高场强MRI转移瘤诊断特征及其与高级别胶质瘤鉴别诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     将磁敏感加权成像(susceptibility-weighted imaging,SWI)、弥散加权成像(diffusion-weighted imaging,DWI)、弥散张量成像(diffusion tensor imaging,DTI)、磁共振灌注成像(perfusion weighted magnetic resonance imaging,PWI)、二维(two-dimension,2D)氢质子MR波谱(proton MR spectroscopy,~1H-MRS)序列应用于转移瘤及瘤周区域,对其诊断特征进行研究。在组织学上,转移瘤和高级别胶质瘤(Ⅲ级、Ⅳ级)的内部结构、弥散、代谢产物等都存在差异,本研究通过MRI不同功能序列对肿瘤瘤体和瘤周区域的研究,探讨其在二者鉴别诊断中的应用价值。
     方法:
     采用GE Signa EXCITEⅡ3.0T MR机扫描。除常规MRI平扫外,95例转移瘤患者同时接受T2~*WI和SWI检查、MRI强化;55例转移瘤(肿瘤数目不多于3个,其中20例为单发)和33例高级别胶质瘤同时接受了DWI和DTI、PWI和MRI强化、二维~1H-MRS检查。
     1.常规MRI检查
     常规MRI扫描序列包括横轴位、冠状位T_2WI(TR/TE=4500/102 ms,层厚6.0mm,间隔1.0 mm,矩阵320×224,视野(field of view,FOV)24 cm×24 cm,采集时间1分53秒)、横轴位T_1WI(TR/TE=500/8 ms,层厚6.0 mm,间隔1.0 mm,矩阵320×224,FOV24 cm×24 cm,采集时间2分11秒)、横轴位T_2液体衰减恢复(fluid-attenuated inversion-recovery,FLAIR)(TR/TE=9000/120 ms,层厚6.0mm,间隔1.0 mm,矩阵320×224,FOV24 cm×24 cm,采集时间3.0分)。
     2.T2~*WI检查和SWI检查
     T2~*WI检查采用GRE序列,TR/TE=520/20 ms,反转角度20°,层厚6.0 mm,间隔1.0 mm,矩阵256×224,FOV24 cm×24 cm,采集时间2分58秒。
     SWI检查采用3D SPGR序列,TR/TE=23/13 ms,反转角度20°,扫描块的厚度56 mm,矩阵512×448,FOV 24 cm×24 cm,采集时间6分28秒。原始数据采用Functool 3.1 software;Sun,GE Healthcare进行重建得到校正的相位图和磁矩图,再对得到的磁矩图进行重建得到最小密度投影(minimum intensity projection,Min IP)图像。
     3.DWI检查和DTI检查
     DWI检查采用SE/EPI技术,3个垂直平面的弥散梯度,b值为0和1000s/mm~2,TR/TE=5000/65 ms,层厚6.0 mm,间隔1.0 mm,矩阵256×192,FOV 24cm×24 cm,采集时间1分钟。首先经后处理产生表观弥散系数(apparent diffusion coefficient,ADC)图;然后,在ADC图上手工绘制感兴趣区(regions of interest,ROI),分别选择在肿瘤的实质区、坏死区、瘤周带及对侧大脑半球正常白质区,瘤周带定义为强化的肿瘤实质周围2cm区域,在大多数病例表现为T1WI低信号、T2WI高信号、增强无强化,少数病例则T1WI、T2WI、增强扫描均与正常脑组织信号相近。ROI的ADC值直接测量得出,随后进行标准化处理,计算ADC比值(relativeADC,rADC),即病变区域的ADC值与对侧大脑半球正常白质区相同大小ROI的ADC值之比。
     DTI检查采用单次激励平面回波(Echo planner imaging,EPI)自旋(Spin echo,SE)序列。扫描参数为:层厚5.0mm,层间距0,层数26层,每层采集25个非共线的梯度方向的数据,b值为0和1000s/mm~2,TR/TE=6000ms/minimum,FOV24cm×24 cm,矩阵128×128,NEX=2,采集时间为2分48秒。后处理时,首先用correction程序对图像进行校正,以减少运动伪影和图像变形;然后进行域值设定,要求既能使图像背景噪声尽可能减少,又要包含所有脑组织;得到分数各向异性(fractional anisotropy,FA)图、ADC图。选择与DWI一致的ROI,分别记录ADC值、ADC比值(r ADC)、FA值及FA比值(relative FA,r FA),以进行定量分析。
     4.灌注成像和增强检查
     灌注成像用EPI SE序列:单次激发,TR/TE=1900/80ms,激励1次,FOV24cm×24 cm,层厚6mm,间隔1mm,矩阵128×128,单次扫描时间为4s(覆盖11层),间隔时间500ms,共扫描24次,总计扫描时间为1分36秒。在肘静脉内置入20号针头,与高压注射器相接。在第1个扫描时相末以5ml/s的流率注射0.2mmol/kg体重钆-二乙烯五胺乙酸(Gadolinium diethylene- triamine pentaceticacid,Gd-DTPA),随后以相同流率注射生理盐水20ml。数据处理包括:(1)获取ROI时间-信号强度曲线;(2)测量ROI的脑血容积(cerebral blood volume,CBV)和平均通过时间(mean transi-time,MTT),计算相对CBV(relaive CBV,r CBV)和相对MTT(relative MTT,r MTT)(与对侧正常脑白质比较)。
     在以轴位CBV伪彩图中目测肿瘤实质的最高灌注处(对应常规MRI中无明显囊变、坏死或出血区)、瘤周带的最高灌注处及对侧正常脑白质内分别放置ROI,平均测量3~5次,取最大值。每个ROI大小为20~30mm~2,在选择ROI时注意避开粗大血管。
     然后行横轴位、冠状位和矢状位增强扫描,扫描参数同平扫T_1WI。
     5.二维~1H-MRS检查
     在增强MRI扫描后行2D ~1H-MRS检查,此时可以准确分辨强化的肿瘤实质、无强化的坏死囊变区以及水肿区,分析时~1H-MRS的感兴趣体(volume of interest,VOI)可准确放置于ROI域。
     2D ~1H-MRS的扫描参数为:采用点分辨波谱(point resolved surface coilspectroscopy,PRESS)序列,水抑制,TR/TE=1500/144 ms;FOV 16 cm;矩阵16×16;层厚10 mm;采集次数为1;采集时间为4分20秒。VOI放置于横轴位上,且与增强横轴位T_1WI上的强化区域相对应。放置VOI时应避开头皮脂肪组织和颅脑骨质。在VOI周围使用高度选择性的饱和(very selective saturation,VSS)脉冲。然后执行预扫描,自动匀场结果:如果最大半宽(full-width half-maximum,FWHM)≤15Hz,水抑制为95%~99%,则开始扫描,否则再次进行自动匀场,如果仍不能到达要求,则重新设定VOI。
     后处理时,首先产生代谢—解剖图,移动体素选择ROI,并在波谱图上观察代谢物的变化情况,每个体素大小为1 cm×1 cm×1 cm,评价代谢物的波谱为:N-乙酰天冬氨酸(N-acetylaspartate,NAA)、胆碱(choline,Cho)、肌酸(creatine,Cr)、脂质(lipid,Lip)、乳酸(lactate,Lac)。各种代谢物的数值(即波峰下的面积)可自动得出,然后手工计算代谢物的比值(NAA/Cr、Cho/Cr、Lip/Cr、Lac/Cr和Cho/NAA)。
     5.统计学分析
     统计学分析使用SPSS 13.0软件(SPSS Inc,Chicago,IL,USA),采用t检验比较:(1)T2~*WI与SWI序列检测瘤内出血敏感性;(2)转移瘤组与胶质瘤组之间ADC参数(ADC值和ADC比值)、FA参数(FA值和FA比值)、灌注参数、MRS各代谢参数的差异。所有数值结果以均数±标准差表示。p<0.05为差异有统计学意义。
     结果:
     1.T2~*WI、SWI检查结果
     1.1以MRI增强扫描图像为参照,SWI可检出79.2%的脑内转移瘤,对于合并水肿和/或出血的瘤灶显示率达100%。
     1.2 SWI序列对转移瘤瘤内出血的检出能力显著高于T2~*WI序列。2.DWI和DTI检查结果
     2.1高级别胶质瘤组瘤周带ADC值较转移瘤有明显增高;而两组间在肿瘤实质、囊变坏死组织的ADC值测量方面差异无统计学意义。
     2.2高级别胶质瘤组肿瘤实质实质FA值显著高于转移瘤组。
     2.3转移瘤主要对周围脑白质束产生压迫作用,三维神经纤维束成像以变形、移位为主;高级别胶质瘤对周围脑白质有浸润和破坏,三维神经纤维束成像显示明显地中断、残缺。
     3.PWI检查结果
     高级别胶质瘤组肿瘤实质、瘤周带的最大rCBV均高于脑转移瘤,差异有统计学意义;二者rMTT差异无统计学意义。
     4.2D ~1H-MRS检查结果
     4.1转移瘤组和高级别胶质瘤组肿瘤实质各主要代谢物比值差异无统计学意义。
     4.2转移瘤组与胶质瘤组瘤周带波谱比较,胶质瘤组Cho/Cr、Cho/NAA明显升高。两组肿瘤之间的NAA/Cr、Lac/Cr无统计学差异。
     结论:
     1.SWI可检出绝大部分转移瘤,对合并瘤内出血和瘤周水肿的瘤灶更为敏感。可应用于有原发肿瘤史患者的临床随访。
     2.瘤周带的各项功能MRI参数转移瘤组和高级别胶质瘤组之间均存在显著性差异。瘤周带ADC值、rCBV值和Cho峰的升高以及纤维束连接性中断、局限性消失可作为高级别胶质瘤的特征性表现。
     3.联合应用MRI功能序列鉴别转移瘤和胶质瘤时,应重点观察瘤周带的MRI特征。
Objective:
