功能性消化不良患者大脑结构和功能异常研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能性胃肠病,指的是具有复发性或慢性消化道症状,而没有生化和结构异常的一组症状,其在世界范围内有着很高的发病率。功能性胃肠病不仅影响人们的日常生活质量,而且由此产生的医疗费用也是非常高昂的,它已经成为一个严重的社会问题。据一项流行性病学调查研究指出,约有23.5%的中国人患有功能性胃肠病。然而,功能性胃肠病的治疗一直以来是医学界的一个难题,究其原因是其发病机理至今尚不明确。近些年的研究表明,脑-肠轴交互的紊乱在功能性胃肠病的病理生理学中起到了关键作用。
     根据罗马III诊断标准,功能性胃肠病可分为功能性消化不良、肠易激综合症以及功能性胸痛等。研究人员利用正电子断层成像技术发现,功能性胃肠病包括功能性消化不良和肠易激综合症患者不仅对胃肠刺激加工中出现异常,而且静息态大脑活动也出现异常。同样,利用磁共振成像技术,研究人员还发现肠易激综合症患者的大脑结构也出现异常。然而,利用磁共振成像技术对功能性消化不良患者大脑活动异常进行研究的报道非常少。和正电子断层成像等相比,磁共振成像具有无创、无放射性等优点,而且成像成本相对较低。此外,利用结构共振成像以及弥散张量成像等可以研究功能性消化不良患者的大脑结构变化。因此,本论文主要采用磁共振成像技术对功能性消化不良患者的中枢异常进行研究,所取得的主要研究结果和创新点如下:
     1.功能性消化不良患者大脑白质微结构异常研究。
     本研究通过采用弥散张量成像,对功能性消化不良患者大脑白质微结构异常进行了研究。我们采用基于骨架的空间统计分析对功能性消化不良患者和正常被试的弥散张量参数包括各向异性值、平均弥散率、轴向弥散率和径向弥散率进行比较。研究发现,功能性消化不良患者在多处白质纤维存在较高的各向异性值并伴随有较低的平均弥散率和径向弥散率,这些脑区包括双侧前放射冠、胼胝体(体和膝)、外囊、内囊晶状体,右侧丘脑后放射,双侧矢状层和右侧上纵束。弥散张量参数的这种变化模式可能由多种原因导致,而本研究的结果暗示了功能性消化不良患者可能存在大脑结构连接的增强。情绪因素,如焦虑和抑郁,在功能性消化不良的发生和发展中起到了重要作用。为了讨论情绪因素对本文中观察到的白质结构异常的影响,我们进一步讲焦虑和抑郁作为回归因素考虑之后重新进行组间弥散张量参数的比较。结果发现多处白质差异消失,该结果进一步说明了情绪因素在功能性消化不良病理机理中的重要作用。据我们所知,该研究为第一个功能性消化不良患者白质微结构异常的弥散张量影像学研究。
     2.功能性消化不良患者半脑间功能连接度异常研究。
     本研究采用静息态功能连接度的方法,对功能性消化不良患者半脑间的功能连接进行了研究。研究发现功能性消化不良患者在脑岛、前额叶以及丘脑等脑区均出现了半脑间功能连接度的增强。本研究首次对功能性消化不良患者脑区间功能连接度异常进行了初步的探索性研究,这些发现将有助于我们理解功能性消化不良患者中枢敏感化的神经机制。
     3.功能性消化不良患者静息态低频振幅异常研究。
     本研究采用功能磁共振成像技术对功能性消化不良患者静息态低频振幅进行了研究。我们的研究发现,功能性消化不良患者脑岛、脑干和小脑分数低频振幅显著增高。紧接着,我们分别选取功能性消化不良患者分数低频振幅增强的脑区作为感兴趣区进行种子点相关的全脑功能连接度分析。结果表明,和正常被试相比,功能性消化不良患者的右侧小脑和多处脑区包括脑干、双侧小脑、旁海马、海马、苍白球、壳核以及丘脑之间的功能连接度显著增强。最后,我们还发现脑岛的分数低频振幅和患者病重显著相关。本研究结果进一步揭示了功能性消化不良患者大脑功能活动异常,并且可能在疾病的发展中起到了重要作用。
     4.神经同步性在正常被试中的功能初步研究。
     前面的几个研究表明,功能性消化不良患者不仅大脑结构连接可能增强,而且功能连接也出现异常。因此,我们推测患者大脑的神经同步性可能出现了异常,而脑电图是测量神经同步性的一种非常有效的手段。在本研究中,我们首先采用脑电图技术对正常人的神经同步性进行初步探索。我们发现,大脑的神经同步性和人的认知表现是相关的,这进一步说明了其存在的神经生理意义。我们希望在未来的研究中,将磁共振成像和脑电图进行有效的结合,从而能更好的揭示功能性消化不良患者中枢异常尤其是神经同步性异常在疾病的发生和发展中所起的作用。
Functional gastrointestinal disorders (FGIDs) are characterized by chronic or recurrentgastrointestinal symptoms in the absence of in the absence of any organic, systemic, ormetabolic disease that is likely to explain the symptoms. The reported prevalence rate ofFGIDs is high world-wide. FGIDs have become a serious social problem for it itssignificant influence on health-related quality of life as well the high healthcare costs.According to a Chinese-based epidemiology study,23.5%of the community peoplesuffered from FGIDs. However, there has no effective treatment for FGIDs which wasbecause the pathophysiology of the disease still remains incomplete understood. Thereare increasing evidences suggesting that dysfunction of the brain-gut axis (BGA) mightplay a key role in the pathphysiology of the disease.
     According to the Rome III criteria, FGIDs can be divided into functional dyspepsia(FD), irritable bowel syndrome (IBS), functional chest pain and et al. Several positronemission tomography (PET) studies have verified that patients with FGIDs showedabnormal brain activity during gastric distension as well as during resting-state.Moreover, brain structural changes in patients with IBS have been found by severalinvestigations using magnetic resonance imaging (MRI). However, studies investigatingbrain activity changes in FD patients with MRI which has the advantage of non-invasiveand non-radioactive over PET were rare. Moreover, whether brain structure is changedin patients with FD is unknown. Therefore, the main aim of the present dissertation wasmainly focused the investigation of brain structural and functional changes in patientswith FD using MRI techniques:
     1. White matter microstructural changes in patients with FD.
     In this study, we investigated the white matter microstructural changes in FDpatients using diffusion tensor imaging (DTI). We compared multiple DTI measuresincluding fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) andradial diffusivity (RD) with state-of-the-art tract-based spatial statistics (TBSS). Theresults showed that patients with FD had higher FA along with lower MD and RD thanhealthy controls in multiple tracts including the bilateral anterior corona radiata, genuand body of corpus callosum, external capsule, internal capsule (right retrolenticularpart), right posterior thalamic radiation, bilateral sagittal stratum, and right superiorlongitudinal fasciculus. The pattern of DTI measures changes was likely to suggestincreased structural connectivity in patients with FD. Furthermore, psychosocial factors including anxiety and depression explained part of the observed changes of DTImeasures. The result further suggested the import role of psychosocial factors in thepathophysiology of the disease.
     2. Interhemispheric functional connectivity abnormalities in patients with FD.
     In this study, we investigated interhemispheric functional connectivity changes byusing resting-state functional magnetic resonance imaging (rfMRI). The results revealedthat patients with FD had increased interhemispheric functional connectivity in multiplebrain regions including the insula, anterior cingulate and thalamus. Our findings mighthave provided preliminary evidence of interhemispheric interactions changes in patientswith FD.
     3. Fractional amplitude of low-frequency oscillation changes patients with FD.
     In this study, we investigated the amplitude of low-frequency (ALFF) changes inpatients with FD using resting-state fMRI. The results revealed that patients with FDhave increased fractional amplitude of low-frequency (fALFF) in multiple brain regionsincluding the insula, brainstem and cerebellum. Furthermore, we applied seed-basedresting-state functional connectivity analysis by using brain regions showing significantbetween-group difference in fALFF as regions of interest (ROIs). We found increasedfunctional connectivity between the right cerebellum and brainstem, bilateralcerebellum, para-/hippocampus, pallidum, putamen and thalamus. Furthermoe, wefound that the insula fALFF was positively correlated with the severity of the disease.
