(1-32)基因免疫对大鼠卵泡发育和生殖激素的影响.中国农业科学,2003,36(12):1554-1559
    4.石旭东,殷辉林.生长抑素基因工程疫苗对生长肥育猪促生长效果试验.养猪,2001,21(4):1002-1957
    5.薛春林,杨利国.生长抑素基因免疫对湖羊羔羊生长及GH和IGF-I的影响.中国农业大学学报,2006,11(4):16-22
    6.张仕强.新生牛精原干细胞体外增殖调控的研究.[研究生学位论文].陕西:西北农林科技大学,2007
    7.张学明,李子义,赖良学,文兴豪,李德雪,岳占碰,杜惜明.几种因素对培养小鼠精原干细胞的影响.中国兽医学报,2001,21(5):497-500
    8.周唏,张鹏辉.RNAi-DNA稳定表达载体的构建与应用.现代医药卫生,2005,21(4):3355-3357
    9. Ahmad S, Xiao Y, Han L, Hua H, Riaz H, Liang A, Yang L G. Isolation, Identification and Enrichment of Type A Spermatogonia from the Testis of Chinese Cross-Bred Buffaloes (Swampx River). Reproduction in Domestic Animals,2013, 48(3):373-381.
    10. Airaksinen MS, Saarma M. The GDNF family:signalling, biological functions and therapeutic value. Nature Reviews Neuroscience,2002,3(5):383-394.
    11. Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJG, de Rooij DG. Propagation of bovine spermatogonial stem cells in vitro. Reproduction,2008,136(5): 543-557.
    12. Aponte PM, Soda T, Van De Kant HJG, de Rooij DG. Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology,2006,65(9):1828-1847.
    13. Barnes D, Sato G. Serum-free cell culture:a unifying approach. Cell,1980,22(3): 649-655.
    14. Behrens J, Lowrick O, Klein-Hitpass L, Birchmeier W. The E-cadherin promoter: functional analysis of a GC-rich region and an epithelial cell-specific palindromic regulatory element. Proceedings of the National Academy of Sciences,1991,88(24): 11495-11499.
    15. Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol,1977,74:68-85.
    16. Berra E, Diaz-Meco M T, Moscat J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. Journal of Biological Chemistry,1998,273(17):10792-10797.
    17. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 2004,118(5):635-648.
    18. Boettger-Tong HL, Johnston DS, Russell LD, Griswold MD, Bishop CE. Juvenile spermatogonial depletion (jsd) mutant seminiferous tubules are capable of supporting transplanted spermatogenesis. Biology of reproduction,2000,63(4):1185-1191.
    19. Borghese A. Buffalo production and research. REU Technical Series (FAO),2005.
    20. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science,1973,179(4068):77-79.
    21. Brinster CJ, Ryu BY, Avarbock MR, Karagenc L, Brinster RL, Orwig KE. Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biology of reproduction,2003,69(2):412-420.
    22. Brinster RL. Germline stem cell transplantation and transgenesis. Science,2002, 296(5576):2174-2176.
    23. Brinster RL. Male germline stem cells:from mice to men. Science,2007,316(5823): 404-405.
    24. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences, 1994,91(24):11303-11307.
    25. Brinste RL, Nagano M. Spermstogonialstem cell transplantation cryopreservation and culture. Semin Cell Dev Biol,1998,9(4):401-419
    26. Brinster RL, Zimmermann J W. Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences,1994,91(24): 11298-11302.
    27. Brown M, Rivier J, Vale W. Somatostatin-28:selective action on the pancreatic 8-cell and brain. Endocrinology,1981,108(6):2391-2393.
    28. Buageaw A, Sukhwani M, Ben-Yehudah A, Ehmcke J, Rawe V Y, Pholpramool, C, Orwig KE, Schlatt S. GDNF family receptor alphal phenotype of spermatogonial stem cells in immature mouse testes. Biology of reproduction,2005,73(5): 1011-1016.
    29. Bucci L R, Meistrich M L. Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1987,176(2): 259-268.
    30. Caplen NJ, Parrish S, Imani F, Fire A, Morgan R A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proceedings of the National Academy of Sciences,2001,98(17):9742-9747.