     To investigate the characterization of brain metastases in different MRI sequences including susceptibility-weighted imaging(SWI),difffusion-weighted imaging(DWI), perfusion weighted imaging(PWI) and two-dimension proton MR spectroscopy(2D ~1H-MRS).To distinguish between brain metastases and high-grade gliomas(gradeⅢand gradeⅣ) on the basis of differences in vascularity,water self-diffusion, microarchitecture and metabolite levels in the tumor and peritumoral regions.
     Methods:
     MRI examinations were performed using a 3.0T MR scanner(Signa EXCITEⅡ; GE Medical Systems).In 95 cases with brain metastases,T2~*WI,SWI and contrast-enhanced(CE) T1WI were performed.In 55 cases with brain metastases and 33 cases with high-grade gliomas,DWI,DTI,PWI,CE T1WI and 2D ~1H-MRS were performed.
     1.The conventional MRI examination
     The protocol consisted of axial T1-weighted(TR/TE=500/8 ms) spin-echo(SE), T2-weighted(4500/102 ms) fast SE,and fluid-attenuated inversion-recovery(FLAIR) (TR/TE=9000/120 ms) with 6 mm slice thickness,240 mm field of view(FOV) and 320×224 matrix.
     2.T2~*WI and SWI
     2.1 T2~*WI was obtained using the following parameters:TR/TE=520/20ms;flip angle,20 degrees;matrix,512×512;FOV,256×256 mm;20 slices;slice thickness/gap,6 mm/1mm.Acquisition time was 2 minutes and 14 seconds.
     2.2 SWI was obtained as a fully velocity-compensated three-dimensional gradient echo sequence using the following parameters:TR/TE=23/13ms;flip angle,20 degrees;matrix,512×448;field of view(FOV),240×240 mm.Acquisition time was 6 minutes and 28 seconds.
     3.DWI and DTI
     3.1 DWI was obtained using an axial echo-planar SE sequence:TR/TE= 5000/65 ms;one average;6 mm slice thickness;diffusion gradient encoding in 3 orthogonal directions;b=0,1000 s/mm~2;240 mm FOV;160×192 matrix.Acquisition time was 1 minute.
     Postprocessing of apparent diffusion coefficient(ADC) maps was performed using standard software on a workstation(Functool 3.1 software;GE Healthcare).In brief,regions of interest(ROIs) were drawn manually in the enhancing tumor, necrosis,peritumoral region and edema outside of peritumoral regionin CE T1WI based ADC images.The ADC value was calculated automatically by the Functool 3.1 software.For normalizing ADC levels,an ADC ratio was calculated as the quotient of the ADC values of the enhancing region and those of an ROI of the same size in the contralateral normal white matter.
     3.2 DTI was obtained using an axial echo-planar(EPI) spin echo(SE) sequence: TR/TE=6000/minimum ms;5 mm slice thickness;no gap;diffusion gradient encoding in 3 orthogonal directions;b=0,1000 s/mm~2;240 mm FOV;128×128 matrix;NEX=2.Acquisition time was 2 minutes and 48 seconds.
     Postprocessing was perforned using standard DTI software on a workstation (Functool 3.1 software;GE Healthcare).ROIs were carried over the DWI postprocessing.The ADC/ FA values were calculated automatically.ADC values, relative ADC(rADC),fractional anisotropy(FA) value and relative FA(rFA) were calculated and recorded.
     4.PWI and CE T1WI
     Following institutional protocol,SE-EPI PWI(TR/TE=1900/ 80ms;slice thickness 6mm;matrix 128×128) was performed using a 5ml/s bolus injection of gadopentetate dimeglumine(Magnevist;Bayer HealthCare Pharmaceuticals) (0.2mmol/kg) and was coregistered with delayed postgadolinium T1-weighted imaging.Postprocessing was perforned using a perfusion processing software package, which generates color cerebral blood volume(CBV) and mean transit-time(MTT) maps.ROIs were selected within the region of maximal CBV for three times and recorded the average CBV,relative CBV(rCBV),MTT and relative MTT(rMTT) values.
     CE T1WI was then performed in axial,coronal and sagital planes.
     5.2D ~1H-MRS
     2D ~1H-MRS was always performed based on CE T1WI to insure accurate voxel placement since the enhanced umor,low intensity necrosis and edema can be distinguished easily.
     The following parameters were used:a point-resolved spectroscopy sequence (PRESS);TR/TE=1500/144 ms;16 cm FOV;160×160 matrix;10-mm slice thickness;acquisition,1 average;scanning time,4 minutes and 20 seconds.A volume of interest(VOI) was placed on axial T1-weighted images corresponding to the contrast-enhancing area.Automatic prescanning was performed before the spectroscopic scan to ensure adequate water suppression.The full-width half-maximum was kept under 15 Hz and water saturation between 95%and 99%.