     4. The investigation of the role of neural synchronization in healthy subjects usingelectroencephalogram(EEG).
     The results of the previous studies have suggested that patients with FD might haveincreased structural and functional connectivity. Therefore, we speculated that theneural synchronization between brain regions might be altered in patients with FD. EEGhas been suggested to be a powerful tool in revealing neural synchronization betweenbrain regions. In the present study, we investigated neural synchronization in healthycontrol using EEG. The results revealed different neural synchronization networks indifferent frequency bands. Furthermore, we also found that the neural synchronizationwas of behavioral significance. In future studies, we would like to combine EEG withfMRI to further revealed neural synchronization abnormalities in the pathogenesis of theFD symptoms.
引文
[1] J. Tack, N. J. Talley, M. Camilleri, et al. Functional gastroduodenal disorders.Gastroenterology.2006,130(5),1466-1479.
    [2]张万岱.功能性胃肠病罗马标准的简介和解读.世界华人消化杂志.2008,16(2),120-124.
    [3] D. A. Drossman. The functional gastrointestinal disorders and the Rome IIprocess. Gut.1999,45(suppl2), II1-II5.
    [4]闻淑军,张志广.功能性胃肠病.医学综述.2006,12(016),971-973.
    [5] D. Drossman, J. Richter, N. Talley, et al. The functional gastrointestinaldisorders.1st ed. Boston, MA: Little, Brown and Company.1994,
    [6] D. Drossman, E. Corazziari, W. Thompson, et al. Rome II. The functionalgastrointestinal disorders.2nd ed. McLean, VA: Degnon Associates.2000,
    [7]罗金燕,牛春燕.胃肠动力疾病新概念与功能胃肠病罗马II体系.中国实用内科杂志.2002,22(12),754.
    [8]郭庆捷,曹泽伟.功能性胃肠病的研究进展.现代中西医结合杂志.2010,19(010),1297-1299.
    [9] N. A. Koloski, N. J. Talley, P. M. Boyce. Epidemiology and health care seekingin the functional GI disorders: a population-based study. The American Journalof Gastroenterology.2002,97(9),2290-2299.
    [10]侯晓华.开展对功能性消化不良的病理生理研究.中华消化杂志.2003,23(2),69-70.
    [11] P. Herschbach, G. Henrich, M. von Rad. Psychological factors in functionalgastrointestinal disorders: characteristics of the disorder or of the illnessbehavior? Psychosomatic Medicine.1999,61(2),148-153.
    [12]张莉华,方步武.脑肠轴及其在胃肠疾病发病机制中的作用.中国中西医结合外科杂志.2007,13(2),199-201.
    [13]姚希贤.临床消化病学:天津科学技术出版社.1999.
    [14] J. Monés, A. Adan, J. L. Segú, et al. Quality of life in functional dyspepsia.Digestive Diseases and Sciences.2002,47(1),20-26.
    [15] H. El‐Serag, N. Talley. Health‐related quality of life in functional dyspepsia.Alimentary Pharmacology&Therapeutics.2003,18(4),387-393.
    [16] N. J. Talley, G. R. Locke III, B. Lahr, et al. Functional dyspepsia, delayed gastricemptying, and impaired quality of life. Gut.2006,55(7),933-939.
    [17] P. Moayyedi, J. Mason. Clinical and economic consequences of dyspepsia in thecommunity. Gut.2002,50(suppl4), iv10-iv12.
    [18] L. Rabeneck, N. P. Wray, D. Y. Graham. Managing dyspepsia: what do we knowand what do we need to know&quest. The American Journal of Gastroenterology.1998,93(6),920-924.
    [19] F. Zeng, W. Qin, F. Liang, et al. Abnormal resting brain activity in patients withfunctional dyspepsia is related to symptom severity. Gastroenterology.2011,141(2),499-506.
    [20] D. Wingate, M. Hongo, J. Kellow, et al. Disorders of gastrointestinal motility:Towards a new classification1. Journal of Gastroenterology and Hepatology.2002,17(s1), S1-S14.
    [21] H. Mertz. Visceral hypersensitivity. Alimentary Pharmacology&Therapeutics.2003,17(5),623-633.
    [22]柯美云.功能性胃肠病并非单纯功能病.中国实用内科杂志.2006,26(4),261-262.
    [23]吴立平,史维.功能性胃肠病的根源——脑肠轴神经系统记忆假说.世界华人消化杂志.2006,14(26),2617-2619.
    [24]钱家鸣,吕红.心理社会因素与功能性胃肠疾病.胃肠病学和肝病学杂志.2005,13(4),342-343.
    [25]张卫卫,李岩.精神,心理因素与功能性胃肠病.世界华人消化杂志.2002,10(11),1324-1328.
    [26]柯美云,张艳丽.重视心理因素与功能性胃肠疾病关系的研究.诊断学理论与实践.2006,5(1),1-2.
    [27]吴正祥.功能性胃肠病的心理社会因素(综述).安徽卫生职业技术学院学报.2004,3(3),47-51.
    [28]陈春凤,钦丹萍.功能性消化不良与心理因素的研究进展.中国中西医结合消化杂志.2007,15(2),130-132.
    [29]邹多武,许国铭.功能性消化不良.中华消化杂志.2006,26(11),765-767.
    [30] H. El‐Serag, N. Talley. The prevalence and clinical course of functionaldyspepsia. Alimentary Pharmacology&Therapeutics.2004,19(6),643-654.
    [31] Y. Shaib, H. B. El-Serag. The prevalence and risk factors of functional dyspepsiain a multiethnic population in the United States. The American Journal ofGastroenterology.2004,99(11),2210-2216.
    [32] R. Johnsen, B.. R. Straume, O. H. F rde. Peptic ulcer and non-ulcerdyspepsia-a disease and a disorder. Scandinavian Journal of Primary Health Care.1988,6(4),239-243.
    [33] B. Bernersen, R. Johnsen, B. Straume. Non-ulcer dyspepsia and peptic ulcer: thedistribution in a population and their relation to risk factors. Gut.1996,38(6),822-825.
    [34] Y. Li, Y. Nie, W. Sha, et al. The link between psychosocial factors and functionaldyspepsia: an epidemiological study. Chin Med J (Engl).2002,115(7),1082-1084.
    [35] P. Aro, N. J. Talley, J. Ronkainen, et al. Anxiety is associated withuninvestigated and functional dyspepsia (Rome III criteria) in a Swedishpopulation-based study. Gastroenterology.2009,137(1),94-100.
    [36] R. M. Zagari, G. R. Law, L. Fuccio, et al. Epidemiology of functional dyspepsiaand subgroups in the Italian general population: an endoscopic study.Gastroenterology.2010,138(4),1302-1311.
    [37] V. Stanghellini, C. Tosetti, G. Barbara, et al. Dyspeptic symptoms and gastricemptying in the irritable bowel syndrome. The American Journal ofGastroenterology.2002,97(11),2738-2743.
    [38] J. R. Malagelada. Gastrointestinal motor disturbances in functional dyspepsia.Scandinavian Journal of Gastroenterology.1991,26(S182),29-32.
    [39]陈文柳,戴益琛,戴禄寿.功能性消化不良胃镜下胃动力分型研究.中国内镜杂志.2000,6(1),64-65.
    [40]陈建永,潘锋,徐建军, et al.针刺对功能性消化不良胃动力的影响.中国中西医结合杂志.2005,25(10),880-882.
    [41]何美蓉,宋于刚,智发朝, et al.功能性消化不良患者胃动力障碍与胃肠激素及G,D细胞的关系.中华消化杂志.2004,24(1),56-57.
    [42]孙建,李雯.幽门螺旋杆菌感染与功能性消化不良关系的相关研究.重庆医学.2009,38(2),178-179.
