PR机器人控制器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着控制科学的飞速发展,有关机器人先进控制技术与控制方法的研究也在近些年内不断兴起。设计完善的机器人系统,涵盖了机器人几何建模、操作臂运动学与动力学研究、最优轨迹规划算法的研究、机器人先进控制器的设计、系统的非线性和鲁棒性,以及各种智能控制算法的研究等许多控制领域的相关技术。本文系统地介绍了与机器人控制相关的基本理论、四关节PR机器人控制系统硬件的设计、控制软件开发及应用的技术要点和实现方法。
     与传统的机器人设计不同的是,该PR机器人系统采用了全数字位置伺服控制技术,在保证控制系统高可靠性的同时,大大提高了系统的控制精度。本机器人控制系统采用了三级CPU控制的体系结构:第一级为上位计算机,实现机器人系统管理与协调控制、人机交互、以及机器人逆运动学和实时轨迹规划等先进算法运算的功能;第二级为高性能DSP处理器,实现关节空间中机器人各关节的轨迹精细插补控制,以及控制机器人进行示教、回零等操作;第三级为交流驱动器处理器,实现伺服电机的精确的三闭环误差驱动控制和电机的故障诊断及自动保护的功能。上位计算机系统的指令给定速率与下位机系统的伺服控制频率不同,使得上位系统与下位系统可以实现双速率控制,这样就既可以充分发挥下位DSP控制器的高速运算性能,提高伺服回路的控制精度和动态性能,又可以使上位计算机进行更多复杂的机器人控制算法的运算。
     通过对系统反复的硬件、软件调试以及实验作业演示,结果表明,该四关节PR型机器人系统控制的实时性好、定位精度高、运行稳定可靠。本文介绍的基于先进数字位置控制技术设计的机器人控制系统将会对机器人技术的应用提供切实可行的实施方案,并具有重要的参考价值和广泛的应用前景。
With the development of control science, the research related to advanced controlling technology and method of robot have been springing up these years. To design perfect robot system, a lot of correlative technologies in control field are involved, such as robotic modeling, research on kinematics and kinetics of manipulators, study of optimum trajectory planning algorithm, design of advanced robotic controller, study of nonlinear and robust property of robot system and research on intelligent control algorithm. This article systematically introduces some technical key points and realization methods of robot control principles, hardware design of 4-joint PR robot system, and development and application of systematic software.
    The technique of entirely digital position servo control adopted in the PR robot system, which is different from traditional robot designs, greatly improves system control precision and safely guarantees reliability. This robot control system has adopted 3-stage CPU control structure: The highest stage is the PC, which realizes systematic management and cooperative control of robot and man-machine inter-communication, as well as advanced algorithm operation such as inverse kinematics and real-time trajectory planning of robot; The middle one is the high-efficiency DSP processor, which realizes subtle trajectory planning for each robot joint in joint space, and controls robot to perform those show-teach operations and return to null-position; The lowest is AC servo driver, which realizes accurate error-driving control of servo motors, fault diagnosis and self-protection in motors. The difference between the giving frequency from the PC and that of servo control system enables the upper and lower controllers o
    perate at different speeds. This way, the high-efficiency property of DSP can be fully exercised to improve control precision and dynamic property of servo control loop and enable the PC to execute more complicated algorithm of robot.
    Through debugging hardware and software of the system and experimenting repeatedly, the results show that this robot control system has good real time property, high position precision, stability and reliability. The
    