     The details of the postprocessing used for MR spectroscopy was as follows.Within the obtained VOI,separate 1cm×1cm×1cm voxels were individually placed in the enhancing tumor and peritumoral region.The following metabolite peaks were indentified:N-acetylaspartate(NAA) at 2.02-ppm,choline-containing compounds (Cho) at 3.22-ppm,(phospho-) creatine(Cr) at 3.01-ppm,lipid-containing compounds (Lip) in the range of 0.9-1.3 ppm,and lactate(Lac) at 1.35-ppm(an invertedβ-methyl doublet).Metabolite values were calculated automatically from the area under each metabolite peak by the Functool 3.1 software.Metabolite ratios(NAA/Cr,Cho/Cr, Lip/Cr,Lac/Cr,and Cho/NAA) were calculated manually.
     6.Statistical analysis
     Statistical analysis was performed using SPSS for Windows release 13.0(SPSS Inc, Chicago,IL,USA).The number of hemorrhage BMs and the grading score between SWI and T2~*WI and different parameters between the brain metastases group and high-grade gliomas group were compared using an unpaired two-tailed Student t test. The level of significance was set at p<0.05.
     Results:
     1.Results from T2~*WI and SWI
     1.1 SWI could detect 79.2%of all brain metastases,and 100%of brain metastases with intratumoral hemorrhage and/or peritumoral edema.
     1.2 To detect intratumoral hemorrhage the sensitivity of SWI was significantly higher than T2~*WI,which just detected 69.6%of hemorrhage detected on SWI.
     2.Results from DWI and DTI
     2.1 The ADC value of the peritumoral region of high-grade gliomas was significantly higher than that of brain metastases;while the ADC values of enhanced tumor,necrosis and edema outside of the peritumoral region were not significantly different between brain metastases and high-grade gliomas.
     2.2 The FA value of the enhancing high-grade gliomas was significantly higher than that of brain metastases.
     3.Results from PWI
     The maximal rCBV of enhancing tumors and the peritumoral region of high-grade gliomas were significantly higher than that of brain metastases;while the rMTT was not statistically different between brain metastases and high-grade gliomas.
     4.Results from 2D ~1H-MRS
     4.1 The intratumoral Cho/Cr,Cho/NAA,NAA/Cr ratios in brain metastases did not differ statistically from that of high-grade gliomas.
     4.2 The peritumoral Cho/Cr and Cho/NAA ratios in brain metastases were statistically different from that of high-grade gliomas.The ratios for the high-grade gliomas were significantly higher.The NAA/Cr and Lac/Cr ratios between brain metastases and high-grade gliomas were not statistically different.
     Conclusion:
     1.SWI can detect most brain metastases without injection of contrast,and it is even more sensitive in dectecting metastases with intratumoral hemorrhage and peritumoral edema.
     2.The parameters of DWI,DTI,PWI and 2D ~1H-MRS of the peritumoral region are significantly different between brain metastases and high-grade gliomas,and can be used to demonstrate differences in solitary metastases and high-grade gliomas.
     3.We strongly suggest the use of a combination of the investigated diagnostic procedures for the peritumoral region to distinguish brain metastases and high-grade gliomas.
引文
1.汤钊猷.现代肿瘤学[M].上海医科大学出版社.2000(第二版):1410.
    2.Yuh WT,Engelken JD,Muhonen MG,et al.Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases[J].AJNR,1992,13:335-345.
    3.Runge VM,Kirsch JE,Burke VJ,et all High-dose gadoteridol in MR imaging of intracranial[J].J Magn Reson Imaging,1992,2:9-12.
    4.Burtscher IM,Skagerberg G,Geijer B,et al.Proton MR spectroscopy and p reoperative diagnostic accuracy:an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings[J].AJNR,2000,21(1):84-93.
    5.Law M,Cha S,Knopp EA,et al.High-grade gliomas and solitary metastases:differentiation by using perfusion and proton spectroscop ic MR imaging[J].Radiology,2002,222(3):715-721.
    6.Croteau D,Scarpace L,Hearshen D,et al.Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies:semiquantitative and qualitative histopathological analyses of patientswith untreated glioma[J].Neurosurgery,2001,49(4):823-829.
    7.Fan G.,Sun B,Wu Z,et al.In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases[J].Clin Radiol,2004,59(1):77-85.
    8.杨正汉.SWI的临床应用研究[M].磁共振成像技术指南.北京:人民军医出版社,2007.327-332.
    9.刘亚欧,杨延辉,李坤成,等.磁敏感加权成像在中枢神经系统的临床应用[J].医学影像学杂志,2007,17:210-212.
    10.Vecht CJ.Clinical management of brain metastasis[J].J Neurol.1998;245:127-31.
    11.Seinfeld J,Wagner AS,Kleinschmidt-De Masters BK.Brain metastases from hepatocellular carcinoma in US patients.J Neurooncol[J].2006;76:93-8.
    12. Chang L, Chen YL, Kao MC. Intracranial metastasis of hepatocellular carcinoma: review of 45 cases. Surg Neurol[J]. 2004; 62:172-7.
