精神分裂症患者同胞对脑白质的磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:针对精神分裂症的结构失连接假说,利用精神分裂症患者的健康同胞和正常人作为对照,探索与精神分裂症有关的固有的生物学特征。
     方法:共收集38对精神分裂症患者及其健康同胞和35名正常人。所有入组的研究对象都接受了适于精神疾病诊断和统计手册第四版(Diagnostic and Statistic Manual versionⅣ,DSM-Ⅳ)的结构式临床访谈(structural clinical interview for DSM-Ⅳ,SCID),使用SCID患者版筛查以确定精神分裂症患者符合DSM-Ⅳ精神分裂症的诊断标准。采用阳性和阴性综合征量表(Positive and Negative Syndrome Scale,PANSS)评估临床症状。采用连线测验(Trail Making Test,TMT)、威斯康星卡片分类测验(Wisconsin Card Sorting Test,WCST)、言语流畅性测验(Verbal fluence Test,VFT)和色词干扰任务(StroopColor-Word Task,SCWT)评估患者的精神运动性、执行功能、语言能力和注意力。以上所有评定和评估都由一名精神科主治医生实施。所有研究对象在评定当天进行了磁共振扫描,包括弥散张量成像(diffusion tensor imaging,DTI)和三维结构磁共振成像(three-dimensional structure magnetic resonance imaging,3D-MRI)。
     MRI扫描后,排除头动等因素导致有质量问题的数据:
     1).在SPM2(statistic parameters mapping2)上用基于像素的分析方法(voxel-based analysis,VBA)对34对精神分裂症患者(男20女14)及其健康同胞(男20女14)和32名正常人(男19女13)的各向异性(fractional anisotropy,FA)进行单因素方差分析,确定有显著性差异的白质区域;计算出每个研究对象有显著性差异区域的FA绝对值,在SPSS12.0上进行单因素方差分析及验后检验,明确任意两组间的差异。
     2).用基于像素的形态学方法(voxel-based morphometry,VBM)比较30对精神分裂症患者(男16女14)及其健康同胞(男19女11)和30名正常对照(男18女12)的白质密度,确定有显著性差异的区域并计算出密度值;用有显著性差异的白质密度区域做感兴趣区,进行纤维追踪,计算追踪出的纤维束的弥散张量指数,在SPSS12.0上分析三组之间弥散张量指数的差异,以及该指数与认知功能和精神残灾⒆雌婪值南喙匦浴?
     结果:
     1.三组FA值的比较结果
     单因素方差分析显示三组的左侧前额叶、左侧海马和左侧前扣带FA值有显著的组主效应。在左侧前额叶和海马白质区,验后检验显示精神分裂症患者及其健康同胞的脑白质FA值显著低于正常对照,患者的FA值小于其健康同胞但差异无显著性。在左侧前扣带区,验后检验显示精神分裂症患者脑白质FA值显著低于其健康同胞和正常对照,健康同胞的FA值大于正常对照但差异无显著性。
     2.三组脑白质密度和弥散张量指数的比较
     单因素方差分析显示三组的左侧前额叶和胼胝体膝部脑白质密度有显著的组主效应。验后检验显示精神分裂症患者及其健康同胞这两个脑区的脑白质密度显著低于正常对照,患者与健康同胞之间的差异无显著性。
     单因素方差分析显示穿过左侧前额叶和胼胝体膝部感兴趣区的神经纤维束弥散张量指数在三组之间有显著的组主效应。验后检验显示精神分裂症患者及其健康同胞这两个区域的弥散张量指数显著小于正常对照,患者和健康同胞之间的差异无显著性。
     相关分析发现,在健康同胞组,穿过胼胝体膝部感兴趣区的白质纤维束弥散张量指数与完成连线测验的耗时数呈显著性正相关;在患者组,该指标与完成色词干扰任务的耗时数呈显著正相关。穿过胼胝体膝部和左侧前额叶感兴趣区的白质纤维束弥散张量指数都与患者的PANSS评定的阳性症状分量表分呈显著性正相关。
     结论:
     1.左侧前额叶、海马脑白质完整性降低可能意味着精神分裂症的患病风险,而左侧前扣带的脑白质完整性降低则可能是由高风险状态向该病转换的决定因素。
     2.左侧前额叶及其连接的胼胝体膝部白质结构失连接可能与精神分裂症的患病风险有关,且该结构失连接可能是精神分裂症阳性症状和注意力、精神运动等认知功能障碍的病理基础。
Objective: Investigation of inherent biological characteristics related to schizophrenia in schizophrenia patients, their healthy siblings and healthy controls, and this may provide evidence for the hypothesis of distributed connectivity.
     Methods: We recruited 38 pairs of schizophrenia patients (met DSM-Ⅳdiagnostic criteria for schizophrenia) and their healthy siblings, and 35 healthy controls. All subjects were screened by Structural Clinical Interview for DSM-Ⅳ(SCID), with SCID-P for patients and SCID-NP for siblings and controls. One trained psychiatrists performed the assessment for psychotic symptoms using Positive and Negative Syndrome Scale (PANSS). Meanwhile, all subjects were assessed by a series of cognitive tests including Trail Making Test (TMT), Wisconsin Card Sorting Test (WCST), Verbal Fluence Test (VFT) and Stroop Color-Word Task (SCWT). Then all subjects were scanned in 1.5T GE scanner, including diffusion tensor imaging (DTI) and three-dimensional structural magnetic resonance imaging (3D-MRI).
     Unqualified data due to head motion and other factors were ruled out after scan. 1) FA maps from 34 pairs of schizophrenia patients and their healthy sibling and 32 healthy controls were analyzed using a voxel-wise one-way analysis of variance (ANOVA) for identifying regions with significant difference; and then mean FA values were calculated in each identified region for all subjects and were analyzed by one-way ANOVA.
     2) To compare white matter density among three groups for identifying regions with significant difference by a voxel-wise one-way ANOVA, and then mean white matter values were calculated in each identified region for all subjects and were analyzed by one-way ANOVA; to use the identified regions as ROI for fiber tracking and to reconstruct the fiber tracts transversing two ROIs; to calculate and analyze diffusional measure of reconstructed tracts among three groups; to correlate diffusional measure with cognitive and clinical measures in each group.