    [43] N. J. Talley, J. Janssens, K. Lauritsen, et al. Eradication of Helicobacter pylori infunctional dyspepsia: randomised double blind placebo controlled trial with12months' follow up. British Medical Journal.1999,318(7187),833-837.
    [44] S. Timmons, R. Liston, K. J. Moriarty. Functional dyspepsia: motorabnormalities, sensory dysfunction, and therapeutic options. The AmericanJournal of Gastroenterology.2001,96(7),2290-2290.
    [45]姚筱梅,姚树坤,张瑞星, et al.针刺对功能性消化不良患者内脏敏感性的影响.针刺研究.2006,31(004),228-231.
    [46] M. Bradette, P. Pare, P. Douville, et al. Visceral perception in health andfunctional dyspepsia. Digestive Diseases and Sciences.1991,36(1),52-58.
    [47] F. Mearin, M. Cucala, F. Azpiroz, et al. The origin of symptoms on the brain-gutaxis in functional dyspepsia. Gastroenterology.1991,101(4),999-1006.
    [48] J. Tack, H. Piessevaux, B. Coulie, et al. Role of impaired gastric accommodationto a meal in functional dyspepsia. Gastroenterology.1998,115(6),1346-1352.
    [49] L. Troncon, R. Bennett, N. Ahluwalia, et al. Abnormal intragastric distributionof food during gastric emptying in functional dyspepsia patients. Gut.1994,35(3),327-332.
    [50] V. Stanghellini, C. Tosetti, A. Paternico, et al. Risk indicators of delayed gastricemptying of solids in patients with functional dyspepsia. Gastroenterology.1996,110(4),1036-1042.
    [51] A. Quarter, N. De Wit, A. Lodder, et al. Disturbed solid-phase gastric emptyingin functional dyspepsia (a meta-analysis). Digestive Diseases and Sciences.1998,43(9),2028-2033.
    [52]兰梅,王新.功能性消化不良患者胃固体排空功能与其临床症状关系的研究.中国实用内科杂志.2001,21(10),598-600.
    [53]王莫德,詹海英,张延军, et al.功能性消化不良患者胃排空和胃肠激素的变化.2001,
    [54]王承党,萧树东.胃排空障碍与功能性消化不良相关性的研究.中华消化杂志.1997,17(006),322-324.
    [55] A. Blum, R. Arnold, M. Stolte, et al. Short course acid suppressive treatment forpatients with functional dyspepsia: results depend onHelicobacter pyloristatus.Gut.2000,47(4),473-480.
    [56] K. J. Lee, B. Demarchi, I. Demedts, et al. A pilot study on duodenal acidexposure and its relationship to symptoms in functional dyspepsia withprominent nausea. The American Journal of Gastroenterology.2004,99(9),1765-1773.
    [57] E. A. Mayer, K. Tillisch. The brain-gut axis in abdominal pain syndromes.Annual Review of Medicine.2011,62381-396.
    [58] B. Fischler, J. Tack, V. De Gucht, et al. Heterogeneity of symptom pattern,psychosocial factors, and pathophysiological mechanisms in severe functionaldyspepsia. Gastroenterology.2003,124(4),903-910.
    [59] I. Wiklund, P. Butler-Wheelhouse. Psychosocial factors and their role insymptomatic gastroesophageal reflux disease and functional dyspepsia.Scandinavian Journal of Gastroenterology.1996,31(S220),94-100.
    [60] S. Barry, T. G. Dinan. Functional dyspepsia: are psychosocial factors ofrelevance? World Journal of Gastroenterology.2006,12(17),2701-2707.
    [61] M. P. Jones, K. Maganti. Symptoms, gastric function, and psychosocial factorsin functional dyspepsia. Journal of Clinical Gastroenterology.2004,38(10),866-872.
    [62]柯美云.功能性消化不良的研究动向.新消化病学杂志.1996,4(11),601-601.
    [63]吴万桂,林惠华.功能性消化不良.东南大学学报(医学版).2009,2017.
    [64] G. Sarnelli, P. Caenepeel, B. Geypens, et al. Symptoms associated with impairedgastric emptying of solids and liquids in functional dyspepsia. The AmericanJournal of Gastroenterology.2003,98(4),783-788.
    [65]唐海英,王英德,张延军, et al.功能性消化不良患者的胃排空和胃内食物分布.世界华人消化杂志.2006,14(3),350-353.
    [66] N. J. Talley, M. Verlinden, M. Jones. Can symptoms discriminate among thosewith delayed or normal gastric emptying in dysmotility-like dyspepsia&quest.The American Journal of Gastroenterology.2001,96(5),1422-1428.
    [67] J. Tack, I. Demedts, G. Dehondt, et al. Clinical and pathophysiologicalcharacteristics of acute-onset functional dyspepsia. Gastroenterology.2002,122(7),1738-1747.
    [68] F. K. L. Chan, J. J. Y. Sung, S. Sydney Chung, et al. Randomised trial oferadication of Helicobacter pylori before non-steroidal anti-inflammatory drugtherapy to prevent peptic ulcers. The Lancet.1997,350(9083),975-979.
    [69] J. Koskenpato, M. F rkkil, P. Sipponen. Helicobacter pylori eradication andstandardized3-month omeprazole therapy in functional dyspepsia. TheAmerican Journal of Gastroenterology.2001,96(10),2866-2872.
    [70] A. L. Blum, N. J. Talley, C. O'Moráin, et al. Lack of effect of treatingHelicobacter pylori infection in patients with nonulcer dyspepsia. New EnglandJournal of Medicine.1998,339(26),1875-1881.
    [71]陈吉,白晓茹,王忠, et al.功能性消化不良与幽门螺杆菌感染的关系研究.胃肠病学和肝病学杂志.2001,10(4),364-365.
    [72]付朝伟,徐飚,陈维清, et al.中国大城市肠易激综合征和功能性消化不良患者抑郁,焦虑现况研究.中华消化杂志.2006,26(3),151-154.
    [73]王玲,夏兴洲.功能性胃肠病的心理因素分析.铁道医学.2002,30(1),31-32.
    [74] C. Cheng. Seeking medical consultation perceptual and behavioralcharacteristics distinguishing consulter and non consulted with functionaldyspepsia. Psychosomatic Medicine.2000,62(6),844-852.
    [75]石晓燕,邱骞.功能性消化不良患者抗焦虑,抑郁治疗前后的社会功能研究.中国心理卫生杂志.2000,14(6),420-421.
    [76] N. J. Talley, P. Boyce, M. Jones. Dyspepsia and health care seeking in acommunity (how important are psychological factors?). Digestive Diseases andSciences.1998,43(5),1016-1022.
    [77] N. Talley, L. Fung, I. Gilligan, et al. Association of anxiety, neuroticism, anddepression with dyspepsia of unknown cause. a case-control study.Gastroenterology.1986,90(4),886-892.
    [78] N. Koloski, M. Jones, J. Kalantar, et al. The brain–gut pathway in functionalgastrointestinal disorders is bidirectional: a12-year prospectivepopulation-based study. Gut.2012,61(9),1284-1290.
    [79]高彦,陈绳武,蓝宇.功能性消化不良患者的心理健康状况调查.中国实用内科杂志.2007,27(16),1311-1312.
    [80] D. Drossman. Sexual and physical abuse and gastrointestinal illness.Scandinavian Journal of Gastroenterology.1995,30(S208),90-96.
    [81] G. Sarnelli, J. Vandenberghe, J. Tack. Visceral hypersensitivity in functionaldisorders of the upper gastrointestinal tract. Digestive and Liver Disease.2004,36(6),371-376.
    [82] M. Hain, C. Paticia, T. Bill. NASA biofeed-back training as a potential treatmentfor patients with chronic GI symptoms. Gastroenterology.2000,118(616-616),
    [83] K. Tillisch. Complementary and alternative medicine for functionalgastrointestinal disorders. Gut.2006,55(5),593-596.