    13. Mori N, Miki Y, Kikuta K, Fushimi Y, Okada T, Urayama S, Sawamoto N, Fukuyama H, Hashimoto N, Togashi K. Microbleeds in Moyamoya Disease: Susceptibility-Weighted Imaging Versus T2*-Weighted Imaging at 3 Tesla[J]. Invest Radiol. 2008;43:574-9.
    14. Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging[J].2005; 22:439-50.
    15. Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Bodhey NK, Kapilamoorthy TR. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review[J]. Neuroradiology. 2008 ; 50:105-16.
    16. Liang L, Korogi Y, Sugahara T, Shigematsu Y, Okuda T, Ikushima I, Takahashi M. Detection of intracranial hemorrhage with susceptibility-weighted MR sequences [J]. AJNR Am J Neuroradiol 1999; 20:1527-34.
    17. Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study[J]. J Magn Reson Imaging. 2004; 20: 372-7.
    18. Pinker K, Stavrou I, Szomolanyi P, Hoeftberger R, Weber M, Stadlbauer A, Noebauer-Huhmann IM, Knosp E, Trattniq S. Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings-preliminary results[J]. Invest Radiol. 2007;42:346-51.
    19. Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI) [J]. Magn Reson Med 2004;52:612-8.
    20.Matsushita T,Anami D,Arioka T,Inoue S,Kariya Y,Fujimoto M,Ida K,Sasai N,Kaji M,Kanazawa S,Joja I.Basic Study of Susceptibility-Weighted Imaging at 1.5T[J].Acta Med Okayama.2008 Jun;62(3):159-68.
    21.Lin W,Mukherjee P,An H,Yu Y,Wang Y,Vo K,Lee B,Kido D,Haacke EM.Improving high resolution MR bold venographic imaging using a T1 reducing contrast agent[J].J Magn Reson Imaging.1999;10:118-23.
    22.王彩云,张强,薛敏,等.磁化率加权成像:一种对颅内血管疾病敏感的MRI 技术[J].国外医学临床放射学分册,2007,30:135-140.
    23.任伯绪,史河水,孔祥泉,等.磁敏感成像序列对颅内海绵状血管瘤的诊断价值[J].临床放射学杂志,2007,24:960-963.
    24.Vivek Sehgal,Zachary Delpropostoet,Haddar D,et al.Susceptibility-weighted imagingto visualize blood products and improve tumor contrast in the study of brain masses[J].Journal of Magnetic Resonance Imaging,2006,24:41-51.
    25.Liang L,Korogi Y,SugaharaTet al.Detection of intracranial hemorrhage with susceptibility-weighted MR sequences[J].AJNR,1999,20:1527-1534.
    26.Sehgal V,Delproposto Z,Haddar D,et al.Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses.J Magn Reson Imaging.2006 Jul;24(1):41-51.
    27.Mori S,Frederiksen K,van Zijl PC,et al.Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging[J]..Ann Neurol.2002;51(3):377-380.
    28.Price SJ,Burnet NG,Donovan T,et al.Diffusion tensor imaging of brain tumours at 3T:a potential tool for assessing white matter tract invasion[J].Clin Radiol.2003;58(6):455-462.
    29.Sinha S,Bastin ME,Whittle IR,et al.Diffusion tensor MR imaging of high-grade cerebral gliomas[J].AJNR Am J Neuroradiol.2002;23(4):520-527.
    30.Tummala RP,Chu RM,Liu H,et al.Application of diffusion tensor imaging to magnetic resonance guided brain tumor resection[J].Pediatr Neurosurg.2003;39(1):39-43.
    31. Wieshmann UC, Symms MR, Parker GJM, et al. Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumor[J]. J Neurol Neurosurg Psychiatry. 2000; 8(4):501-503.
    32. Witwer BP, Moftakhar R, Hasan KM, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm[J]. J Neurosurg.2002; 97(3): 568-575.
    33. Wu YC, Field AS, Chung MK, et al. Quantitative analysis of diffusion tensor orientation: Theoretical framework[J]. Magn Reson Med. 2004;52(5): 1146-1155.
    34. Akai H, Mori H, Aoki S, Masutani Y, et al. Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor[J].J Comput Assist Tomogr. 2005;29(1):127-129.
    35. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo[J]. J Magn Reson B, 1994; 103(3):247-254.
    36. Wakana S, Nagae-Poetscher LM, Jiang H, et al. Macroscopic orientation component analysis of brain white matter and thalamus based on diffusion tensor imaging[J]. Magn Reson Med. 2005; 5 3(3):649-657
    37. Ulmer JL, Salvan CV, Mueller WM, et al. The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes [J]. Technol Cancer Res Treat.2004; 3(6):567-576.
    38. Breier G, Albrecht U , Sterrer S et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation[J]. Development. 1992; 114(2):521-532.
    39. Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor: A cytokine modulating endothelial function in rheumatoid arthritis[J].J Immunol.1994;152(8):4149-4156.
    40. Maeda K, Chung YS, Ogawa Y, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma[J]. Cancer.1996; 77(5):858-863.
    41. Folkman J. What is the evidence that tumors are angiogenesis dependent[J].J Natl Cancer Inst.1990;82(1):4-6.
    42. Nicosia RF. What is the role of vascular endothelial growth factor2related molecules in tumor angiogenesis[J]. AmJ Path.1998; 153(1):11-16.
    