    31. Carlson, CM, Frandsen, JL, Kirchhof, N, Mclvor, RS, Largaespada, DA. Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proceedings of the National Academy of Sciences of the United States of America,2005,102(47):17059-17064.
    32. Cary, LC, Goebel, M, Corsaro, BG, Wang, HG, Rosen, E and Fraser, MJ. Transposon mutagenesis of baculoviruses:Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology,1989,172(1):156-169.
    33. Catzeflis FM, Dickerman AW, Michaux J, Kirsch JAW. DNA hybridization and rodent phytogeny. In:Szalay FS, Novacek MJ, McKenna MC (eds.), Mammal Phylogeny (Placentals), New York:Springer,1993,2:159-172.
    34. Chen W, Woodruff T K, Mayo K E. Activin A-Induced HepG2 Liver Cell Apoptosis: Involvement of Activin Receptors and Smad Proteins 1. Endocrinology,2000,141(3): 1263-1272.
    35. Chen Y C, Li X H. New evidence of the origin and domestication of the Chinese swamp buffalo (Bubalus bubalis). Buffalo Journal,1989,1:51-55.
    36. Clark, KJ, Carlson, DF, Foster, LK, Kong, BW, Foster, DN and Fahrenkrug, SC. Enzymatic engineering of the porcine genome with transposons and recombinases. BMC biotechnology,2007,7(1):42.
    37. Clermont Y, Perey B. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy,1957,100(2):241-267.
    38. Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL. Rat spermatogenesis in mouse testis. Nature.1996,381(6581):418-421.
    39. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature,2005,433(7027):760-764.
    40. Conner DA. Mouse embryo fibroblast (MEF) feeder cell preparation. Current Protocols in Molecular Biology,2001:23.2.1-23.2.7.
    41. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. Journal ofAndrology,2000,21(6):776-798.
    42. de Rooij DG. Stem cells in the testis. International journal of experimental pathology, 1998,79(2):67-80.
    43. Ding S, Wu X, Li G, Han M, Zhuang Y and Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell,2005,122(3): 473-483.
    44. Dobrinski I, Avarbock M R, Brinster R L. Transplantation of germ cells from rabbits and dogs into mouse testes. Biology of Reproduction,1999,61(5):1331-1339.
    45. Dobrinski I, Avarbock M R, Brinster R L. Germ cell transplantation from large domestic animals into mouse testes. Molecular reproduction and development,2000, 57(3):270-279.
    46. Dobrinski I, Ogawa T, Avarbock M R, et al. Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Molecular reproduction and development,1999a,53(2): 142-148.
    47. Dobrinski I, Avarbock M R, Brinster R L. Germ cell transplantation from large domestic animals into mouse testes. Molecular reproduction and development,2000, 57(3):270-279.
    48. Dressler G R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol., 2006,22:509-529.
    49. Ebata K T, Zhang X, Nagano M C. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Molecular reproduction and development,2005,72(2):171-181.
    50. Fire A. RNA-triggered gene silencing. Trends in Genetics,1999,15(9):358-363.
    51. Geiger H, Rennebeck G, Van Zant G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proceedings of the National Academy of Sciences of the United States of America,2005,102(14):5102-5107.
    52. Geurts A M, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy A J, Bell JB, Largaespada DA, Hackett PB. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Molecular Therapy,2003,8(1):108-117.
    53. Goel S, Reddy N, Mandal S, Fujihara M, Kim S-M, Imai H. Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology,2010, 74(7):1221-1232.
    54. Goel S, Sugimoto M, Minami N, Yamada M, Kume S, Imai H. Identification, isolation, and in vitro culture of porcine gonocytes. Biology of reproduction,2007, 77(1):127-137.
    55. Goriely A, McVean GA, van Pelt AM, O'Rourke AW, Wall SA, de Rooij DG, Wilkie AO. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proceedings of the National Academy of Sciences,2005,102(17):6051-6056.
    56. Griswold M D. The central role of Sertoli cells in spermatogenesis. Seminars in cell & developmental biology. Academic Press,1998,9(4):411-416.