     Results:
     1. Comparison of FA values among three groups
     Comparison of FA among the three groups, one-way ANOVA revealed a significant group main effect in the left prefrontal cortex (PFC), hippocampus and anterior cingulate cortex (ACC). In the left PFC and hippocampus, post hoc tests indicated that FA values in both schizophrenia patients and healthy siblings were lower than those in healthy controls, without significant difference between patients and siblings. In marked contrast, only schizophrenia patients exhibited reduced FA in the left ACC as compared with either siblings or controls, without significant difference between siblings and controls.
     2. Comparison of white matter density and diffusional measures
     Comparison of white matter density and diffusional measures among the three groups, one-way ANOVA revealed a significant group main effect in the left PFC and genu of corpus callosum. Post hoc tests indicated that healthy siblings shared reduced white matter density and diffusional measures with schizophrenia patients as compared with healthy controls in both regions; and diffusional measures were significantly positive correlation with cognitive measures and clinical measures.
     Conclusions:
     1. Reduction of white matter integrity in the left PFC and hippocampus may be related to the higher risk of healthy siblings to develop schizophrenia, which may be eventually attributed to additional reduced white matter integrity in the left ACC.
     2. Structural disconnectivity in the left PFC and genu of corpus callosum may be related to genetic risk for schizophrenia. And the disconnectivity may be pathophysiological substrate of positive symptoms and cognitive impairment such as attention and psychomotor function in schizophrenia.
引文
[1] Mueser,KT and McGurk,SR. Schizophrenia. Lancet 2004; 363(9426): 2063-2072.
    [2] Tamminga,CA and Holcomb,HH. Phenotype of schizophrenia: a review and formulation. Mol.Psychiatry 2005; 10(1): 27-39.
    [3] Freedman,R. Schizophrenia. N.Engl.J.Med. 2003; 349(18): 1738-1749.
    [4] Sullivan,PF, Kendler,KS, and Neale,MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch.Gen.Psy.chiatry 2003; 60(12): 1187-1192.
    [5] Tsuang,M. Schizophrenia: genes and environment. Biol.Psychiatry 2000; 47(3): 210-220.
    [6] Freedman,R, Leonard,S, Olincy,A et al. Evidence for the multigenic inheritance of schizophrenia. Am.J.Med.Genet. 2001; 105(8): 794-800.
    [7] Tsuang,MT, Stone,WS, and Faraone,SV. Schizophrenia: a review of genetic studies. Harv.Rev.Psychiatry 1999; 7(4): 185-207.
    [8] Gottesman,Ⅱ and Gould,TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am.J.Psychiatry 2003; 160(4): 636-645.
    [9] Snitz,BE, Macdonald,AW, Ⅲ, and Carter,CS. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr.Bull. 2006; 32(1): 179-194.
    [10] Macdonald,AW, Ⅲ, Thermenos,HW, Barch,DM et al. Imaging Genetic Liability to Schizophrenia: Systematic Review of fMRI Studies of Patients' Nonpsychotic Relatives. Schizophr.Bull. 2008; 0: sbn053v1-sbn053.
    [11] Callicott,JH, Egan,MF, Mattay,VS et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am.J.Psychiatry 2003; 160(4): 709-719.
    [12] Wright,IC, Rabe-Hesketh,S, Woodruff,PW et al. Meta-analysis of regional brain volumes in schizophrenia. Am.J.Psychiatry 2000; 157(1): 16-25.
    [13] Ward,KE, Friedman,L, Wise,A et al. Meta-analysis of brain and cranial size in schizophrenia. Schizophr.Res. 1996; 22(3): 197-213.
    [14] Lawrie,SM and Abukmeil,SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br.J.Psychiatry 1998; 172 110-120.
    [15] Nelson,MD, Saykin,AJ, Flashman,LA et al. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch.Gen.Psychiatry 1998; 55(5): 433-440.
    [16] Shenton,ME, Dickey,CC, Frumin,M et al. A review of MRI findings in schizophrenia. Schizophr.Res. 2001; 49(1-2): 1-52.
    [17] Konick,LC and Friedman,L. Meta-analysis of thalamic size in schizophrenia. Biol.Psychiatry 2001; 49(1): 28-38.
    [18] Honea,R, Crow,TJ, Passingham,D et al. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am.J.Psychiatry 2005; 162(12): 2233-2245.
    [19] Antonova,E, Sharma,T, Morris,R et al. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr.Res. 2004; 70(2-3): 117-145.
    [20] Scherk,H and Falkai,P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006; 19(2): 145-150.
    [21] Diwadkar,VA, Montrose,DM, Dworakowski,D et al. Genetically predisposed offspring with schizotypal features: an ultra high-risk group for schizophrenia? Prog.Neuropsychopharmacol.Biol.Psychiatry 2006; 30(2): 230-238.
    [22] Job,DE, Whalley,HC, McConnell,S et al. Voxel-based morphometry of grey matter densities in subjects at high risk of schizophrenia. Schizophr.Res. 2003; 64(1): 1-13.
    [23] Pantelis,C, Velakoulis,D, McGorry,PD et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003; 361(9354): 281-288.
    [24] Job,DE, Whalley,HC, Johnstone,EC et al. Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage. 2005; 25(4): 1023-1030.
    [25] Job,DE, Whalley,HC, McIntosh,AM et al. Grey matter changes can improve the prediction of schizophrenia in subjects at high risk. BMC.Med. 2006; 4 29-
    [26] Johnstone,EC, Ebmeier,KP, Miller,P et al. Predicting schizophrenia: findings from the Edinburgh High-Risk Study. Br.J.Psychiatry 2005; 186 18-25.
    [27] Boos,HB, Aleman,A, Cahn,W et al. Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch.Gen.Psychiatry 2007; 64(3): 297-304.
    [28] Dousset,V, Brochet,B, Vital,A et al. Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. AJNR Am.J.Neuroradiol. 1995; 16(2): 225-231.
    [29] Foong,J, Symms,MR, Barker,GJ et al. Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain 2001; 124(Pt 5): 882-892.
    [30] Kubicki,M, Park,H, Westin,CF et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage. 2005; 26(4): 1109-1118.