    
    control system based on advanced digital position control technology, which has been introduced by this thesis, presents a feasible scheme for the application of robot technology, and also has important reference value and broad application prospect.
引文
[1] 张福学.机器人技术及其应用.电子工业出版社,1995
    [2] 蔡自兴,机器人技术及其应用,中南工业大学出版社,1988;
    [3] 张伯鹏,张昆等.机器人工程基础.机械工业出版社,1989
    [4] 熊有伦.机器人技术基础.华中理工大学出版社,1996.126~129
    [5] 房海蓉等.基于神经网络的机器人智能控制.机器人技术与应用,2002(4):28~31
    [6] 孙增圻主编,智能控制理论与技术.清华大学出版社,2000
    [7] 孙增圻主编,机器人智能控制.山西教育出版社,2000
    [8] Lee S, Bekey G A. Application of Neural Networks to Robotics. Control and Dynamic Systems, 1991, 39
    [9] B H Nam, S J Lee. A Neural Network for the Trajectory Control of Robotic Manipulators with Uncertainties. Proc America control conf. Philadel-phia, 1997:3120~3123
    [10] Jin Y, Pip A G, Winfield A. Neural Networks for Manipulator Control: Methodology, Stability and Simulations. World Congress on Neural Networks, 1994
    [11] Lin C T, Lee C S G. Neural-Network-Based Fuzzy Logic Control and Decision System. IEEE Trans. On computers, 1991, 40(12): 19
    [12] 耿海霞,陈启军等.基于WEB的远程控制机器人研究.机器人,2002,24(2):375~379
    [13] 谈世哲,杨汝清.基于 DSP 的工业机器人控制器的设计与实现.机器人,2002,24(2):134~139
    [14] 阳小燕,周国荣,陈新.基于DSP的GR-Ⅱ机器人控制器.中南工业大学学报,2001,32(4),428~432
    [15] 秦忆等.现代交流伺服系统.华中理工大学出版社,1995
    [16] 刘宝廷.伺服电机的选择方法.元器件与应用,1996,29(4):50~51
    [17] 松下交流伺服电机驱动器使用说明书,2003
    [18] 赵永瑞.基于TPU实现的光电编码器信号处理.元器件与应用,2001(5):27~29
    [19] 张黎军等.光电编码器的微机控制.哈尔滨师范大学自然科学版,1994,10(4):42~45
    [20] 周志红,周国荣.PR机器人及其控制系统.机电一体化,2004(1):82~85
    
    
    [21] 吴麒.自动控制原理(上).清华大学出版社,1990:233~275
    [22] 刘和平.TMS320LF240xDSP结构、原理及应用.北京航空航天大学出版社,2002
    [23] 苏涛等.DSP实用技术.西安电子工业大学出版社,2002:232~252
    [24] 李朝青.PC机及单片机数据通信技术.北京航空航天大学出版社,2000:1~5,204~206
    [25] 邓巍等.教学工业机器人位置伺服控制系统分析.机器人技术与应用,2002(4):26~28
    [26] Denavit J, Hartenberg R S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. Journal of Applied Mechanics, 1995, 21(5): 215~221
    [27] Red W. Edward, Gong Shao-Wei. Automated inverse-kinematics for robot off-line programming. Robotica. 1994, 12(1): 45~53
    [28] Manocha Dinesh, Canny John F. Efficient inverse kinematics for general 6R manipulators. IEEE Transactions on Robotics and Automation. 1994, 10(5): 648~657
    [29] 宋又廉.工业机器人的连续轨迹和速度控制方法及其比较.上海铁道大学学报(自然科学版),1997,18(3):79~84
    [30] Tondu Bertrand, El-Zorkany. Identification of a trajectory generator model for the PUMA-560 robot. Joumal of Robotic Systems, 1994, (11)2:77~90
    [31] Galicki M. The planning of robot optimal motions in the presence of obstacles. The International Journal of Robotics Research, 1998, 17(3): 248~259
    [32] 钱东海等.双臂机器人时间最优轨迹规划研究.机器人,1999(2):98~103
    [33] Tondu B, Bazaz A. The three-cubic method: an optimal online robot joint trajectory generator under velocity, acceleration, and wandering constraints[J], The International Journal of Robotics Research, 1999, 18(9): 893~901
    [34] 郝蕴等.Visual C++6.0开发与实例.电子工业出版社,1999:285~291
    [35] 徐爱卿.Intel 16位单片机(修订版).北京航空航天大学出版社,2002,395~401
    [36] 谭思亮.Visual C++6.0串口通信工程开发实例导航.人民邮电出版社,2003:74~129
    [37] 蒋世杰.基于VB的智能机器人通讯软件的开发.机器人技术与应用,2002(2):74~129
    [38] 刘建群,黄浩权等.基于DSP的机器人控制系统的研究与实现.机械科学与技术,2001,20(4):518~521
    [39] W. H. Wolf, Hardware software co-design of embedded systems. Proc. of
    
    IEEE. July 1994, 965~989
    [40] 韩保红等.用PID控制非线性混沌振动的主动隔振研究.电光与控制,2001(4):54~58
    [41] 杨建刚.振动系统非线性特性的神经网络识别法.东南大学学报,1995(5):40~46
    [43] Ahmed Bazaz, Shafaat Tondu, Bertrand. Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators. Robotics and Autonomous Systems, v29, n4, Dec, 1999, p257~268
    [43] 解学书.最优控制理论与应用.清华大学出版社,1984
    [44] 张明达著.最优控制工程.中南工业大学出版社,1989
    [45] 冯国楠编著.最优控制理论与应用.北京工业大学出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700