    43. Cao Y, O'Reilly MS, Marshall B, et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases[J]. J Clin Invest. 1998;101(5):1055-1063.
    
    44. Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med.1971;285(21):1182-1186.
    
    45. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis[J].J Clin Invest. 1989;84(5): 1470-1478.
    
    46. Ferrara N. Vascular endothelial growth factor[J]. Eur J Cancer. 1996; 32A(14): 2413-2422.
    
    47. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid[J]. Science. 1983; 219(4587):983-985.
    
    48. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells[J]. Biochem Biophys Res Commun.1989;161(2):851-858.
    
    49. Brock TA, Dvorak HF, Senger DR. Tumor-secreted vascular permeability factor increases Cytosolic Ca~(2+) and von Willebrand factor release in human endothelial cells[J]. Am J Pathol. 1991; 138(1):213-221.
    
    50. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors[J]. Cancer. 1996; 77(2):362-372.
    
    51. Assimakopoulou M, Sotiropoulou-Bonikou G, Maraziotis T, Papadakis N, Varakis I.Microvessel density in brain tumors[J]. Anticancer Res. 1997; 17(6D): 4747-4753.
    
    52. Tynninen O, Aronen HJ, Ruhala M, et al. MRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation[J].Invest Radiol.1999;34(6):427-434.
    