    57. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature,2006,440(7088):1199-1203.
    58. Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48):17430-17435.
    59. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL. Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proceedings of the national academy of sciences,2002,99(23):14931-14936.
    60. Harrison D E. Competitive repopulation:a new assay for long-term stem cell functional capacity. Blood,1980,55(1):77-81.
    61. Hayashi I, Sato G H. Replacement of serum by hormones permits growth of cells in a defined medium. Nature,1976,259(5539):132-134
    62. He Z, Kokkinaki M, Jiang J, et al. Isolation, characterization, and culture of human spermatogonia. Biology of reproduction,2010,82(2):363-372.
    63. Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, Shuttleworth JJ, McFarland D, Hobbs RM, Pandolfi PP, Schatten GP, Orwig KE. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells,2007,25(9):2330-2338.
    64. Herrid M, Davey RJ, Hutton K, Colditz IG, Hill JR. A comparison of methods for preparing enriched populations of bovine spermatogonia. Reproduction, Fertility and Development,2009a,21(3):393-399.
    65. Herrid M, Olejnik J, Jackson M, Suchowerska N, Stockwell S, Davey R, Hutton K, Hope S, Hill JR. Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biology of reproduction,2009b,81(5):898-905.
    66. Herrid M, Vignarajan S, Davey R, Dobrinski I, Hill JR. Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction,2006, 132(4):617-624.
    67. Hofmann MC, Braydich-Stolle L, Dettin L, Johnson E, Dym M. Immortalization of mouse germ line stem cells. Stem Cells,2005a,23(2):200-210.
    68. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Developmental biology,2005b,279(1):114-124.
    69. Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, Dobrinski I. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats[J]. Biology of Reproduction, 2003,69(4):1260-1264.
    70. Honaramooz A, Megee S O, Dobrinski I. Germ cell transplantation in pigs. Biology of Reproduction,2002,66(1):21-28.
    71. Hubina E, Nanzer AM, Hanson MR, Ciccarelli E, Losa M, Gaia D, Papotti M, Terreni MR, Khalaf S, Jordan S, Czirjak S, Hanzely Z, Nagy GM, Goth MI, Grossman AB, Korbonits M. Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumours. European Journal of Endocrinology,2006,155(2):371-379.
    72. Huckins C, Clermont Y. Evolution of gonocytes in the rat testis during late embryonic and early post-natal life. Arch Anat Histol Embryol,1968,51(1):341-354.
    73. Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. The Anatomical Record,1971,169(3): 533-557.
    74. Huckins C. The morphology and kinetics of spermatogonial degeneration in normal adult rats:an analysis using a simplified classification of the germinal epithelium. The Anatomical Record,1978,190(4):905-926.
    75. Izadyar F, den Ouden K, Creemers LB, Posthuma G, Parvinen M, de Rooij DG. Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biology of reproduction,2003,68(1):272-281.
    76. Izadyar F, Spierenberg G, Creemers L, Den Ouden K, De Rooij D. Isolation and purification of type A spermatogonia from the bovine testis. Reproduction,2002, 124(1):85-94.
    77. Izadyar F, Den Ouden K, Stout T, Stout J, Coret J, Lankveld D, Spoormakers T, Colenbrander B, Oldenbroek J, Van der Ploeg K. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction,2003,126(6): 765-774.
    78. Jeong D, McLean D J, Griswold M D. Long-Term Culture and Transplantation of Murine Testicular Germ Cells. Journal of andrology,2003,24(5):661-669.
    79. Jiang F X. Behaviour of spermatogonia following recovery from busulfan treatment in the rat. Anatomy and embryology,1998,198(1):53-61.
    80. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009,458(7239):771-775.
    81. Kala S, Kaushik R, Singh K, Kadam P, Singh M, Manik R, Singla S, Palta P, Chauhan M. In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell. Journal of assisted reproduction and genetics,2012,29(12):1335-1342.
    82. Kanatsu-Shinohara M, Inoue K, Miki H, Ogonuki N, Takehashi M, Morimoto T, Ogura A, Shinohara T. Clonal origin of germ cell colonies after spermatogonial transplantation in mice. Biology of reproduction,2006,75(1):68-74.