    [31] McGuire,PK and Frith,CD. Disordered functional connectivity in schizophrenia. Psychol.Med. 1996; 26(4): 663-667.
    [32] Basser,PJ and Pierpaoli,C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J.Magn Reson.B 1996; 111(3): 209-219.
    [33] Le,BD- Looking into the functional architecture of the brain with diffusion MRI. Nat.Rev.Neurosci. 2003; 4(6): 469-480.
    [34] Le,BD, Mangin,JF, Poupon,C et al. Diffusion tensor imaging: concepts and applications. J.Magn Reson.Imaging 2001; 13(4): 534-546.
    [35] Lim,KO, Hedehus,M, Moseley,M et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch.Gen.Psychiatry 1999; 56(4): 367-374.
    [36] Kanaan,RA, Kim,JS, Kaufmann,WE et al. Diffusion tensor imaging in schizophrenia. Biol.Psychiatry 2005; 58(12): 921-929.
    [37] Kubicki,M, McCarley,R, Westin,CF et al. A review of diffusion tensor imaging studies in schizophrenia. J.Psychiatr.Res. 2007; 41(1-2): 15-30.
    [38] Kyriakopoulos,M, Bargiotas,T, Barker,GJ et al. Diffusion tensor imaging in schizophrenia. Eur.Psychiatry 2008; 23(4): 255-273.
    [39] Hubl,D, Koenig,T, Strik,W et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch.Gen.Psychiatry 2004; 61(7): 658-668.
    [40] Brahmbhatt,SB, Haut,K, Csernansky,JG et al. Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings. Schizophr.Res. 2006; 87(1-3): 191-204.
    [41] Wolkin,A, Choi,SJ, Szilagyi,S et al. Inferior frontal white matter anisotropy and negative symptoms of schizophrenia: a diffusion tensor imaging study. Am.J.Psychiatry 2003; 160(3): 572-574.
    [42] Hoptman,MJ, Volavka,J, Johnson,G et al. Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol.Psychiatry 2002; 52(1): 9-14.
    [43] Nestor,PG, Kubicki,M, Gurrera,RJ et al. Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology. 2004; 18(4): 629-637.
    [44] Minami,T, Nobuhara,K, Okugawa,G et al. Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia. Neuropsychobiology 2003; 47(3): 141-145.
    [45] Okugawa,G, Nobuhara,K, Minami,T et al. Subtle disruption of the middle cerebellar peduncles in patients with schizophrenia. Neuropsychobiology 2004; 50(2): 119-123.
    [46] Hill,K, Mann,L, Laws,KR et al. Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr.Scand. 2004; 110(4): 243-256.
    [47] Achim,AM and Lepage,M. Episodic memory-related activation in schizophrenia: meta-analysis. Br.J.Psychiatry 2005; 187 500-509.
    [48] Glahn,DC, Ragland,JD, Abramoff,A et al. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum.Brain Mapp. 2005; 25(1): 60-69.
    [49] Davis,CE, Jeste,DV, and Eyler,LT. Review of longitudinal functional neuroimaging studies of drug treatments in patients with schizophrenia. Schizophr.Res. 2005; 78(1): 45-60.
    [50] Zakzanis,KK, Poulin,P, Hansen,KT et al. Searching the schizophrenic brain for temporal lobe deficits: a systematic review and meta-analysis. Psychol.Med. 2000; 30(3): 491-504.
    [51] Friston,KJ and Frith,CD. Schizophrenia: a disconnection syndrome? Clin.Neurosci. 1995; 3(2): 89-97.
    [52] Stephan,KE, Baldeweg,T, and Friston,KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol.Psychiatry 2006; 59(10): 929-939.
    [53] Uhlhaas,PJ, Linden,DE, Singer,W et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J.Neurosci. 2006; 26(31): 8168-8175.
    [54] Uhlhaas,PJ and Singer,W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006; 52(1): 155-168.
    [55] Raemaekers,M, Ramsey,NF, Vink,M et al. Brain activation during antisaccades in unaffected relatives of schizophrenic patients. Biol.Psychiatry 2006; 59(6): 530-535.
    [56] Becker,TM, Kerns,JG, Macdonald,AW, Ⅲ et al. Prefrontal dysfunction in first-degree relatives of schizophrenia patients during a stroop task. Neuropsychopharmacology 2008; 33(11): 2619-2625.
    [57] Delawalla,Z, Csernansky,JG, and Barch,DM. Prefrontal cortex function in nonpsychotic siblings of individuals with schizophrenia. Biol.Psychiatry 2008; 63(5): 490-497.
    [58] Seidman,LJ, Thermenos,HW, Koch,JK et al. Auditory verbal working memory load and thalamic activation in nonpsychotic relatives of persons with schizophrenia: an fMRI replication. Neuropsychology. 2007; 21(5): 599-610.
    [59] Thermenos,HW, Seidman,LJ, Breiter,H et al. Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: a pilot study. Biol.Psychiatry 2004; 55(5): 490-500.
    [60] MacDonald,AW, Ⅲ, Becker,TM, and Carter,CS. Functional magnetic resonance imaging study of cognitive control in the healthy relatives of schizophrenia patients. Biol.Psychiatry 2006; 60(11): 1241-1249.
    [61] Vink,M, Ramsey,NF, Raemaekers,M et al. Striatal dysfunction in schizophrenia and unaffected relatives. Biol.Psychiatry 2006; 60(1): 32-39.
    [62] Karlsgodt,KH, Glahn,DC, van Erp,TG et al. The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects. Schizophr.Res. 2007; 89(1-3): 191-197.
    [63] Brahmbhatt,SB, Haut,K, Csernansky,JG et al. Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings. Schizophr.Res. 2006; 87(1-3): 191-204.
    [64] Keshavan,MS, Diwadkar,VA, Spencer,SM et al. A preliminary functional magnetic resonance imaging study in offspring of schizophrenic parents. Prog.Neuropsychopharmacol.Biol.Psychiatry 2002; 26(6): 1143-1149.
    [65] Sommer,IE, Ramsey,NF, Mandl,RC et al. Language activation in monozygotic twins discordant for schizophrenia. Br.J.Psychiatry 2004; 184 128-135.