    53. Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma:does it have any role in the pre-operation determination of grading of g lioma? [J]. Clin Radiol, 2002, 57:219-225.
    54. Lu S, Ahn D, Johnson G, et al. Peritum oral diffusion tensor imaging of high grade glioms and metastatic brain tumors. [J]. AJNR, 2003,24:937 941.
    55. Mamata H, Jolesz FA, Maier SE. Characterization of central nervous system structures by magnetic resonance diffusion anisotropy[J]. Neurochem Int.2004; 45(4): 553-560.
    56. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field of gradient[J]. J Chem Phys.1965;42(1):288-292.
    57. Lin CP, Tseng WY, Cheng HC, et al. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts.Neuroimage.2001;14(5): 1035-1047.
    58. Clark CA, Barrick TR, Murphy MM, et al. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning[J].Neuroimage.2003 ;20(3): 1601 -1608.
    59. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI[J]. J Magn Reson B.1996;111(3): 209-219.
    60. Beppu T, Inoue T, Shibata Y, et al. Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors[J]. J Neurooncol.2003; 63(2): 109-116.
    61. Basser P, Mattiello J, Le Bihan D. Diagonal and off-diagonal components of the self-diffusion tensor: their relation to and estimation from the NMR spin-echo signal[J].In:Abstracts of the society of magnetic resonance annual meeting;august 8-14,1992; Berlin,Germany.Abstract 1222.
    62. Werring DJ, Toosy AT, Clark CA, et al. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke[J]. J Neurol Neurosurg Psychiatry.2000;69(2):269-272.
    63. Foong J, Maier M, Clark CA, et al. Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study[J]. J Neurol Neurosurg Psychiatry.2000; 68(2):242-244.
    64. Field AS, Alexander AL, Wu YC,et al. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor[J].J Magn Reson Imaging.2004;20(4):555-562.
    65. Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves[J]. Magn Reson Med.1994;31(4):394-400.
    66. Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo[J]. Radiology. 1990; 177(2): 401-405.
    67. Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain[J].Radiology.1996;201(3):637-648.
    68. Witwer BP, Moftakhar R, Hasan KM, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm[J]. J Neurosurg. 2002; 97(3): 568-575.
    69. Lim KO, Hedehus M, Moseley M, et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging[J]. Arch Gen Psychiatry. 1999;56(4):367-374.
    70. Basser PJ, Pierpaoli C.Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI[J]. J Magn Reson B.1996; 111(3): 209-219.
    71. Basser PJ.Inferring microstructural features and the physiological state of tissues from diffusion-weighted images[J]. NMR Biomed.1995; 8(7-8):333-344.
    72. Takahashi M, Hackney DB, Zhang G, et al. Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord[J].Proc Natl Acad Sci U S A . 2002;99(25):16192-16196.
    73. Ciccarelli O, Werring DJ, Wheeler-Kingshott CA, et al. Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations[J]. Neurology.2001; 56(7):926-933
    74. Filippi M, Cercignani M, Inglese M,et al.Diffusion tensor magnetic resonance imaging in multiple sclerosis[J].Neurology. 2001; 56(3):304-311.
    75. Tievsky AL, Ptak T, Farkas J. Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions[J].AJNR Am J Neuroradiol. 1999; 20(8):1491-1499
    76. Yoshiura T, Wu 0, Zaheer A, et al. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter[J]. Magn Reson Med.2001;45(5):734-740.
    77. Sorensen AG, Buonanno FS, Gonzalez RG, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging[J].Radiology. 1996; 199(2):391-401.
    78. Wieshmann UC, Clark CA, Symms MR, et al. Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging.Magn Reson Imaging[J]. 1999; 17(9):1269-1274.
    79. Bammer R, Augustin M, Strasser-Fuchs S, et al. Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis[J].Magn Reson Med. 2000;44(4):583-591.
    80. Melhem ER, Itoh R, Jones L, et al. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements[J]. AJNR Am JNeuroradiol.2000;21(10):1813-1820.
    81.Yasargil MG: Microneurosurgery IV A (in 4 volumes) Georg Thieme, Stuttgart/New York Verlag (for distribution in Japan)[M]. Nankodo Company Ltd.Tokyo, 1993:127.
    82. Sinha S, Bastin ME, Whittle IR, et al. Diffusion tensor MR imaging of high-grade cerebral gliomas[J].AJNR Am J Neuroradiol. 2002; 23(4):520-527.
    83. Pronin IN, Holodny AI, Petraikin AV. MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema[J]. Neuroradiology. 1997; 39(5):348-350.
    84. Bitzer M, Klose U, Geist-Barth B, et al. Alterations in diffusion and perfusion in the pathogenesis of peritumoral brain edema in meningiomas[J]. Eur Radiol. 2002; 12(8):2062-2076.
    85. Nimsky C, Ganslandt 0, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures-initial experience[J]. Radiology. 2005; 234(1):218-225.
    
    86. Witwer BP, Moftakhar R, Hasan KM, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm[J]. J Neurosurg.2002; 97(3): 568-575.
    
    87. Wu YC, Field AS, Chung MK, et al. Quantitative analysis of diffusion tensor orientation: Theoretical framework[J]. Magn Reson Med. 2004; 52(5): 1146-1155.
    
    88. Akai H, Mori H, Aoki S, Masutani Y, et al. Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the rumor[J].J Comput Assist Tomogr. 2005; 29(1):127-129.
    
    89. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo[J]. J Magn Reson B, 1994; 103(3):247-254.
    
    90. Wakana S, Nagae-Poetscher LM, Jiang H, et al. Macroscopic orientation component analysis of brain white matter and thalamus based on diffusion tensor imaging[J]. Magn Reson Med. 2005; 53(3):649-657
    
    91. Ulmer JL, Salvan CV, Mueller WM, et al. The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes[J]. Technol Cancer Res Treat.2004; 3(6):567-576.
    
    92. Breier G, Albrecht U , Sterrer S et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation[J]. Development. 1992; 114(2):521-532.
    
    
    93. Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor: A cytokine modulating endothelial function in rheumatoid arthritis[J]. J Immunol. 1994; 152(8):4149-4156.
    