    83. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Yoshida S, Toyokuni S, Lee J, Ogura A, Shinohara T. Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biology of reproduction,2007,76(1):55-62.
    84. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T. Serum-and feeder-free culture of mouse germline stem cells. Biology of reproduction, 2011,84(1):97-105.
    85. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, et al.2005a. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biology of reproduction,2005,72(4):985-991.
    86. Kanatsu-Shinohara M, Morimoto T, Toyokuni S, Shinohara T. Regulation of Mouse Spermatogonial Stem Cell Self-Renewing Divisionby the Pituitary Gland. Biology of reproduction,2004,70(6):1731-1737.
    87. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T. Long-term culture of male germline stem cells from hamster testes. Biology of reproduction,2008,78(4):611-617.
    88. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of reproduction,2003,69(2):612-616.
    89. Kanatsu-Shinohara M, Ogura A, Ikegawa M, Inoue K, Ogonuki N, Tashiro K, Toyokuni S, Honjo T, Shinohara T. Adenovirus-mediated gene delivery and in vitro microinsemination produce offspring from infertile male mice. Proceedings of the National Academy of Sciences,2002,99(3):1383-1388.
    90. Kanatsu-Shinohara M, Toyokuni S, Shinohara T. Transgenic mice produced by retroviral transduction of male germ line stem cells in vivo. Biology of reproduction, 2004,71(4):1202-1207.
    91. Kanatsu-Shinohara M, Toyokuni S, Shinohara T. CD9 is a surface marker on mouse and rat male germline stem cells. Biology of Reproduction,2004,70(1):70-75.
    92. Kang Y, Zhang X, Jiang W, Wu C, Chen C, Zheng Y, Gu J, Xu C. Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine. BMC cancer,2009,9(1):126.
    93. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(32):11839-11844.
    94. Kharmate G, Rajput PS, Watt HL, Somvanshi RK, Chaudhari N, Qiu X, Kumar U. Role of somatostatin receptor 1 and 5 on epidermal growth factor receptor mediated signaling. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2011, 1813(6):1172-1189.
    95. Kharmate G, Rajput PS, Watt HL, Somvanshi RK, Chaudhari N, Qiu X, Kumar U. Dissociation of epidermal growth factor receptor and ErbB2 heterodimers in the presence of somatostatin receptor 5 modulate signaling pathways. Endocrinology, 2010,152(3):931-945.
    96. Kim J, Seandel M, Falciatori I, Wen D, Rafii S. CD34+Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells. Stem Cells,2008,26(10):2516-2522.
    97. Kim JH, Jung-Ha HS, Lee HT, Chung KS. Development of a positive method for male stem cell-mediated gene transfer in mouse and pig. Molecular reproduction and development,1997,46(4):515-526.
    98. Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction,2008,136(6):823-831.
    99. Klassen H, Schwartz MR, Bailey AH, Young MJ. Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neuroscience letters,2001,312(3):180-182.
    100.Ko K, Arauzo-Bravo MJ, Kim J, Stehling M, Scholer HR. Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature protocols,2010,5(5): 921-928.
    101.Koljonen V, Tukiainen E, Haglund C & Bohling T. Cell cycle control by p21, p27 and p53 in Merkel cell carcinoma. Anticancer research,2006,26(3B):2209-2212.
    102.Koruji M, Movahedin M, Mowla SJ, Gourabi H, Arfaee AJ. Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. In Vitro Cellular & Developmental Biology-Animal,2009,45(5-6):281-289.
    103.Krishnamurthy H, Danilovich N, Morales CR, Sairam MR. Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biology of reproduction,2000,62(5):1146-1159.
    104.Kubota H, Avarbock M R, Brinster R L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences,2003,100(11):6487-6492.
    105.Kubota H, Avarbock M R, Brinster R L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences,2004,101(47):16489-16494.
    106.Kubota H, Avarbock M R, Brinster R L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biology of reproduction,2004a,71(3):722-731.
    107.Kuijk E W, Colenbrander B, Roelen B A J. The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction,2009,138(4):721-731.