    [66] Weiss,EM, Hofer,A, Golaszewski,S et al. Language lateralization in unmedicated patients during an acute episode of schizophrenia: a functional MRI study. Psychiatry Res. 2006; 146(2): 185-190.
    [67] Bonner-Jackson,A, Csernansky,JG, and Barch,DM. Levels-of-processing effects in first-degree relatives of individuals with schizophrenia. Biol.Psychiatry 2007; 61(10): 1141-1147.
    [68] Whyte,MC, Whalley,HC, Simonotto,E et al. Event-related fMRI of word classification and successful word recognition in subjects at genetically enhanced risk of schizophrenia, Psychol.Med. 2006; 36(10): 1427-1439.
    [69] Woodward,ND, Tibbo,P, and Purdon,SE. An fMRI investigation of procedural learning in unaffected siblings of individuals with schizophrenia. Schizophr.Res. 2007; 94(1-3): 306-316.
    [70] Bhakoo,KK and Pearce,D. In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J.Neurochem. 2000; 74(1): 254-262.
    [71] Urenjak,J, Williams,SR, Gadian,DG et al. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J.Neurosci. 1993; 13(3): 981-989.
    [72] Baslow,MH. Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J.Neurochem. 2000; 75(2): 453-459.
    [73] Steen,RG, Hamer,RM, and Lieberman,JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2005; 30(11): 1949-1962.
    [74] Keshavan,MS, Stanley,JA, and Pettegrew,JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings-part Ⅱ. Biol.Psychiatry 2000; 48(5): 369-380.
    [75] Ende,G, Braus,DF, Walter,S et al. Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophr.Res. 2000; 41(3): 389-395.
    [76] Tibbo,P, Hanstock,C, Valiakalayil,A et al. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am.J.Psychiatry 2004; 161(6): 1116-1118.
    [77] Callicott,JH, Egan,MF, Bertolino,A et al. Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. BioLPsychiatry 1998; 44(10): 941-950.
    [78] Jensen,JE, Miller,J, Williamson,PC et al. Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla. Br.J.Psychiatry 2004; 184 409-415.
    [79] Pettegrew,JW, Keshavan,MS, Panchalingam,K et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch.Gen.Psychiatry 1991; 48(6): 563-568.
    [80] Klemm,S, Rzanny,R, Riehemann,S et al. Cerebral phosphate metabolism in first-degree relatives of patients with schizophrenia. Am.J.Psychiatry 2001; 158(6): 958-960.
    [81] Keshavan,MS, Haas,G, Miewald,J et al. Prolonged untreated illness duration from prodromal onset predicts outcome in first episode psychoses. Schizophr.Bull. 2003; 29(4): 757-769.
    [82] Zakzanis,KK and Hansen,KT. Dopamine D2 densities and the schizophrenic brain. Schizophr.Res. 1998; 32(3): 201-206.
    [83] Erritzoe,D, Talbot,P, Frankle,WG et al. Positron emission tomography and single photon emission CT molecular imaging in schizophrenia. Neuroimaging Clin.N.Am. 2003; 13(4): 817-832.
    [84] Cropley,VL, Fujita,M, Innis,RB et al. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol.Psychiatry 2006; 59(10): 898-907.
    [85] Talbot,PS and Laruelle,M. The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur.Neuropsychopharmacol. 2002; 12(6): 503-511.
    [86] Ho,BC, Wassink,TH, O'Leary,DS et al. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol.Psychiatry 2005; 10(3): 229, 287-229, 298.
    [87] Ohnishi,T, Hashimoto,R, Mori,T et al. The association between the Vall58Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 2006; 129(Pt 2): 399-410.
    [88] Winterer,G, Konrad,A, Vucurevic,G et al. Association of 5' end neuregulin-1 (NRG1) gene variation with subcortical medial frontal microstructure in humans. Neuroimage. 2008; 40(2): 712-718.
    [89] Harrison,PJ and Law,AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol.Psychiatry 2006; 60(2): 132-140.
    [90] Hall,J, Whalley,HC, Job,DE et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat.Neurosci. 2006; 9(12): 1477-1478.
    [91] McIntosh,AM, Baig,BJ, Hall,J et al. Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biol.Psychiatry 2007; 61(10): 1127-1134.
    [92] Sadock BJ,SVA. Schizophrenia. In: Sadock BJ, Sadock VA eds. Kaplan and Sadock's synopsis of psychiatry: behavioral sciences /clinical psychiatry. (10th edition). 2007; 467-
    [93] Tsuang,MT. Genotypes, phenotypes, and the brain. A search for connections in schizophrenia. Br.J.Psychiatry 1993; 163 299-307.
    [94] Walterfang,M, Wood,SJ, Velakoulis,D et al. Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neurosci.Biobehav.Rev. 2006; 30(7): 918-948.
    [95] Bleuler,E. Dementia Pracox or the Group of Schizophrenias. International Universities Press 1911;
    [96] Kraepelin,E. Dementia Praecox and Paraphrenia. Thoemmes, 1919; [97] Weinberger,DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch.Gen.Psychiatry 1987; 44(7): 660-669.
    [98] Harrison,PJ and Weinberger,DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol.Psychiatry 2005; 10(1): 40-68.
    [99] Mitelman,SA, Newmark,RE, Torosjan,Y et al. White matter fractional anisotropy and outcome in schizophrenia. Schizophr.Res. 2006; 87(1-3): 138-159.
    [100] Kumra,S, Ashtari,M, Cervellione,KL et al. White matter abnormalities in early-onset schizophrenia: a voxel-based diffusion tensor imaging study. J.Am.Acad.Child Adolesc.Psychiatry 2005; 44(9): 934-941.
    [101] Kyriakopoulos,M, Bargiotas,T, Barker,GJ et al. Diffusion tensor imaging in schizophrenia. Eur.Psychiatry 2008;
    [102] Buchsbaum,MS, Friedman,J, Buchsbaum,BR et al. Diffusion tensor imaging in schizophrenia. Biol.Psychiatry 2006; 60(11): 1181-1187.
    [103] Hao,Y, Liu,Z, Jiang,T et al. White matter integrity of the whole brain is disrupted in first-episode schizophrenia. Neuroreport 2006; 17(1): 23-26.
    [104] Szeszko,PR, Robinson,DG, Ashtari,M et al. Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology 2008; 33(5): 976-984.