    94. Cha S, Knopp EA, Johnson G,etal.Intracranial mass lesion: dynamic contrast enhanced susceptibility weighted echo-planar perfusion MR imaging[J]. Radiology, 2002, 223:11-29.
    95.Petrella JR,Provenzale JM.MR perfusion imaging of the brain techniques and applications[J].AJR,2000,175:207-219.
    96.Wong JC,Provenzale JM Petrella JR.Perfusion MR imaging of brain neoplasms[J].AJR,2000,174:1147-1157.
    97.Sugahara T,Korogi Y,Tomiguchi S,et al.Posttherapeutic intraaxial brain tumor:the value of perfusion sensitive contrast enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast enhancing tissue[J].AJNR,2000,21:901-909.
    98.彭靖,戴建平,朱明旺,等.MR脑血流灌注成像在星形细胞肿瘤中的应用研究.[J].中华放射学杂志,2003,37:636-639.
    99.Shin JH,Lee HK,Kwun BD,et al.Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas:preliminary results[J].AJR,2002,179:783-789.
    100.张皓,沈天真,陈星荣,等.MR灌注成像在鉴别单发脑转移瘤与高级别胶质瘤中的价值[J].中华放射学杂志,2006,40:393-396.
    101.Barb ier EL,Lamalle L,Decorps M.Methodology of brain perfusion imaging.J Magn Reson Imaging[J].2001,13(4):496-520.
    102.DetreJ A,A lsopD C.Perfusion magnetic resonance imaging with continuous arterial spin labeling:methods and clinical applications in the central nervous system[J].Eur J Radiol,1999,30(2):115-182.
    103.Petrella JR,Provenzale JM.MR perfusion imaging of the brain:techniques and applications[J].A JR,2000,17 5(1):207-219.
    104.Wong JC,Provenzale JM,Petrella JR.Perfusion MR imaging of brain neoplasms[J].A JR,2000,174(4):1147-1157.
    105.Tsui EY,Chan JH,Ramsey RG,et al.Late temporal lobe necrosisin patients with nasopharyngeal carcinoma:evaluation with combined multi-section diffusion weighted and perfusion weighted MR imaging[J].Eur J Radiol,2001,39:133-138.
    106.Cha S,Knopp EA,Johnson G,et al.Intracranial mass lesions:dynamic contrast enhanced susceptibility-weighted echo-planar perfusion M R imaging[J].Radiology,2002,223:11-29.
    107.张诚,钱银锋,余永强,等.MR灌注成像的回波时间和对比剂剂量的选择[J].中华放射学杂志,2003,37(4):368-370.
    108.钱银锋,余永强,陈骏,等.MR灌注成像对星形胶质细胞瘤肿瘤血管通透性的评价研究[J].中华放射学杂志,2002,86(8):733-786.
    109.Choyke PL,Dwyer AJ,Knepp MV.Functional tumor imaging with dynamic contrast enhanced magnetic resonance imaging[J].J Magn Reson Imaging,2003,17(5):509-520.
    110.Carroll TJ,Rowley HA,Haughton VM.Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging[J].Radiology,2003,22 7(2):593-600.
    111.Oguz KK,Golay X,P izzini FB,et al.Sickle cell disease:continuous arterial spin-labeling perfusion MR Imaging in children[J].Radiology,2003,227(2 ):567-5'74.
    112.M iharaF,Ku wabaraY,Ta nakaA,etal.Reliability of mean transittime obtained using perfusion-weighted MR imaging:comparison with positron emission tomography[J].Magn Reson Imaging,2003,21(1):33-39.
    113.Fuss M,Wenz F,Scholdei R,et al.Radiation-induced regional cerebral blood volume(rCBV) changes in normal brain and low-grade astrocytomas:quantification and time and dose -dependent occurrence[J].Int J Radiat Oncol BiolPhvs,2000,48(1):53-58.
    115.Bruening R,Berchtenbreiter C,Holzknecht N,et al.Effects of three different doses of a bolus injection of gadodiamide:assessment of r gional cerebral blood volume maps ina blinded reader study[J].AJNR,2000,21(9):1603-1610.
    116.Essig M,Wenz F,Scholdei R,et al.Dynamic susceptibility contrast-enhanced echo-planar imaging of cerebral gliomas.Effect of contrast medium extravasation[J].Acta Radiol,2002,4 3(4):354-259.
    117.Liu YJ,Chung HW,Huang IJ,et al.A reinvestigation of maximal signal drop in dynamic susceptibility contrast m agnetic resonance imaging[J].J Neuroimaging,2002,12(4):330-338.
    118.Tombach B,Benner T,Reimer P,et al.Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? In tr ai ndividualIv co ntrolled ra ndomized crossover co nc en tration comparison study of 0.5 versus 1.0 mol/L gad obutrol[J].Radiology,20 03,22 6(3):880-888.
    119.Knopp EA,Cha S,J ohnson G,et al.Glial neoplasms:dynamic contra t-enhanced T2*-weighted MR imaging[J].Radiology,1999,211(3):791-798.
    120.ChaS,Lu S,JohnsonG,Kn oppE A.Dynamic susceptibility contrast MR imaging:correlation of signal intensity changes with cerebral blood volume measurements[J].J Magn Reson Imaging,2000,11(2):114-119.
    121.Duffau H,Capelle L,Denvil D,et al.Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions:functional results in a consecutive series of 103 patients [J].J Neurosurg,2003,98(4):764-778.
    122.Negendank W.Studies of human tumors by MRS:a review[J].NMR Biomed,1992,5(5):303-324.
    123.Nelson SJ.Multivoxel magnetic resonance spectroscopy of brain tumors[J].Mol Cancer Ther,2003,2(5):497-507.
    124.赵喜平.磁共振成像系统的原理及其应用[M].北京:人民卫生出版社,2001:125.
    125.Castillo M,Kwock L,Mukherji SK.Clinical applications of proton MR spectroscopy[J].AJNR Am J Neuroradiol,1996,17(1):1-15.
    126.Tare AR,Griffiths JR,Martinez-Perez I,et al.Towards a method for automated classification of ~1H MRS spectra from brain tumours[J].NMR Biomed,1998,11(4-5):177-191.
    127.Hollingworth W,Medina LS,Lenkinski RE,et al.A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors[J].AJNR Am J Neuroradiol,2006,27(7):1404-1411.
    128.Gujar SK,Maheshwari S,Bjorkman-Burtscher I,et al.Magnetic resonance spectroscopy[J].J Neuroophthalmol,2005,25(3):217-226.
    1291.Vion-Dury J,Meyerhoff DJ,Cozzone PJ,et al.What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy?[J].J Neurol,1994,241(6):354-371.
    130.Ramin SL,Tognola WA,Spotti AR.Proton magnetic resonance spectroscopy:clinical applications in patients with brain lesions[J].Sao Paulo Med J,2003,121(6):254-259.