    108.Lamberts SWJ. The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocrine reviews,1988,9(4):417-436.
    109.Lamers C. Clinical and pathophysiological aspects of somatostatin and the gastrointestinal tract. Acta Endocrinologica,1987,116(4 Suppla):S19-S25.
    110.Luo J, Megee S, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis:Application to enrichment and culture of porcine spermatogonia. Molecular reproduction and development,2006,73(12):1531-1540.
    111.Mahla R S, Reddy N, Goel S. Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PloS one,2012,7(4):e36020.
    112.Manova K, Nocka K, Besmer P, Bachvarova RF. Gonadal expression of c-kit encoded at the W locus of the mouse. Development,1990,110(4):1057-1069.
    113.Matsui Y, Zsebo KM, Hogan BL. Embryonic expression of a hematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature,1990, 347(6294):667-669
    114.McLaren A. Primordial germ cells in the mouse. Developmental biology,2003, 262(1):1-15.
    115.McLean DJ, Friel PJ, Johnston DS, Griswold MD. Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice. Biology of reproduction,2003,69(6):2085-2091.
    116.Meistrich M L, Van Beek M. Spermatogonial stem cells. Cell and molecular biology of the testis,1993:266-295.
    117.Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science,2000,287(5457):1489-1493.
    118.Mital P, Kaur G, Dufour J M. Immunoprotective sertoli cells:making allogeneic and xenogeneic transplantation feasible. Reproduction,2010,139(3):495-504.
    119.Miyoshi H, Takahashi M, Gage FH, Verma IM. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proceedings of the National Academy of Sciences,1997,94(19):10319-10323.
    120.Nagano M, Avarbock M R, Brinster R L. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biology of Reproduction, 1999,60(6):1429-1436.
    121.Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL. Culture of mouse spermatogonial stem cells. Tissue and Cell,1998,30(4):389-397.
    122.Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences,2001,98(23):13090-13095.
    123.Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biology of reproduction,2003,68(6):2207-2214.
    124.Nagano M, Shinohara T, Avarbock MR, Brinster RL. Retro virus-mediated gene delivery into male germ line stem cells. FEBS letters,2000,475(1):7-10.
    125.Nagano M, Watson DJ, Ryu BY, Wolfe JH, Brinster RL. Lentiviral vector transduction of male germ line stem cells in mice. FEBS letters,2002,524(1): 111-115.
    126.Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Developmental cell, 2007,12(2):195-206.
    127.Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proceedings of the National Academy of Sciences,1996,93(21): 11382-11388.
    128.Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biology of reproduction,2006,74(2):314-321.
    129.Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends in biochemical sciences,1993,18(4):128-131.
    130.Nishimoto S, Nishida E. MAPK signalling:ERK5 versus ERK1/2. EMBO reports, 2006,7(8):782-786.
    131.Oakberg EF. Spermatogonial stem-cell renewal in the mouse. The Anatomical Record, 1971,169(3):515-531.
    132.Oatley JM1, de Avila DM, McLean DJ, Griswold MD, Reeves JJ. Transplantation of bovine germinal cells into mouse testes. Journal of animal science,2002,80(7): 1925-1931.
    133.Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proceedings of the National Academy of Sciences,2006,103(25):9524-9529.
    134.Oatley JM, Brinster RL. Spermatogonial stem cells. Methods in enzymology,2006, 419:259-282.
    135.Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annual review of cell and developmental biology,2008,24:263-286.
    136.Oatley JM, Reeves JJ, McLean DJ. Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biology of reproduction,2004, 71(3):942-947.
    137.Ogawa T, Arechaga J, Avarbock M, Brinster R. Transplantation of testis germinal cells into mouse seminiferous tubules. The International journal of developmental biology,1997,41(1):111-122.
    138.Ogawa T, Dobrinski I, Brinster R L. Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue and Cell,1999,31(5):461-472.
    139.Oka M, Tagoku K, Russell TL, Nakano Y, Hamazaki T, Meyer EM, Yokota T, Terada N. CD9 is associated with leukemia inhibitory factor-mediated maintenance of embryonic stem cells. Molecular biology of the cell,2002,13(4):1274-1281.