    [105] Mendelsohn,A, Strous,RD, Bleich,M et al. Regional axonal abnormalities in first episode schizophrenia: preliminary evidence based on high b-value diffusion-weighted imaging. Psychiatry Res. 2006; 146(3): 223-229.
    [106] Jones,DK, Catani,M, Pierpaoli,C et al. A diffusion tensor magnetic resonance imaging study of frontal cortex connections in very-late-onset schizophrenia-like psychosis. Am.J.Geriatr.Psychiatry 2005; 13(12): 1092-1099.
    [107] Price,G, Bagary,MS, Cercignani,M et al. The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study. J.Neurol.Neurosurg.Psychiatry 2005; 76(4): 585-587.
    [108] Wang,F, Sun,Z, Du,X et al. A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neurosci.Lett. 2003; 348(3): 135-138.
    [109] Foong,J, Symms,MR, Barker,GJ et al. Investigating regional white matter in schizophrenia using diffusion tensor imaging. Neuroreport 2002; 13(3): 333-336.
    [110] Kubicki,M, Westin,CF, Maier,SE et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am.J.Psychiatry 2002; 159(5): 813-820.
    [111] Seok,JH, Park,HJ, Chun,JW et al. White matter abnormalities associated with auditory hallucinations in schizophrenia: a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging. Psychiatry Res. 2007; 156(2): 93-104.
    [112] White,T, Kendi,AT, Lehericy,S et al. Disruption of hippocampal connectivity in children and adolescents with schizophrenia-a voxel-based diffusion tensor imaging study. Schizophr.Res. 2007; 90(1-3): 302-307.
    [113] Barch,DM. The cognitive neuroscience of schizophrenia. Annu.Rev.Clin.Psychol. 2005; 1 321-353.
    [114] Crespo-Facorro,B, Barbadillo,L, Pelayo-Teran,JM et al. Neuropsychological functioning and brain structure in schizophrenia. IntRev.Psychiatry 2007; 19(4): 325-336.
    [115] Wood,JN and Grafman,J. Human prefrontal cortex: processing and representational perspectives. Nat.Rev.Neurosci. 2003; 4(2): 139-147.
    [116] Perlstein,WM, Dixit,NK, Carter,CS et al. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol.Psychiatry 2003; 53(1): 25-38.
    [117] Barch,DM, Carter,CS, Braver,TS et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch.Gen.Psychiatry 2001; 58(3): 280-288.
    [118] Heckers,S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001; 11(5): 520-528.
    [119] Harrison,PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004; 174(1): 151-162.
    [120] Callicott,JH and Weinberger,DR. Brain imaging as an approach to phenotype characterization for genetic studies of schizophrenia. Methods Mol.Med. 2003; 77 227-247.
    [121] Botvinick,MM, Braver,TS, Barch,DM et al. Conflict monitoring and cognitive control. Psychol.Rev. 2001; 108(3): 624-652.
    [122] Baiano,M, David,A, Versace,A et al. Anterior cingulate volumes in schizophrenia: a systematic review and a meta-analysis of MRI studies. Schizophr.Res. 2007; 93(1-3): 1-12.
    [123] Benes,FM. Model generation and testing to probe neural circuitry in the cingulate cortex of postmortem schizophrenic brain. Schizophr.Bull. 1998; 24(2): 219-230.
    [124] Roy,K, Murtie,JC, El-Khodor,BF et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc.Natl.Acad.Sci.U.S.A 2007; 104(19): 8131-8136.
    [125] Heckers,S, Rauch,SL, Goff,D et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat.Neurosci. 1998; 1(4): 318-323.
    [126] Meyer-Lindenberg,A, Poline,JB, Kohn,PD et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am.J.Psychiatry 2001; 158(11): 1809-1817.
    [127] Meyer-Lindenberg,AS, Olsen,RK, Kohn,PD et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch.Gen.Psychiatry 2005; 62(4): 379-386.
    [128] Weinberger,DR, Berman,KF, Suddath,R et al. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am.J.Psychiatry 1992; 149(7): 890-897.
    [129] Goldman-Rakic,PS, Selemon,LD, and Schwartz,ML. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 1984; 12(3): 719-743.
    [130] Zhou,Y, Shu,N, Liu,Y et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr.Res. 2008; 100(1-3): 120-132.
    [131] Zhou,Y, Liang,M, Jiang,T et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci.Lett. 2007; 417(3): 297-302.
    [132] Lawrie,SM, McIntosh,AM, Hall,J et al. Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr.Bull. 2008; 34(2): 330-340.
    [133] Cohen,RA, Kaplan,RF, Moser,DJ et al. Impairments of attention after cingulotomy, Neurology 1999; 53(4): 819-824.
    [134] Gehring,WJ and Knight,RT. Prefrontal-cingulate interactions in action monitoring. Nat.Neurosci. 2000; 3(5): 516-520.
    [135] Paus,T, Petrides,M, Evans,AC et al. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J.Neurophysiol. 1993; 70(2): 453-469.
    [136] Yucel,M, Brewer,WJ, Harrison,BJ et al. Anterior cingulate activation in antipsychotic-naive first-episode schizophrenia. Acta Psychiatr.Scand. 2007; 115(2): 155-158.
    [137] Szeszko,PR, Bilder,RM, Lencz,T et al. Reduced anterior cingulate gyrus volume correlates with executive dysfunction in men with first-episode schizophrenia. Schizophr.Res. 2000; 43(2-3): 97-108.
    [138] Konrad,A and Winterer,G. Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophr.Bull. 2008; 34(1): 72-92.
    [139] Fornito,A, Yucel,M, Dean,B et al. Anatomical Abnormalities of the Anterior Cingulate Cortex in Schizophrenia: Bridging the Gap Between Neuroimaging and Neuropathology. Schizophr.Bull. 2008;
    [140] Fornito,A, Yung,AR, Wood,SJ et al. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol.Psychiatry 2008; 64(9): 758-765.
    [141] Fletcher,P, McKenna,PJ, Friston,KJ et al. Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage. 1999; 9(3): 337-342.
    [142] Cheung,V, Cheung,C, McAlonan,GM et al. A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychol.Med. 2007; 1-9.