    [84]刘文全,王健,郝志友.针刺对功能性消化不良胃肠动力影响的临床研究.中国针灸.2001,21(5),267-269.
    [85]骆乐,寿依群.针刺治疗功能性消化不良临床研究.中国针灸.2002,22(2),89-90.
    [86]常小荣,严洁,林亚平, et al.针刺足三里对功能性消化不良患者血浆胃肠激素的影响.中国中西医结合消化杂志.2001,9(5),283-284.
    [87] F. Zeng, W. Qin, T. Ma, et al. Influence of acupuncture treatment on cerebralactivity in functional dyspepsia patients and its relationship with efficacy. TheAmerican Journal of Gastroenterology.2012,107(8),1236-1247.
    [88] S. Xu, X. Hou, H. Zha, et al. Electroacupuncture accelerates solid gastricemptying and improves dyspeptic symptoms in patients with functionaldyspepsia. Digestive Diseases and Sciences.2006,51(12),2154-2159.
    [89] F. Zeng, W. Z. Song, X. G. Liu, et al. Brain areas involved in acupuncturetreatment on functional dyspepsia patients: a PET-CT study. NeuroscienceLetters.2009,456(1),6-10.
    [90]袁凯.基于磁共振成像的海洛因依赖患者大脑静息状态异常模式研究.博士学位论文.博士学位论文.2011,
    [91]熊红川.脑电Alpha节律研究.博士学位论文.2010,
    [92] E. A. Mayer, B. D. Naliboff, A. Craig. Neuroimaging of the brain-gut axis: frombasic understanding to treatment of functional GI disorders. Gastroenterology.2006,131(6),1925-1942.
    [93] L. Van Oudenhove, J. Vandenberghe, P. Dupont, et al. Abnormal regional brainactivity during rest and (anticipated) gastric distension in functional dyspepsiaand the role of anxiety: a H215O-PET Study. The American Journal ofGastroenterology.2010,105(4),913-924.
    [94] J. Vandenberghe, P. Dupont, L. Van Oudenhove, et al. Regional cerebral bloodflow during gastric balloon distention in functional dyspepsia. Gastroenterology.2007,132(5),1684-1693.
    [95] S. W. G. Derbyshire. A systematic review of neuroimaging data during visceralstimulation. The American Journal of Gastroenterology.2003,98(1),12-20.
    [96] R. Peyron, B. Laurent, L. Garcia-Larrea. Functional imaging of brain responsesto pain. a review and meta-analysis (2000). Neurophysiologie Clinique-ClinicalNeurophysiology.2000,30(5),263-288.
    [97] J. Vandenbergh, P. DuPont, B. Fischler, et al. Regional brain activation duringproximal stomach distention in humans: a positron emission tomography study.Gastroenterology.2005,128(3),564-573.
    [98] L. Van Oudenhove, J. Vandenberghe, P. Dupont, et al. Regional brain activity infunctional dyspepsia: a H215O-PET study on the role of gastric sensitivity andabuse history. Gastroenterology.2010,139(1),36-47.
    [99] H. Mertz, V. Morgan, G. Tanner, et al. Regional cerebral activation in irritablebowel syndrome and control subjects with painful and nonpainful rectaldistention. Gastroenterology.2000,118(5),842-848.
    [100] B. D. Naliboff, S. W. G. Derbyshire, J. Munakata, et al. Cerebral activation inpatients with irritable bowel syndrome and control subjects during rectosigmoidstimulation. Psychosomatic Medicine.2001,63(3),365-375.
    [101] C. Wilder-Smith, D. Schindler, K. Lovblad, et al. Brain functional magneticresonance imaging of rectal pain and activation of endogenous inhibitorymechanisms in irritable bowel syndrome patient subgroups and healthy controls.Gut.2004,53(11),1595-1601.
    [102] D. A. Seminowicz, J. S. Labus, J. A. Bueller, et al. Regional gray matter densitychanges in brains of patients with irritable bowel syndrome. Gastroenterology.2010,139(1),48-57. e42.
    [103] U. Blankstein, J. Chen, N. E. Diamant, et al. Altered brain structure in irritablebowel syndrome: potential contributions of pre-existing and disease-drivenfactors. Gastroenterology.2010,138(5),1783-1789.
    [104] J. Y. W. Chen, U. Blankstein, N. E. Diamant, et al. White matter abnormalities inirritable bowel syndrome and relation to individual factors. Brain Research.2011,1392121-131.
    [105] S. M. Smith, M. Jenkinson, H. Johansen-Berg, et al. Tract-based spatial statistics:voxelwise analysis of multi-subject diffusion data. Neuroimage.2006,31(4),1487-1505.
    [106]舒妮.基于扩散张量成像的脑解剖网络及可塑性研究.博士学位论文.2009,
    [107] G. William. Introduction to interventional MRI. Journal of Medical Imaging.2002,12(2),106-115.
    [108]刘继欣.基于复杂网络方法的针刺机理研究.博士学位论文.2010,
    [109]刘鹏.基于功能导向性的针刺持续性效应研究.博士学位论文.2009,
    [110] R. R. Ernst. Numerical Hilbert transform and automatic phase correction inmagnetic resonance spectroscopy. Journal of Magnetic Resonance (1969).1969,1(1),7-26.
    [111] P. C. Lauterbur. Image formation by induced local interactions: examplesemploying nuclear magnetic resonance. Nature.1973,242(5394),190-191.
    [112] W. Aue, E. Bartholdi, R. R. Ernst. Two‐dimensional spectroscopy. Applicationto nuclear magnetic resonance. The Journal of Chemical Physics.1976,642229.
    [113] A. Kumar, D. Welti, R. R. Ernst. NMR Fourier zeugmatography. Journal ofMagnetic Resonance.1975,18(1),69-83.
    [114] P. Mansfield. Multi-planar image formation using NMR spin echoes. Journal ofPhysics C: Solid State Physics.2001,10(3), L55-L58.
    [115] P. C. Lauterbur, M. Mendonca-Dias, A. Rudin. Augmentation of tissue waterproton spin-lattice relaxation rates by in vivo addition of paramagnetic ions.Frontiers of Biological Energetics.1978,1752-759.
    [116] J. R. Mallard. The evolution of medical imaging: from geiger counters toMRI--a personal aaga. Perspectives in Biology and Medicine.2003,46(3),349-370.
    [117] W. Edelstein, J. Hutchison, G. Johnson, et al. Spin warp NMR imaging andapplications to human whole-body imaging. Physics in Medicine and Biology.1980,25(4),751-756.
    [118]张毅.基于ICA方法的针刺效应网络研究.博士学位论文.2008,
    [119] P. Jezzard, P. Matthews, S. Smith. Functional MRI: An introduction to methods.2001, Oxford University Press, Oxford
    [120]熊国欣,李立本.核磁共振成像原理:科学出版社.2007.
    [121] A. M. Ulu, P. van Zijl. Orientation‐independent diffusion imaging withouttensor diagonalization: Anisotropy definitions based on physical attributes of thediffusion ellipsoid. Journal of Magnetic Resonance Imaging.1999,9(6),804-813.
    [122] T. E. Conturo, R. C. McKinstry, J. A. Aronovitz, et al. Diffusion MRI: precision,accuracy and flow effects. NMR in Biomedicine.2005,8(7),307-332.
    [123] D. Le Bihan, R. Turner, N. Patronas. Diffusion MR imaging in normal brain andin brain tumors. Diffusion and Perfusion Magnetic Resonance Imaging:Applications to Functional MRI. New York, NY: Raven.1995,134-140.
    [124] E. L. Hahn. Spin echoes. Physical Review.1950,80(4),580-593.
    [125] H. Y. Carr, E. M. Purcell. Effects of diffusion on free precession in nuclearmagnetic resonance experiments. Physical Review.1954,94(3),630.
    [126] H. C. Torrey. Bloch equations with diffusion terms. Physical Review.1956,104(3),563-565.