    140.Oritani K, Wu X, Medina K, Hudson J, Miyake K, Gimble JM, Burstein SA, Kincade PW. Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood,1996,87(6):2252-2261.
    141.Orwig KE, Avarbock MR, Brinster RL. Retrovirus-mediated modification of male germline stem cells in rats. Biology of reproduction,2002,67(3):874-879.
    142.Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM. Delivery of the Cre recombinase by a self-deleting lentiviral vector:efficient gene targeting in vivo. Proceedings of the National Academy of Sciences,2001,98(20):11450-11455.
    143.Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors:lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of the National Academy of Sciences,2002,99(4):2140-2145.
    144.Rana BK, Bilaspuri GS. A quantitative study of seminiferous tubular cells in the developing Murrah buffalo testis. The Veterinary Journal,2004,167(1):95-103.
    145.Resnick JL, Bixler LS, Cheng L, Donovan PJ. Long-term proliferation of mouse primordial germ cells in culture. Nature,1992,359(6395):550-551
    146.Rodriguez-Sosa JR, Dobson H, Hahnel A. Isolation and transplantation of spermatogonia in sheep. Theriogenology,2006,66(9):2091-2103.
    147.Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Mammalian spermatogenesis. Histological and histopathological evaluation of the testis, Clearwater:Cache River Press,1990,1:1-40.
    148.Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proceedings of the National Academy of Sciences,2005,102(40):14302-14307.
    149.Ryu BY, Orwig KE, Kubota H, Avarbock MR, Brinster RL. Phenotypic and functional characteristics of spermatogonial stem cells in rats. Developmental biology, 2004,274(1):158-170.
    150.Ryu BY, Orwig KE, Oatley JM, AvarbockMR, Brinster RL. Effects of Aging and Niche Microenvironment on Spermatogonial Stem Cell Self-Renewal. Stem Cells, 2006,24(6):1505-1511.
    151.Sapsford C S. Changes in the cells of the Sex Cords and Seminiferous Tubules during the development of the Testis of the rat and mouse. Australian Journal of Zoology, 1962,10(2):178-192.
    152.Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. Journal of cell science,2003,116(19):3855-3862.
    153.Scadden D T. The stem-cell niche as an entity of action. Nature,2006,441(7097): 1075-1079.
    154.Schally AV, Huang WY, Chang RC, Arimura A, Redding TW, Millar RP, Hunkapiller MW, Hood LE. Isolation and structure of pro-somatostatin:a putative somatostatin precursor from pig hypothalamus. Proceedings of the National Academy of Sciences, 1980,77(8):4489-4493.
    155.Schettini G. Brain somatostatin:receptor-coupled transducing mechanisms and role in cognitive functions. Pharmacological research,1991,23(3):203-215.
    156.Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology,1999,140(12):5894-5900.
    157.Seandel M1, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature,2007,449(7160):346-350.
    158.Shinohara T, Avarbock M R, Brinster R L. β1-and a6-integrin are surface markers on mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences, 1999,96(10):5504-5509.
    159.Shinohara T, Avarbock M R, Brinster R L. Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Developmental biology, 2000,220(2):401-411.
    160.Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proceedings of the National Academy of Sciences,2000a,97(15):8346-8351.
    161.Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proceedings of the National Academy of Sciences,2001,98(11): 6186-6191.
    162.Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Germ line stem cell competition in postnatal mouse testes. Biology of reproduction,2002,66(5):1491-1497.
    163.Siminovitch L, Till J E, McCulloch E A. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. Journal of Cellular and Comparative Physiology,1964,64(1):23-31.
    164.Smith AG, Heath JK, Donaldson DD,Wong GG, Moreau J, Stahl M, Rogers D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature,1988,336:688-690.
    165.Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature,2001, 414(6859):98-104.
    166.Stellflug JN, Green JS, Leathers CW. Antifertility effect of busulfan and procarbazine in male and female coyotes. Biology of reproduction,1985,33(5):1237-1243.
    167.Stockwell S, Herrid M, Davey R, Brownlee A, Hutton K, Hill JR. Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle. Reproduction, Fertility and Development,2009,21(3):462-468.