    [143] Stephan,KE, Baldeweg,T, and Friston,KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol.Psychiatry 2006; 59(10): 929-939.
    [144] Volkow,ND, Wolf,AP, Brodie,JD et al. Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophr.Res. 1988; 1(1): 47-53.
    [145] Mesulam,MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann.Neurol. 1990; 28(5): 597-613.
    [146] McIntosh,AR. Mapping cognition to the brain through neural interactions. Memory. 1999; 7(5-6): 523-548.
    [147] Frith,CD, Friston,KJ, Herold,S et al. Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br.J.Psychiatry 1995; 167(3): 343-349.
    [148] Andreasen,NC, O'Leary,DS, Flaum,M et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 1997; 349(9067): 1730-1734.
    [149] Ragland,JD, Gur,RC, Valdez,J et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am.J.Psychiatry 2004; 161(6): 1004-1015.
    [150] Honey,GD, Pomarol-Clotet,E, Corlett,PR et al. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 2005; 128(Pt 11): 2597-2611.
    [151] Boksman,K, Theberge,J, Williamson,P et al. A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophr.Res. 2005; 75(2-3): 247-263.
    [152] Menon,V, Anagnoson,RT, Glover,GH et al. Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia. Am.J.Psychiatry 2001; 158(4): 646-649.
    [153] Mitelman,SA, Byne,W, Kemether,EM et al. Metabolic disconnection between the mediodorsal nucleus of the thalamus and cortical Brodmann's areas of the left hemisphere in schizophrenia. Am.J.Psychiatry 2005; 162(9): 1733-1735.
    [154] Schlosser,R, Gesierich,T, Kaufmann,B et al. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage. 2003; 19(3): 751-763.
    [155] Jafri,MJ, Pearlson,GD, Stevens,M et al. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage. 2008; 39(4): 1666-1681.
    [156] Zhou,Y, Liang,M, Jiang,T et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci.Lett. 2007; 417(3): 297-302.
    [157] Liang,M, Zhou,Y, Jiang,T et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 2006; 17(2): 209-213.
    [158] Spence,SA, Liddle,PF, Stefan,MD et al. Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk. Focal dysfunction and distributed disconnectivity reappraised. Br.J.Psychiatry 2000; 176 52-60.
    [159] Whalley,HC, Simonotto,E, Marshall,I et al. Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain 2005; 128(Pt 9): 2097-2108.
    [160] Winterer,G, Egan,MF, Radler,T et al. An association between reduced interhemispheric EEG coherence in the temporal lobe and genetic risk for schizophrenia. Schizophr.Res. 2001; 49(1-2): 129-143.
    [161] Winterer,G, Coppola,R, Egan,MF et al. Functional and effective frontotemporal connectivity and genetic risk for schizophrenia. Biol.Psychiatry 2003; 54(11): 1181-1192.
    [162] Parker,GJ, Luzzi,S, Alexander,DC et al. Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage. 2005; 24(3): 656-666.
    [163] Skudlarski,P, Jagannathan,K, Calhoun,VD et al. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage. 2008; 43(3): 554-561.
    [164] Huang,H, Zhang,J, Jiang,H et al. DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage. 2005; 26(1): 195-205.
    [165] Kanaan,RA, Shergill,SS, Barker,GJ et al. Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res. 2006; 146(1): 73-82.
    [166] Kubicki,M, Styner,M, Bouix,S et al. Reduced interhemispheric connectivity in schizophrenia-tractography based segmentation of the corpus callosum. Schizophr.Res. 2008;
    [167] Jones,DK, Catani,M, Pierpaoli,C et al. Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Hum.Brain Mapp. 2006; 27(3): 230-238.
    [168] Price,G, Cercignani,M, Parker,GJ et al. Abnormal brain connectivity in first-episode psychosis: a diffusion MRI tractography study of the corpus callosum. Neuroimage. 2007; 35(2): 458-466.
    [169] Price,G, Cercignani,M, Parker,GJ et al. White matter tracts in first-episode psychosis: a DTI tractography study of the uncinate fasciculus. Neuroimage. 2008; 39(3): 949-955.
    [170] Papadakis,NG, Xing,D, Houston,GC et al. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson.Imaging 1999; 17(6): 881-892.
    [171] Rotarska-Jagiela,A, Schonmeyer,R, Oertel,V et al. The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage. 2008; 39(4): 1522-1532.
    [172] Jones,P, Rodgers,B, Murray,R et al. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994; 344(8934): 1398-1402.
    [173] Gonzalez-Blanch,C, Crespo-Facorro,B, varez-Jimenez,M et al. Cognitive dimensions in first-episode schizophrenia spectrum disorders. J.Psychiatr.Res. 2007; 41(11): 968-977.
    [174] McIntosh,AM, Harrison,LK, Forrester,K et al. Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. Br.J Psychiatry 2005; 186 378-385.
    [175] Kerns,JG. Verbal communication impairments and cognitive control components in people with schizophrenia. J.Abnorm.Psychol. 2007; 116(2): 279-289.
    [176] Brambilla,P, Cerini,R, Gasparini,A et al. Investigation of corpus callosum in schizophrenia with diffusion imaging. Schizophr.Res. 2005; 79(2-3): 201-210.
    [177] Ho,BC, Andreasen,NC, Nopoulos,P et al. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch.Gen.Psychiatry 2003; 60(6): 585-594.
    [178] Sanfilipo,M, Lafargue,T, Rusinek,H et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch.Gen.Psychiatry 2000; 57(5): 471-480.
    [179] Sigmundsson,T, Suckling,J, Maier,M et al. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am.J.Psychiatry 2001; 158(2): 234-243.
    [180] Bartzokis,G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27(4): 672-683.
    [181] Bartzokis,G and Altshuler,L. Biological underpinnings of treatment resistance in schizophrenia: an hypothesis. Psychopharmacol.Bull. 2003; 37(4): 5-7.
    [182] David,AS. Schizophrenia and the corpus callosum: developmental, structural and functional relationships. Behav.Brain Res. 1994; 64(1-2): 203-211.
    [183] Downhill,JE, Jr., Buchsbaum,MS, Wei,T et al. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr.Res. 2000; 42(3): 193-208.