    [127] E. O. Stejskal, J. Tanner. Spin diffusion measurements: Spin echoes in thepresence of a time‐dependent field gradient. The Journal of Chemical Physics.1965,42288-292.
    [128]李德军,包尚联,马林, et al.弥散张量成像在中枢神经系统中的应用.国外医学(生物医学工程分册).2003,26(5),1627-1631.
    [129]李悟.磁共振弥散张量图像处理与分析.博士学位论文.2004,
    [130] D. Norris, T. Niendorf, D. Leibfritz. Health and infarcted brain tissues studied atshort diffusion times: the origins of apparent restriction and the reduction inapparent diffusion coefficient. NMR in Biomedicine.1994,7(7),304-310.
    [131] J. G. Hirsch, M. Bock, M. Essig, et al. Comparison of diffusion anisotropymeasurements in combination with the flair-technique. Magnetic ResonanceImaging.1999,17(5),705-716.
    [132] C. F. Westin, S. Maier, H. Mamata, et al. Processing and visualization fordiffusion tensor MRI. Medical Image Analysis.2002,6(2),93-108.
    [133] P. J. Basser, J. Mattiello, D. LeBihan. MR diffusion tensor spectroscopy andimaging. Biophysical Journal.1994,66(1),259-267.
    [134] S. Skare. Optimisation strategies in diffusion tensor MR imaging. MR Center,Department of Clinical Neuroscience). Karolinska Institutet, Stockholm.2002,
    [135] Y. Masutaani, O. Abe, S. Aoki. Volumetric Image Analysis, Graphics, andVisualization in Brain White Matter Tractography, International3.0T MRISymposium in East-Asia Zone:1st Annual Meeting, Seoul.2003,19-28.
    [136] D. Le Bihan, J. F. Mangin, C. Poupon, et al. Diffusion tensor imaging: conceptsand applications. Journal of Magnetic Resonance Imaging.2001,13(4),534-546.
    [137] P. W. Schaefer, P. E. Grant, R. G. Gonzalez. Diffusion-weighted MR Imaging ofthe Brain. Radiology.2000,217(2),331-345.
    [138] G. Dougherty. Image analysis in medical imaging: recent advances in selectedexamples. Biomedical Imaging and Intervention Journal.2010,6(3), e32.
    [139] S. Wang, S. Kim, Y. Zhang, et al. Determination of grade and subtype ofmeningiomas by using histogram analysis of diffusion-tensor imaging metrics.Radiology.2012,262(2),584-592.
    [140] S. Pajevic, C. Pierpaoli. Color schemes to represent the orientation ofanisotropic tissues from diffusion tensor data: application to white matter fibertract mapping in the human brain. Magnetic Resonance in Medicine.1999,42(3),526-540.
    [141]尧德中.脑功能探测的电学理论与方法:科学出版社.2003.
    [142] V. J. Schmithorst, M. Wilke, B. J. Dardzinski, et al. Cognitive functionscorrelate with white matter architecture in a normal pediatric population: adiffusion tensor MRI study. Human Brain Mapping.2005,26(2),139-147.
    [143] S. Ogawa, T. Lee, A. Kay, et al. Brain magnetic resonance imaging with contrastdependent on blood oxygenation. Proceedings of the National Academy ofSciences.1990,87(24),9868-9872.
    [144] C. S. Roy, C. Sherrington. On the regulation of the blood-supply of the brain.The Journal of Physiology.1890,11(1-2),85-108.
    [145] B. R. Rosen, R. L. Buckner, A. M. Dale. Event-related functional MRI: past,present, and future. Proceedings of the National Academy of Sciences.1998,95(3),773-780.
    [146] M. Yassa. Functional MRI User’s Guide.(http://pni.med.jhu.edu/intranet/fmriguide).2005,
    [147] M. E. Raichle. The brain's dark energy. SCIENCE-NEW YORK THENWASHINGTON-.2006,314(5803),1249-1250.
    [148] H. Berger. Ober das Elektroenzephalogramm des Menschen:1.Mitteilung..Psychiatrie Nervenkrankheiten.1929,87527-528.
    [149] M. D. Greicius, B. Krasnow, A. L. Reiss, et al. Functional connectivity in theresting brain: a network analysis of the default mode hypothesis. Proceedings ofthe National Academy of Sciences.2003,100(1),253-258.
    [150] R. L. Buckner, J. R. Andrews‐Hanna, D. L. Schacter. The brain's defaultnetwork. Annals of the New York Academy of Sciences.2008,1124(1),1-38.
    [151] D. A. Gusnard, M. E. Raichle, M. Raichle. Searching for a baseline: functionalimaging and the resting human brain. Nature Reviews Neuroscience.2001,2(10),685-694.
    [152] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, et al. A default mode of brainfunction. Proceedings of the National Academy of Sciences.2001,98(2),676-682.
    [153] B. Biswal, F. Zerrin Yetkin, V. M. Haughton, et al. Functional connectivity in themotor cortex of resting human brain using echo‐planar mri. MagneticResonance in Medicine.1995,34(4),537-541.
    [154] M. Lowe, B. Mock, J. Sorenson. Functional connectivity in single and multisliceechoplanar imaging using resting-state fluctuations. Neuroimage.1998,7(2),119-132.
    [155] J. Xiong, L. M. Parsons, J. H. Gao, et al. Interregional connectivity to primarymotor cortex revealed using MRI resting state images. Human Brain Mapping.1999,8(2‐3),151-156.
    [156] M. D. Fox, A. Z. Snyder, J. L. Vincent, et al. The human brain is intrinsicallyorganized into dynamic, anticorrelated functional networks. Proceedings of theNational Academy of Sciences of the United States of America.2005,102(27),9673-9678.
    [157] P. Fransson. Spontaneous low‐frequency BOLD signal fluctuations: An fMRIinvestigation of the resting‐state default mode of brain function hypothesis.Human Brain Mapping.2005,26(1),15-29.
    [158] E. Weisstein, W. Researc. Eric weisstein's world of scientific biography:Wolfram Research.1995.
    [159]王兆源,周龙旗.脑电信号的分析方法.第一军医大学学报.2000,20(2),63-64.
    [160] C. M. Michel, M. M. Murray, G. Lantz, et al. EEG source imaging. ClinicalNeurophysiology.2004,115(10),2195-2222.
    [161] C. H. Wilder-Smith. The balancing act: endogenous modulation of pain infunctional gastrointestinal disorders. Gut.2011,60(11),1589-1599.
    [162] L. Van Oudenhove, K. Demyttenaere, J. Tack, et al. Central nervous systeminvolvement in functional gastrointestinal disorders. Best Practice&ResearchClinical Gastroenterology.2004,18(4),663-680.
    [163] D. A. Drossman, D. L. Dumitrascu. Rome III: New standard for functionalgastrointestinal disorders. Journal of Gastrointestinal and Liver Diseases.2006,15(3),237-241.
    [164] D. Grundy. Neuroanatomy of visceral nociception: vagal and splanchnic afferent.Gut.2002,51(suppl1), i2-i5.
    [165] J. B. Fr kj r, S. S. Olesen, M. Gram, et al. Altered brain microstructureassessed by diffusion tensor imaging in patients with chronic pancreatitis. Gut.2011,60(11),1554-1562.
    [166] P. G. P. Nucifora, R. Verma, S. K. Lee, et al. Diffusion-Tensor MR Imaging andTractography: Exploring Brain Microstructure and Connectivity. Radiology.2007,245(2),367-384.
    [167] A. L. Alexander, J. E. Lee, M. Lazar, et al. Diffusion tensor imaging of the brain.Neurotherapeutics.2007,4(3),316-329.
    [168] L. Van Oudenhove. Visceral sensory and cognitive-affective neuroscience:towards integration? Gut.2010,59(4),431-432.
    [169] N. Talley, M. Haque, J. Wyeth, et al. Development of a new dyspepsia impactscale: the Nepean Dyspepsia Index. Alimentary Pharmacology and Therapeutics.1999,13(2),225-236.