    131.Guerin C,Laterra J,Hruban R,et al.The glucose transporter and blood-brain barrier of human brain tumors[J].Ann Neurol,1990,28;758.
    132.ZhangM,Olsson Y.Hematogenousmetastases of the human brain:characteristics of peritumoral brain changes-a review[J].J Neurooncol,1997,35(1):81-89.
    133.Burger P.Classification,grading,and patterns of sp read of malignant gliomas [A].In:Apuzzo ML,eds.Neurosurgical top ics:malignant cerebral glioma[M].Park Ridge,Ill:American Association of Neurological Surgeons,1990.3-17.
    134.Holodny AI,Nusbaum AO,Festa S,et al.Correlation between the degree of contrast enhancement and t he volume of peritumoral edema in meningiomas and malignant gliomas[J].Neuroradiology,1999,41(11):820-825.
    135.Fayed N,Modrego PJ.The contribution of magnetic resonance spectroscopy and echop lanar perfusion-weighted MRI in the initial assessment of brain tumours [J].J Neurooncol,2005,72(3):261-265.
    136.Fayed N,MoralesH,Modrego PJ,et al.Contrast/Noise ratio on conventionalMR I and choline/creatine ratio on p roton MR I spectroscopyaccurately discriminate low-grade from high-grade cerebral gliomas[J].Acad Radiol.2006,13(6):728-737.
    137.陈增爱,耿道颖,沈天真,等.质子磁共振波谱对脑肿瘤的鉴别诊断价值[J].中国医学计算机成像杂志,2001,7(4):217-221.
    138.周高峰,王小宜,廖伟华,等.氢质子磁共振波谱鉴别孤立脑转移瘤与高级别脑胶质瘤的临床应用价值[J].实用放射学杂志,2007,23(1):1-5.
    139.Kimura T,Sako K,Gotoh T,et al.In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement[J].NMR Biomed,2001,14(6):339-349.
    140.吴光耀,雷皓,孙骏谟.脑内环状强化病变质子磁共振波谱研究[J].中国医学影像技术,2005,21(4):526-529.
    141.Falini A,Calabrese G,Origgi D,et al.Proton magnetic resonancespectroscopy and intracranial tumours:clinical perspectives[J]JNeurol,1996,243(10):706-714.
    142.Gajewicz W,Pap ierzW,SzymczakW,et al.The use of p rotonMRS in the differential diagnosis of brain tumors and tumor-like processes[J].Med SciMonit,2003,9(9):97-105.
    143.孙庚喜,罗柏宁,张波.~1H-MRS对脑转移瘤和恶性胶质瘤的鉴别诊断价值.临床放射学杂志,2005:24(11):955-959.
    144.麦筱莉,储成风,秦伟,等.多体素1H-MRS在脑肿瘤强化周围区域中的临床应用[J].实用放射学杂志,2006,22(5):523-527.
    145.Chiang IC,Kuo YT,Lu CY,et al.Distinction between high-grade gliomas and solitarymetastases using peritumoral 3 T magnetic resonance spectroscopy,diffusion,and perfusion imagings[J].Neuroradiology,2004,46(8):619-627.
    1 Yokoi K, Kamiya N, Matsuguma H, Machida S, Hirose T, Mori K, Tominaga K. Detection of brain metastasis in potentially operable non-small cell lung cancer[J].Chest. 1999 Mar; 115(3):714-9.
    2 Vecht CJ. Clinical management of brain metastasis [J]. J Neurol. 1998; 245(3): 127-31.
    3 Kuefher MA, Feurle J, Uder M, Bautz W, Schwelberger HG. Influence of magnetic resonance contrast media on the activity of histamine inactivating enzymes. Acad Radiol. 2009 Mar; 16(3): 358-62.
    4 Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22:439-50
    5 Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Bodhey NK, et al. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review. Neuroradiology. 2008; 50:105-16
    6 Liang L, Korogi Y, Sugahara T, Shigematsu Y, Okuda T, Ikushima I, et al. Detection of intracranial hemorrhage with susceptibility-weighted MR sequences. AJNR Am J Neuroradiol 1999;20:1527-34
    7 Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging. 2004;20: 372-7
    8 Pinker K, Stavrou I, Szomolanyi P, Hoeftberger R, Weber M, Stadlbauer A, et al. Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings-preliminary results. Invest Radiol. 2007;42:346-51
    1 Vecht CJ. Clinical management of brain metastasis [J]. J Neurol. 1998;245:127-31.
    2 Seinfeld J, Wagner AS, Kleinschmidt-De Masters BK. Brain metastases from hepatocellular carcinoma in US patients.J Neurooncol. 2006; 76:93-8.
    3 Chang L, Chen YL, Kao MC. Intracranial metastasis of hepatocellular carcinoma: review of 45 cases. Surg Neurol. 2004; 62:172-7.
    4 Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005; 22:439-50.
    5. Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Bodhey NK, Kapilamoorthy TR. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review. Neuroradiology. 2008 ; 50:105-16.
    6 Liang L, Korogi Y, Sugahara T, Shigematsu Y, Okuda T, Ikushima I, Takahashi M. Detection of intracranial hemorrhage with susceptibility-weighted MR sequences. AJNR Am J Neuroradiol 1999; 20:1527-34.
    7 Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging. 2004; 20: 372-7.
    8 Pinker K, Stavrou I, Szomolanyi P, Hoeftberger R, Weber M, Stadlbauer A, Noebauer-Huhmann IM, Knosp E, Trattniq S. Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings-preliminary results. Invest Radiol.2007; 42:346-51.
    9 Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52:612-8.
    10 Matsushita T, Anami D, Arioka T, Inoue S, Kariya Y, Fujimoto M, Ida K, Sasai N, Kaji M, Kanazawa S, Joja I. Basic Study of Susceptibility-Weighted Imaging at 1.5T.Acta Med Okayama. 2008 Jun; 62(3):159-68.
    11 Lin W, Mukherjee P, An H, Yu Y, Wang Y, Vo K, Lee B, Kido D, Haacke EM. Improving high resolution MR bold venographic imaging using a T1 reducing contrast agent. J Magn Reson Imaging. 1999 ; 10:118-23.
    12 Mori N, Miki Y, Kikuta K, Fushimi Y, Okada T, Urayama S, Sawamoto N, Fukuyama H, Hashimoto N, Togashi K. Microbleeds in Moyamoya Disease: Susceptibility-Weighted Imaging Versus T2*-Weighted Imaging at 3 Tesla. Invest Radiol. 2008; 43:574-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700