    [184] Keshavan,MS, Diwadkar,VA, Harenski,K et al. Abnormalities of the corpus callosum in first episode, treatment naive schizophrenia. J Neurol.Neurosurg.Psychiatry 2002; 72(6): 757-760.
    [185] Innocenti,GM, Ansermet,F, and Parnas,J. Schizophrenia, neurodevelopment and corpus callosum. Mol.Psychiatry 2003; 8(3): 261-274.
    [186] Colombo,C, Bonfanti,A, and Scarone,S. Anatomical characteristics of the corpus callosum and clinical correlates in schizophrenia. Eur.Arch.Psychiatry Clin.Neurosci. 1994; 243(5): 244-248.
    [187] HighleyJR, Esiri,MM, McDonald,B et al. The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 1999; 122 (Pt 1)99-110.
    [188] Davatzikos,C, Shen,D, Gur,RC et al. Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch.Gen.Psychiatry 2005; 62(11): 1218-1227.
    [189] Vogeley,K, Tepest,R, Schneider-Axmann,T et al. Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia. Schizophr.Res. 2003; 62(1-2): 133-140.
    [190] Frith,C. Neuropsychology of schizophrenia, what are the implications of intellectual and experiential abnormalities for the neurobiology of schizophrenia? Br.Med.Bull. 1996; 52(3): 618-626.
    [191] Vogeley,K, Kurthen,M, Falkai,P et al. Essential functions of the human self model are implemented in the prefrontal cortex. Conscious.Cogn 1999; 8(3): 343-363.
    [192] Annett,M. The theory of an agnosic right shift gene in schizophrenia and autism. Schizophr.Res. 1999; 39(3): 177-182.
    [193] Crow,TJ. Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res.Brain Res.Rev. 2000; 31(2-3): 118-129.
    [194] Casanova,MF, Sanders,RD, Goldberg,TE et al. Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study. J.Neurol.Neurosurg.Psychiatry 1990; 53(5): 416-421.
    [195] Narr,KL, Cannon,TD, Woods,RP et al. Genetic contributions to altered callosal morphology in schizophrenia. J.Neurosci. 2002; 22(9): 3720-3729.
    [196] Cannon,TD, Thompson,PM, van Erp,TG et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2002; 99(5): 3228-3233.
    [197] Hulshoff Pol,HE, Brans,RG, van Haren,NE et al. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biol.Psychiatry 2004; 55(2): 126-130.
    [198] Hulshoif Pol,HE, Schnack,HG, Mandl,RC et al. Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. Neuroimage. 2006; 31(2): 482-488.
    [199] Shergill,SS, Kanaan,RA, Chitnis,XA et al. A diffusion tensor imaging study of fasciculi in schizophrenia. Am.J.Psychiatry 2007; 164(3): 467-473.
    [200] Crow,TJ. Schizophrenia as a transcallosal misconnection syndrome. Schizophr.Res. 1998; 30(2): 111-114.
    [201] Narr,KL, Green,MF, Capetillo-Cunliffe,L et al. Lateralized lexical decision in schizophrenia: hemispheric specialization and interhemispheric lexicality priming. J.Abnorm.Psychol. 2003; 112(4): 623-632.
    [202] Endrass,T, Mohr,B, and Rockstroh,B. Reduced interhemispheric transmission in schizophrenia patients: evidence from event-related potentials. Neurosci.Lett. 2002; 320(1-2): 57-60.
    [203] Mohr,B, Pulvermuller,F, Cohen,R et al. Interhemispheric cooperation during word processing: evidence for callosal transfer dysfunction in schizophrenic patients. Schizophr.Res. 2000; 46(2-3): 231-239.
    [204] Bluhm,RL, Miller,J, Lanius,RA et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr.Bull. 2007; 33(4): 1004-1012.
    [205] Foucher,JR, Vidailhet,P, Chanraud,S et al. Functional integration in schizophrenia: too little or too much? Preliminary results on fMRI data. Neuroimage. 2005; 26(2): 374-388.
    [206] Gunther,W, Petsch,R, Steinberg,R et al. Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biol.Psychiatry 1991; 29(6): 535-555.
    [207] Tibbo,P, Nopoulos,P, Arndt,S et al. Corpus callosum shape and size in male patients with schizophrenia. Biol.Psychiatry 1998; 44(6): 405-412.
    [208] Woodruff,PW, Wright,JC, Shuriquie,N et al. Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol.Med. 1997; 27(6): 1257-1266.
    [1] Mukherjee,P, Miller,JH, ShimonyJS et al. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am.J.Neuroradiol. 2002; 23(9): 1445-1456.
    [2] Symond,MP, Harris,AW, Gordon,E et al. "Gamma synchrony" in first-episode schizophrenia: a disorder of temporal connectivity? Am.J.Psychiatry 2005; 162(3): 459-465.
    [3] Basser,PJ and Pierpaoli,C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J.Magn Reson.B 1996; 111(3): 209-219.
    [4] Lim,KO, Hedehus,M, Moseley,M et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch.Gen.Psychiatry 1999; 56(4): 367-374.
    [5] Foong,J, Symms,MR, Barker,GJ et al. Investigating regional white matter in schizophrenia using diffusion tensor imaging. Neuroreport 2002; 13(3): 333-336.
    [6] Price,G, Bagary,MS, Cercignani,M et al. The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study. J.Neurol.Neurosurg.Psychiatry 2005; 76(4): 585-587.
    [7] Steel,RM, Bastin,ME, McConnell,S et al. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry Res. 2001; 106(3): 161-170.
    [8] Kubicki,M, Westin,CF, Maier,SE et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am.J.Psychiatry 2002; 159(5): 813-820.
    [9] Park,HJ, Westin,CF, Kubicki,M et al. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neuroimage. 2004; 23(1): 213-223.
    [10] Kubicki,M, Westin,CF, Nestor,PG et al. Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol.Psychiatry 2003; 54(11): 1171-1180.
    [11] Wang,F, Sun,Z, Cui,L et al. Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging. Am.J.Psychiatry 2004; 161(3): 573-575.
    [12] Hoptman,MJ, Ardekani,BA, Butler,PD et al. DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport 2004; 15(16): 2467-2470.
    [13] Kubicki,M, Park,H, Westin,CF et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage. 2005; 26(4): 1109-1118.