    [170] N. J. Talley, M. Verlinden, M. Jones. Validity of a new quality of life scale forfunctional dyspepsia: a United States multicenter trial of the Nepean DyspepsiaIndex. The American Journal of Gastroenterology.1999,94(9),2390-2397.
    [171] X. P. Tian, Y. Li, F. R. Liang, et al. Translation and validation of the NepeanDyspepsia Index for functional dyspepsia in China. World Journal ofGastroenterology.2009,15(25),3173-3177.
    [172] W. W. Zung. A rating instrument for anxiety disorders. Psychosomatics: Journalof Consultation Liaison Psychiatry.1971,12(6),371-379.
    [173] W. W. K. Zung, C. B. Richards, M. J. Short. Self-rating depression scale in anoutpatient clinic: further validation of the SDS. Archives of General Psychiatry.1965,13(6),508-515.
    [174] W. Wenyuan. Self-Rateing Anxiety Scale (SAS). Shanghai Archives ofPsychology.1990,2(supplement: on Psychological Rating Scale)44.
    [175] W. Chunfang, C. Zehuan, X. Qing. Self-rating depression scale (SDS): ananalysis on1340health subjects. Chinese Journal of Nervous and MentalDisease.1986,12267-268.
    [176] S. M. Smith, M. Jenkinson, M. W. Woolrich, et al. Advances in functional andstructural MR image analysis and implementation as FSL. Neuroimage.2004,23(Suppl1), S208-S219.
    [177] S. M. Smith. Fast robust automated brain extraction. Human Brain Mapping.2002,17(3),143-155.
    [178] M. Moseley. Diffusion tensor imaging and aging–a review. NMR inBiomedicine.2002,15(7‐8),553-560.
    [179] O. Abe, S. Aoki, N. Hayashi, et al. Normal aging in the central nervous system:quantitative MR diffusion-tensor analysis. Neurobiology of Aging.2002,23(3),433-441.
    [180] M. A. Horsfield, D. K. Jones. Applications of diffusion‐weighted and diffusiontensor MRI to white matter diseases–a review. NMR in Biomedicine.2002,15(7‐8),570-577.
    [181] J. J. Neil, S. I. Shiran, R. C. McKinstry, et al. Normal brain in human newborns:apparent diffusion coefficient and diffusion anisotropy measured by usingdiffusion tensor MR imaging. Radiology.1998,209(1),57-66.
    [182] A. Versace, J. R. C. Almeida, S. Hassel, et al. Elevated left and reduced rightorbitomedial prefrontal fractional anisotropy in adults with bipolar disorderrevealed by tract-based spatial statistics. Archives of General Psychiatry.2008,65(9),1041-1052.
    [183] K. M. Hasan. Diffusion tensor eigenvalues or both mean diffusivity andfractional anisotropy are required in quantitative clinical diffusion tensor MRreports: fractional anisotropy alone is not sufficient. Radiology.2006,239(2),611-613.
    [184] S. K. Song, S. W. Sun, W. K. Ju, et al. Diffusion tensor imaging detects anddifferentiates axon and myelin degeneration in mouse optic nerve after retinalischemia. Neuroimage.2003,20(3),1714-1722.
    [185] S. K. Song, S. W. Sun, M. J. Ramsbottom, et al. Dysmyelination revealedthrough MRI as increased radial (but unchanged axial) diffusion of water.Neuroimage.2002,17(3),1429-1436.
    [186] S. K. Song, J. Yoshino, T. Q. Le, et al. Demyelination increases radial diffusivityin corpus callosum of mouse brain. Neuroimage.2005,26(1),132-140.
    [187] J. Andersson, M. Jenkinson, S. Smith. Non-linear optimisation. FMRIB AnalysisGroup Technical Reports: TR07JA02from www fmrib ox ac uk/analysis/techrep.2007.
    [188] J. Andersson, M. Jenkinson, S. Smith, et al. Non-linear registration, aka spatialnormalization: FMRIB technical report TR07JA2. FMRIB Analysis Group ofthe University of Oxford.2007,
    [189] D. Rueckert, L. I. Sonoda, C. Hayes, et al. Nonrigid registration using free-formdeformations: application to breast MR images. Medical Imaging, IEEETransactions on.1999,18(8),712-721.
    [190] S. M. Smith, T. E. Nichols. Threshold-free cluster enhancement: addressingproblems of smoothing, threshold dependence and localisation in clusterinference. Neuroimage.2009,44(1),83-98.
    [191] S. Mori, K. Oishi, H. Jiang, et al. Stereotaxic white matter atlas based ondiffusion tensor imaging in an ICBM template. Neuroimage.2008,40(2),570-582.
    [192] T. Behrens, H. J. Berg, S. Jbabdi, et al. Probabilistic diffusion tractography withmultiple fibre orientations: What can we gain? Neuroimage.2007,34(1),144-155.
    [193] N. Szabó, Z. Kincses, á. Párdutz, et al. White matter microstructural alterationsin migraine: a diffusion-weighted MRI study. Pain.2012,153651-656.
    [194] G. Zhou, W. Qin, F. Zeng, et al. White-matter microstructural changes infunctional dyspepsia: a diffusion tensor imaging study. The American Journal ofGastroenterology.2013,108(2),260-269.
    [195] M. Moayedi, I. Weissman-Fogel, T. V. Salomons, et al. White matter brain andtrigeminal nerve abnormalities in temporomandibular disorder. Pain.2012,153(7),1467-1477.
    [196] J. Scholz, M. C. Klein, T. E. J. Behrens, et al. Training induces changes inwhite-matter architecture. Nature Neuroscience.2009,12(11),1370-1371.
    [197] M. B. O. Larsson, K. Tillisch, A. Craig, et al. Brain responses to expectation anddelivery of a visceral stimulus in IBS reflect visceral sensitivity thresholds.Gastroenterology.2011,42(3),463-472.e463.
    [198] S. Mori, S. Wakana, P. C. M. Van Zijl, et al. MRI atlas of human white matter:Am Soc Neuroradiology.2005.
    [199] B. J. Jellison, A. S. Field, J. Medow, et al. Diffusion tensor imaging of cerebralwhite matter: a pictorial review of physics, fiber tract anatomy, and tumorimaging patterns. American Journal of Neuroradiology.2004,25(3),356-369.
    [200] T. J. Whitford, M. Kubicki, J. S. Schneiderman, et al. Corpus callosumabnormalities and their association with psychotic symptoms in patients withschizophrenia. Biological Psychiatry.2010,68(1),70-77.
    [201] T. Schulte, E. V. Sullivan, E. Müller-Oehring, et al. Corpus callosalmicrostructural integrity influences interhemispheric processing: a diffusiontensor imaging study. Cerebral Cortex.2005,15(9),1384-1392.
    [202] R. Rouw, H. S. Scholte. Increased structural connectivity in grapheme-colorsynesthesia. Nature Neuroscience.2007,10(6),792-797.
    [203] M. D. Greicius, K. Supekar, V. Menon, et al. Resting-state functionalconnectivity reflects structural connectivity in the default mode network.Cerebral Cortex.2009,19(1),72-78.
    [204] J. Camchong, A. W. MacDonald, C. Bell, et al. Altered functional andanatomical connectivity in schizophrenia. Schizophrenia Bulletin.2011,37(3),640-650.
    [205] R. D. Fields. White matter in learning, cognition and psychiatric disorders.Trends in Neurosciences.2008,31(7),361-370.
    [206] L. Van Oudenhove, J. Vandenberghe, B. Geeraerts, et al. Determinants ofsymptoms in functional dyspepsia: gastric sensorimotor function, psychosocialfactors or somatisation? Gut.2008,57(12),1666-1673.
    [207] K. L. Phan, A. Orlichenko, E. Boyd, et al. Preliminary evidence of white matterabnormality in the uncinate fasciculus in generalized social anxiety disorder.Biological Psychiatry.2009,66(7),691-694.
    [208] L. T. Westlye, A. Bjornebekk, H. Grydeland, et al. Linking an anxiety-relatedpersonality trait to brain white matter microstructure: diffusion tensor imagingand harm avoidance. Archives of General Psychiatry.2011,68(4),369-377.