    168.Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Molecular human reproduction,2009,15(9): 521-529.
    169.Sudo H, Minami A. Regulation of apoptosis in nucleus pulposus cells by optimized exogenous Bcl-2 overexpression. Journal of Orthopaedic Research,2010,28(12): 1608-1613.
    170.Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mechanisms of development,2002,113(1):29-39.
    171.Takashima S, Takehashi M, Lee J, Chuma S, Okano M, Hata K, Suetake I, Nakatsuji N, Miyoshi H, Tajima S, Tanaka Y, Toyokuni S, Sasaki H, Kanatsu-Shinohara M, Shinohara T. Abnormal DNA methyltransferase expression in mouse germline stem cells results in spermatogenic defects. Biology of reproduction,2009,81(1):155-164.
    172.Tagelenbosch RAJ, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1993,290(2): 193-200.
    173.Tokuda M, Kadokawa Y, Kurahashi H, Marunouchi T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biology of reproduction,2007,76(1): 130-141.
    174.Tokunaga Y, Imai S, Torii R, Maeda T. Cytoplasmic liberation of protein gene product 9.5 during the seasonal regulation of spermatogenesis in the monkey (Macaca fuscata). Endocrinology,1999,140(4):1875-1883.
    175.Van Dissel-Emiliani F M, De Boer-Brouwer M, De Rooij D G. Effect of fibroblast growth factor-2 on Sertoli cells and gonocytes in coculture during the perinatal period. Endocrinology,1996,137(2):647-654.
    176. Van Pelt A, Morena AR, van Dissel-Emiliani F, Boitani C, Gaemers IC, De Rooij DG, Stefanini M. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biology of reproduction,1996,55(2):439-444.
    177. Van Zant G, Liang Y. The role of stem cells in aging. Experimental hematology,2003, 31(8):659-672.
    178.Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology,2002,3(7): research0034.
    179.Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proceedings of the National Academy of Sciences,2008,105(27):9290-9295.
    180.War S A, Somvanshi R K, Kumar U. Somatostatin receptor-3 mediated intracellular signaling and apoptosis is regulated by its cytoplasmic terminal. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2011,1813(3):390-402.
    181.Wiesner SMI, Decker SA, Larson JD, Ericson K, Forster C, Gallardo JL, Long C, Demorest ZL, Zamora EA, Low WC, SantaCruz K, Largaespada DA, Ohlfest JR. De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer research,2009,69(2):431-439.
    182.Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature,1988,336(6200): 684-687.
    183.Wilson M H, Coates C J, George A L. PiggyBac transposon-mediated gene transfer in human cells. Molecular Therapy,2007,15(1):139-145.
    184.Woltjen K1, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature,2009, 458(7239):766-770.
    185.Wrobel K-H, Bickel D, Kujat R, Schimmel M. Configuration and distribution of bovine spermatogonia. Cell and tissue research,1995,279(2):277-289.
    186,Wu Z, Falciatori I, Molyneux LA, Richardson TE, Chapman KM, Hamra FK. Spermatogonial culture medium:an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biology of reproduction,2009,81(1):77-86.
    187.Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, To 12, and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences,2006,103(41):15008-15013.
    188.Yoshida S, Nabeshima YI, Nakagawa T. Stem cell heterogeneity:actual and potential stem cell compartments in the mouse spermatogenesis. Ann N Y Acad Sci,2007, 1120:47-58
    189.Yoshida S, Sukeno M, Nabeshima Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science,2007,317(5845): 1722-1726.
    190.Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, Nabeshima Y. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development,2006,133(8):1495-1505.
    191.Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T, Nishikawa S. Role of c-kit in mouse spermatogenesis:identification of spermatogonia as a specific site of c-kit expression and function. Development,1991, 113(2):689-699.
    192.Yusa, K, Rad, R, Takeda, J and Bradley, A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature methods,2009,6(5): 363-369.
    193.Zhang X, Ebata KT, Robaire B, Nagano MC. Aging of male germ line stem cells in mice. Biology of reproduction,2006,74(1):119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700