    [14] Wang,F, Sun,Z, Du,X et al. A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neurosci.Lett. 2003; 348(3): 135-138.
    [1] Bleuer,E. Dementia praecox oder die Gruppe der Schizophrenien. 1911;
    [2] Jones,P, Rodgers,B, Murray,R et al. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994; 344(8934): 1398-1402.
    [3] Gonzalez-Blanch,C, Crespo-Facorro,B, varez-Jimenez,M et al. Cognitive dimensions in first-episode schizophrenia spectrum disorders. J.Psychiatr.Res. 2007; 41(11): 968-977.
    [4] McIntosh,AM, Harrison,LK, Forrester,K et al. Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. Br.J Psychiatry 2005; 186 378-385.
    [5] Gottesman,Ⅱ and Gould,TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am.J.Psychiatry 2003; 160(4): 636-645.
    [6] Shenton,ME, Dickey,CC, Frumin,M et al. A review of MRI findings in schizophrenia. Schizophr.Res. 2001; 49(1-2): 1-52.
    [7] Gur,RE, Turetsky,BI, Bilker,WB et al. Reduced gray matter volume in schizophrenia. Arch.Gen.Psychiatry 1999; 56(10): 905-911.
    [8] Choi,JS, Kang,DH, Kim,JJ et al. Decreased caudal anterior cingulate gyrus volume and positive symptoms in schizophrenia. Psychiatry Res. 2005; 139(3): 239-247.
    [9] Lopez-Garcia,P, Aizenstein,HJ, Snitz,BE et al. Automated ROI-based brain parcellation analysis of frontal and temporal brain volumes in schizophrenia. Psychiatry Res. 2006; 147(2-3): 153-161.
    [10] Exner,C, Weniger,G, Schmidt-Samoa,C et al. Reduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr.Res. 2006; 84(2-3): 386-396.
    [11] Chan,RC, Chen,EY, Cheung,EF et al. Executive dysfunctions in schizophrenia. Relationships to clinical manifestation. Eur.Arch.Psychiatry Clin.Neurosci. 2004; 254(4): 256-262.
    [12] Honey,GD and Fletcher,PC. Investigating principles of human brain function underlying working memory: what insights from schizophrenia? Neuroscience 2006; 139(1): 59-71.
    [13] Baare,WF, Hulshoff Pol,HE, Hijman,R et al. Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol.Psychiatry 1999; 45(12): 1597-1605.
    [14] Sullivan,EV, Shear,PK, Lim,K0 et al. Cognitive and motor impairments are related to gray matter volume deficits in schizophrenia. Biol.Psychiatry 1996; 39(4): 234-240.
    [15] Zuffante,P, Leonard,CM, Kuldau,JM et al. Working memory deficits in schizophrenia are not necessarily specific or associated with MRI-based estimates of area 46 volumes. Psychiatry Res. 2001; 108(3): 187-209.
    [16] Maher,BA, Manschreck,TC, Woods,BT et al. Frontal brain volume and context effects in short-term recall in schizophrenia. Biol.Psychiatry 1995; 37(3): 144-150.
    [17] Hoptman,MJ, Volavka,J, Weiss,EM et al. Quantitative MRI measures of orbitofrontal cortex in patients with chronic schizophrenia or schizoaffective disorder. Psychiatry Res. 2005; 140(2): 133-145.
    [18] Chemerinski,E, Nopoulos,PC, Crespo-Facorro,B et al. Morphology of the ventral frontal cortex in schizophrenia: relationship with social dysfunction. Biol.Psychiatry 2002; 52(1): 1-8.
    [19] Lawyer,SR, Resnick,HS, Galea,S et al. Predictors of peritraumatic reactions and PTSD following the September 11th terrorist attacks. Psychiatry 2006; 69(2): 130-141.
    [20] Sanfilipo,M, Lafargue,T, Rusinek,H et al. Cognitive performance in schizophrenia: relationship to regional brain volumes and psychiatric symptoms. Psychiatry Res. 2002; 116(1-2): 1-23.
    [21] Kim,JJ, Crespo-Facorro,B, Andreasen,NC et al. Morphology of the lateral superior temporal gyrus in neuroleptic nai;ve patients with schizophrenia: relationship to symptoms. Schizophr.Res. 2003; 60(2-3): 173-181.
    [22] Gur,RE, Turetsky,BI, Cowell,PE et al. Temporolimbic volume reductions in schizophrenia. Arch.Gen.Psychiatry 2000; 57(8): 769-775.
    [23] Aleman,A and Kahn,RS. Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog.Neurobiol. 2005; 77(5): 283-298.
    [24] Crespo-Facorro,B, Roiz-Santianez,R, Pelayo-Teran,JM et al. Caudate nucleus volume and its clinical and cognitive correlations in first episode schizophrenia. Schizophr.Res. 2007; 91(1-3): 87-96.
    [25] Fan,J, McCandliss,BD, Fossella,J et al. The activation of attentional networks. Neuroimage. 2005; 26(2): 471-479.
    [26] Crespo-Facorro,B, Roiz-Santianez,R, Pelayo-Teran,JM et al. Reduced thalamic volume in first-episode non-affective psychosis: correlations with clinical variables, symptomatology and cognitive functioning. Neuroimage. 2007; 35(4): 1613-1623.
    [27] Antonova,E, Sharma,T, Morris,R et al. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr.Res. 2004; 70(2-3): 117-145.
    [28] Andreasen,NC, Paradiso,S, and O'Leary,DS. "Cognitive dysmetria" as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr.Bull. 1998; 24(2): 203-218.
    [29] Toulopoulou,T, Grech,A, Moms,RG et al. The relationship between volumetric brain changes and cognitive function: a family study on schizophrenia. Biol.Psychiatry 2004; 56(6): 447-453.
    [30] Steen,RG, Mull,C, McClure,R et al. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br.J Psychiatry 2006; 188 510-518.
    [31] Laywer,G, Nyman,H, Agartz,I et al. Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression. BMC.Psychiatry 2006; 6:31.
    [32] Szendi,I, Kiss,M, Racsmany,M et al. Correlations between clinical symptoms, working memory functions and structural brain abnormalities in men with schizophrenia. Psychiatry Res. 2006; 147(1): 47-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700