    [209] F. Benedetti, P. H. Yeh, M. Bellani, et al. Disruption of white matter integrity inbipolar depression as a possible structural marker of illness. BiologicalPsychiatry.2011,69(4),309-317.
    [210] M. F. Kraus, T. Susmaras, B. P. Caughlin, et al. White matter integrity andcognition in chronic traumatic brain injury: a diffusion tensor imaging study.Brain.2007,130(10),2508-2519.
    [211] M. D. Fox, M. E. Raichle. Spontaneous fluctuations in brain activity observedwith functional magnetic resonance imaging. Nature Reviews Neuroscience.2007,8(9),700-711.
    [212] J. S. Anderson, T. J. Druzgal, A. Froehlich, et al. Decreased interhemisphericfunctional connectivity in autism. Cerebral Cortex.2011,21(5),1134-1146.
    [213] X. N. Zuo, C. Kelly, A. Di Martino, et al. Growing together and growing apart:regional and sex differences in the lifespan developmental trajectories offunctional homotopy. The Journal of Neuroscience.2010,30(45),15034-15043.
    [214] D. E. Stark, D. S. Margulies, Z. E. Shehzad, et al. Regional variation ininterhemispheric coordination of intrinsic hemodynamic fluctuations. TheJournal of Neuroscience.2008,28(51),13754-13764.
    [215] R. Salvador, A. Martinez, E. Pomarol-Clotet, et al. A simple view of the brainthrough a frequency-specific functional connectivity measure. Neuroimage.2008,39(1),279-289.
    [216] C. Kelly, X. N. Zuo, K. Gotimer, et al. Reduced interhemispheric resting statefunctional connectivity in cocaine addiction. Biological Psychiatry.2011,69(7),684-692.
    [217] M. Jenkinson, S. Smith. A global optimisation method for robust affineregistration of brain images. Medical Image Analysis.2001,5(2),143-156.
    [218] M. Jenkinson, P. Bannister, M. Brady, et al. Improved optimization for therobust and accurate linear registration and motion correction of brain images.Neuroimage.2002,17(2),825-841.
    [219] R. W. Cox. AFNI: software for analysis and visualization of functional magneticresonance neuroimages. Computers and Biomedical Research.1996,29(3),162-173.
    [220] G. Zhou, P. Liu, F. Zeng, et al. Increased interhemispheric resting‐statefunctional connectivity in functional dyspepsia: a pilot study. NMR inBiomedicine.2012,26(4),410-415.
    [221] L. Van Oudenhove, P. Dupont, J. Vandenberghe, et al. The role of somatosensorycortical regions in the processing of painful gastric fundic distension: an updateof brain imaging findings. Neurogastroenterology&Motility.2008,20(5),479-487.
    [222] U. Ladabaum, S. Minoshima, W. L. Hasler, et al. Gastric distention correlateswith activation of multiple cortical and subcortical regions. Gastroenterology.2001,120(2),369-376.
    [223] E. Mayer, Q. Aziz, S. Coen, et al. Brain imaging approaches to the study offunctional GI disorders: a Rome working team report. Neurogastroenterology&Motility.2009,21(6),579-596.
    [224] P. Bytzer. New hope for functional dyspepsia? Gut.2012,61(6),789-790.
    [225] M. E. Raichle, M. A. Mintun. Brain work and brain imaging. Annual Review ofNeuroscience.2006,29449-476.
    [226] Z. Yu-Feng, H. Yong, Z. Chao-Zhe, et al. Altered baseline brain activity inchildren with ADHD revealed by resting-state functional MRI. Brain andDevelopment.2007,29(2),83-91.
    [227] Q. H. Zou, C. Z. Zhu, Y. Yang, et al. An improved approach to detection ofamplitude of low-frequency fluctuation (ALFF) for resting-state fMRI:fractional ALFF. Journal of Neuroscience Methods.2008,172(1),137-141.
    [228] X. N. Zuo, A. Di Martino, C. Kelly, et al. The oscillating brain: complex andreliable. Neuroimage.2010,49(2),1432-1445.
    [229] C. Honey, O. Sporns, L. Cammoun, et al. Predicting human resting-statefunctional connectivity from structural connectivity. Proceedings of the NationalAcademy of Sciences.2009,106(6),2035-2040.
    [230] G. Zhou, P. Liu, J. Wang, et al. Fractional amplitude of low-frequencyfluctuation changes in functional dyspepsia: a resting-state fMRI study.Magnetic Resonance Imaging.2013,31(6),996-1000.
    [231] M. J. Hoptman, X. N. Zuo, P. D. Butler, et al. Amplitude of low-frequencyoscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research.2010,117(1),13-20.
    [232] A. D. Craig. How do you feel? Interoception: the sense of the physiologicalcondition of the body. Nature Reviews Neuroscience.2002,3(8),655-666.
    [233] S. M. Berman, B. D. Naliboff, B. Suyenobu, et al. Reduced brainstem inhibitionduring anticipated pelvic visceral pain correlates with enhanced brain responseto the visceral stimulus in women with irritable bowel syndrome. The Journal ofNeuroscience.2008,28(2),349-359.
    [234] C. Y. Saab, W. D. Willis. The cerebellum: organization, functions and its role innociception. Brain Research Reviews.2003,42(1),85-95.
    [235] C. Helmchen, C. Mohr, C. Erdmann, et al. Differential cerebellar activationrelated to perceived pain intensity during noxious thermal stimulation in humans:a functional magnetic resonance imaging study. Neuroscience Letters.2003,335(3),202-206.
    [236] R. Dolan. Neuroimaging of cognition: past, present, and future. Neuron.2008,60(3),496-502.
    [237] S. L. Bressler, V. Menon. Large-scale brain networks in cognition: emergingmethods and principles. Trends in Cognitive Sciences.2010,14(6),277-290.
    [238] D. S. Bassett, E. T. Bullmore. Human brain networks in health and disease.Current Opinion in Neurology.2009,22(4),340-347.
    [239] E. Bullmore, O. Sporns. Complex brain networks: graph theoretical analysis ofstructural and functional systems. Nature Reviews Neuroscience.2009,10(3),186-198.
    [240] Y. Li, Y. Liu, J. Li, et al. Brain anatomical network and intelligence. PLoSComputational Biology.2009,5(5), e1000395.
    [241] J. C. Reijneveld, S. C. Ponten, H. W. Berendse, et al. The application of graphtheoretical analysis to complex networks in the brain. Clinical Neurophysiology.2007,118(11),2317-2331.
    [242] M. P. van den Heuvel, C. J. Stam, R. S. Kahn, et al. Efficiency of functionalbrain networks and intellectual performance. The Journal of Neuroscience.2009,29(23),7619-7624.
    [243] M. E. Raichle, A. Z. Snyder. A default mode of brain function: a brief history ofan evolving idea. Neuroimage.2007,37(4),1083-1090.
    [244] J. Ramos-Loyo, A. A. Gonzalez-Garrido, C. Amezcua, et al. Relationshipbetween resting alpha activity and the ERPs obtained during a highly demandingselective attention task. International Journal of Psychophysiology.2004,54(3),251-262.
    [245] J. Kounios, J. I. Fleck, D. L. Green, et al. The origins of insight in resting-statebrain activity. Neuropsychologia.2008,46(1),281-291.
    [246] C. J. Stam, W. De Haan, A. Daffertshofer, et al. Graph theoretical analysis ofmagnetoencephalographic functional connectivity in Alzheimer's disease. Brain.2009,132(1),213-224.
    [247] C. Stam, B. Van Dijk. Synchronization likelihood: an unbiased measure ofgeneralized synchronization in multivariate data sets. Physica D: NonlinearPhenomena.2002,163(3),236-251.
    [248] M. Rubinov, O. Sporns. Complex network measures of brain connectivity: usesand interpretations. Neuroimage.2010,52(3),1059-1069.
    [249] D. Watts, S. Strogatz. Collective dynamics of 'small-world'networks. Nature.1998,393440-442.
    [250] L. F. Lago-Fernández, R. Huerta, F. Corbacho, et al. Fast response and temporalcoherent oscillations in small-world networks. Physical Review Letters.2000,84(12),2758-2761.
    [251] V. Latora, M. Marchiori. Efficient behavior of small-world networks. PhysicalReview Letters.2001,87(19),198701.
    [252] M. D. Humphries, K. Gurney. Network ‘small-world-ness’: a quantitativemethod for determining canonical network equivalence. PLoS One.2008,3(4),e0002051.
    [253] Y. He, Z. J. Chen, A. C. Evans. Small-world anatomical networks in the humanbrain revealed by cortical thickness from MRI. Cerebral Cortex.2007,17(10),2407-2419.
    [254] C. J. Stam. Functional connectivity patterns of human magnetoencephalographicrecordings: a 'small-world' network? Neuroscience Letters.2004,355(1-2),25-28.
    [255] R. M. G. Reinhart, D. H. Mathalon, B. J. Roach, et al. Relationships betweenpre-stimulus gamma power and subsequent P300and reaction time breakdownin schizophrenia. International Journal of Psychophysiology.2011,79(1),16-24.
    [256] V. Nikulin, F. Marzinzik, M. Wahl, et al. Anticipatory activity in the humanthalamus is predictive of reaction times. Neuroscience.2008,155(4),1275-1283.
    [257] G. Zhou, P. Liu, J. He, et al. Interindividual reaction time variability is related toresting-state network topology: an electroencephalogram study. Neuroscience.2011,202276–282.
    [258] A. Delorme, S. Makeig. EEGLAB: an open source toolbox for analysis ofsingle-trial EEG dynamics including independent component analysis. Journalof neuroscience methods.2004,134(1),9-21.
    [259] J. Kayser, C. E. Tenke. Principal components analysis of Laplacian waveformsas a generic method for identifying ERP generator patterns: I. Evaluation withauditory oddball tasks. Clinical Neurophysiology.2006,117(2),348-368.
    [260] S. L. Gonzalez Andino, C. M. Michel, G. Thut, et al. Prediction of responsespeed by anticipatory high‐frequency (gamma band) oscillations in the humanbrain. Human Brain Mapping.2004,24(1),50-58.
    [261] C. J. Stam, G. Nolte, A. Daffertshofer. Phase lag index: assessment of functionalconnectivity from multi channel EEG and MEG with diminished bias fromcommon sources. Human Brain Mapping.2007,28(11),1178-1193.
    [262] J. P. Onnela, J. Saram ki, J. Kertész, et al. Intensity and coherence of motifs inweighted complex networks. Physical Review E.2005,71(6),065103.
    [263] W. Klimesch, M. Doppelmayr, H. Schimke, et al. Alpha frequency, reaction time,and the speed of processing information. Journal of clinical neurophysiology.1996,13(6),511-518.
    [264] S. M. Doesburg, J. J. Green, J. J. McDonald, et al. From local inhibition tolong-range integration: a functional dissociation of alpha-band synchronizationacross cortical scales in visuospatial attention. Brain Research.2009,130397-110.
    [265] S. Hanslmayr, A. Aslan, T. Staudigl, et al. Prestimulus oscillations predict visualperception performance between and within subjects. Neuroimage.2007,37(4),1465-1473.
    [266] S. Hanslmayr, W. Klimesch, P. Sauseng, et al. Alpha phase reset contributes tothe generation of ERPs. Cerebral Cortex.2007,17(1),1-8.
    [267] W. Klimesch, P. Sauseng, S. Hanslmayr. EEG alpha oscillations: theinhibition–timing hypothesis. Brain Research Reviews.2007,53(1),63-88.
    [268] Y. Jin, J. P. O'HALLORAN, L. Plon, et al. Alpha EEG predicts visual reactiontime. International journal of neuroscience.2006,116(9),1035-1044.
    [269] D. Mantini, M. G. Perrucci, C. Del Gratta, et al. Electrophysiological signaturesof resting state networks in the human brain. Proceedings of the NationalAcademy of Sciences.2007,104(32),13170-13175.
    [270] T. J. Buschman, E. K. Miller. Top-down versus bottom-up control of attention inthe prefrontal and posterior parietal cortices. Science.2007,315(5820),1860-1862.
    [271] M. Siegel, T. H. Donner, R. Oostenveld, et al. Neuronal synchronization alongthe dorsal visual pathway reflects the focus of spatial attention. Neuron.2008,60(4),709-719.
    [272] T. P. Zanto, M. T. Rubens, J. Bollinger, et al. Top-down modulation of visualfeature processing: the role of the inferior frontal junction. Neuroimage.2010,53(2),736-745.
    [273] T. P. Zanto, M. T. Rubens, A. Thangavel, et al. Causal role of the prefrontalcortex in top-down modulation of visual processing and working memory.Nature Neuroscience.2011,14(5),656-661.
    [274] P. Sauseng, W. Klimesch, W. Stadler, et al. A shift of visual spatial attention isselectively associated with human EEG alpha activity. European Journal ofNeuroscience.2005,22(11),2917-2926.
    [275] S. Palva, J. M. Palva. New vistas for α-frequency band oscillations. Trends inNeurosciences.2007,30(4),150-158.
    [276] G. Pfurtscheller, C. Neuper, D. Flotzinger, et al. EEG-based discriminationbetween imagination of right and left hand movement. Electroencephalographyand Clinical Neurophysiology.1997,103(6),642-651.
    [277] S. Debener, C. S. Herrmann, C. Kranczioch, et al. Top-down attentionalprocessing enhances auditory evoked gamma band activity. Neuroreport.2003,14(5),683-686.
    [278] J. Kaiser, W. Lutzenberger. Induced gamma-band activity and human brainfunction. The Neuroscientist.2003,9(6),475-484.
    [279] J. Sarnthein, H. Petsche, P. Rappelsberger, et al. Synchronization betweenprefrontal and posterior association cortex during human working memory.Proceedings of the National Academy of Sciences.1998,95(12),7092-7096.
    [280] W. Singer. Synchronization of cortical activity and its putative role ininformation processing and learning. Annual Review of Physiology.1993,55(1),349-374.
    [281] C. Tallon-Baudry. Attention and awareness in synchrony. Trends in CognitiveSciences.2004,8(12),523-525.
    [282] H. Tiitinen, J. Sinkkonen, K. Reinikainen, et al. Selective attention enhances theauditory40-Hz transient response in humans. Nature.1993,364(6432),59-60.
    [283] O. Sporns, D. R. Chialvo, M. Kaiser, et al. Organization, development andfunction of complex brain networks. Trends in Cognitive Sciences.2004,8(9),418-425.
    [284] M. McAvoy, L. Larson-Prior, T. S. Nolan, et al. Resting states affectspontaneous BOLD oscillations in sensory and paralimbic cortex. Journal ofNeurophysiology.2008,100(2),922-931.
    [285] R. J. Barry, A. R. Clarke, S. J. Johnstone, et al. EEG differences in childrenbetween eyes-closed and eyes-open resting conditions. Clinical Neurophysiology.2009,120(10),1806-1811.
    [286] A. C. N. Chen, W. Feng, H. Zhao, et al. EEG default mode network in thehuman brain: spectral regional field powers. Neuroimage.2008,41(2),561-574.
    [287] C. Hammond, H. Bergman, P. Brown. Pathological synchronization inParkinson's disease: networks, models and treatments. Trends in Neurosciences.2007,30(7),357-364.
    [288] D. Williams, A. Kühn, A. Kupsch, et al. The relationship between oscillatoryactivity and motor reaction time in the parkinsonian subthalamic nucleus.European Journal of Neuroscience.2005,21(1),249-258.
    [289] B. Gordon, K. Carson. The basis for choice reaction time slowing in Alzheimer'sdisease. Brain and Cognition.1990,13(2),148-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700