部分性发作癫痫患者的脑功能和脑结构的多模态磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:分析部分性发作癫痫患者的认知功能和情绪状态特点;结合血氧水平依赖的功能磁共振成像(BOLD-fMRI)、弥散张量成像(DTI)和三维结构磁共振成像(3D)的多模态磁共振成像,探讨部分性发作癫痫患者与健康对照组静息状态下的脑功能,脑白质的完整性,脑灰质密度和体积的差异。
     方法:对60例部分性发作癫痫患者和60例性别、年龄和教育程度匹配的正常健康对照者组,采用韦氏数字广度测验、言语流畅性测验及逻辑记忆测验量表进行认知功能评估,采用抑郁自评量表(SDS)和焦虑自评量表(SAS)进行情绪状态评估,分析癫痫患者的认知功能和情绪特点。使用3.0T磁共振采集癫痫患者组和正常对照组的多模态MRI数据包括静息状态下BOLD-fMRI、DTI以及3D。采用局部一致性(ReHo)方法和功能连接方法分析静息状态下的BOLD-fMRI数据;采用基于体素的全脑配准分析(VBA)方法分析DTI的各向异性分数(FA)和表观弥散系数(ADC);采用基于体素的形态学测量(VBM)方法对3D的脑灰质密度和体积的数据进行分析。
     结果:共60例部分性发作癫痫患者和60例性别、年龄和教育程度匹配的正常健康者完成磁共振扫描,排除头动导致的数据质量问题,进入统计分析的BOLD-fMRI部分的癫痫患者52例(26男/26女),正常对照组54例(33男/21女);DTI部分各组例数为56例(26男/30女),60例(38男/22女);3D部分各组例数为60例(28男/32女),60例(38男/22女)。结果发现:1.癫痫患者组的数字广度、言语流畅性测验的正确数、逻辑记忆测验的即刻记忆和延迟记忆得分均较正常组低,差异具有统计学意义(p=0.000,p=0.000,p=0.000,p=0.000);言语流畅性测验的重复数和错误数两组之间比较无统计学差异(p=0.107,p=0.227)。复杂部分性发作组和继发全面性发作组间数字广度、言语流畅性测验的正确数和逻辑记忆测验的得分无统计学差异(p=0.439, p=0.473, p=0.403, p=0.228);癫痫患者组SDS评分和SAS评分均较正常组高,具有统计学差异(p=0.001,p=0.001);复杂部分性发作组和继发全面性发作组间SDS评分和SAS评分无统计学差异(p=0.443, p=0.173)。2.BOLD-fMRI:(1)癫痫患者的左侧顶下小叶、中央后回和中央前回,右侧丘脑、小脑、楔前叶和旁中央小叶,双侧岛叶的ReHo较正常对照组降低,差异具有显著性;未发现局部一致性升高的脑区。(2)癫痫患者组的默认模式网络(DMN)的功能连接主要包括左侧楔前叶/后扣带回和角回、扣带回;正常对照组的功能连接主要包括左侧楔前叶/后扣带回和右侧角回,双侧内侧额叶和颞叶。(3)癫痫患者组的左侧顶下小叶、缘上回、钩回、海马旁回和颞上回,右侧钩回的DMN功能连接较正常对照组降低,差异具有显著性;未发现功能连接升高的脑区。3.DTI:(1)癫痫患者组的左侧海马旁回、钩回、小脑后叶蚓垂、梭状回,右侧颞中回、额中回、尾状核、胼胝体下回、小脑前叶山顶、扣带回、颞叶深部白质、额叶深部白质,双侧颞上回的脑白质FA值较正常对照组低,差异有显著性;癫痫患者组左侧胼胝体、额中回、前扣带回、内侧苍白球的脑白质FA值显著高于正常对照组,差异有显著性。(2)癫痫患者组左侧额中回、额下回、颞上回、颞中回、颞下回和小脑后叶山坡,右侧额叶内侧回、额叶深部、胼胝体下回、海马旁回和小脑后部,双侧梭状回和钩回的脑白质ADC值较正常对照组高,差异有显著性;癫痫患者组无较正常对照组ADC值低的脑区。4.3D:(1)癫痫患者组的双侧豆状核的外侧苍白球和壳核的脑区灰质密度较较正常对照组升高,差异有显著性;癫痫患者组无较正常对照组灰质密度降低的脑区。(2)癫痫患者组左侧额叶眶回、额内侧回、旁中央小叶、颞横回和颞上回,右侧顶下小叶、后扣带回、枕下回和楔叶,双侧中央前回、岛叶、前扣带回、楔前叶和小脑前叶的脑灰质体积较正常对照组降低,差异有显著性;未发现灰质体积升高的脑区。
     结论:1.部分性发作癫痫患者存在记忆、注意力和语言方面的认知功能损害,并且存在明显的抑郁和焦虑情绪。神经精神量表是客观的评价癫痫患者神经心理状况的方便、有效手段。2.部分性发作癫痫患者静息状态下顶下小叶和顶叶内侧面、额叶中央前回、岛叶、丘脑、边缘叶及颞上回等的脑区的功能及功能连接异常,可能是潜在的病理生理机制。3.部分性发作癫痫患者的广泛的白质完整性和灰质异常,提示神经网络的连接障碍和节点损害,可能是部分性发作癫痫的病理基础,并推测与认知功能和情绪障碍有关。4.常规MRI阴性的部分性发作癫痫患者,通过多模态的磁共振检查,能够发现广泛的脑功能和脑结构改变。
Object To analysis the cognitive function and emotional state of the patients with partial epilepsy, and to explore the difference between partial epilepsy subjects and healthy subjects in term of brain function in resting state, white matter integrity, and density and volume of gray matter by using the multi modal MRI including blood oxygenation level dependent functional magnetic resonance imaging(BOLD-fMRI), three dimension MRI(3D) and diffusion tensor imaging(DTI) techniques.
     Methods 60 patients with partial epilepsy and 60 healthy controls with equivalent gender, age and education level are assessed by digital span test and verbal fluency test of Wechsler adult intelligence scale (WAIS), logic memory test of Wechsler adult memory scale (WMS), self-rating depression scale (SDS), self-rating anxiety scale (SAS).The patients with epilepsy and the health controls undergo multi modal MRI scan including resting-state BOLD-fMRI, DTI and 3D. The regional homogeneity (ReHo) approach and functional connectivity analysis are used to analyze resting-state BOLD-fMRI; the voxel-base analysis (VBA) are used to analyze fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of DTI; while the voxel-based morphometry (VBM) method are used to process the gray matter density and volume data obtained by 3D.
     Results 60 patients with partial epilepsy and 60 healthy controls with equivalent gender, age and education level recieve MRI scan. Some data are excluded because of head movement. The final data include those from 52 patients (26 males/26 females) and 54 healthy controls (33 males/21 females) in BOLD-fMRI part; 56 patients (26 males/30 females) and 60 healthy controls (38 males/22 females) in DTI part; 60 patients (28 males/32 females) and 60 healthy controls (38 males/22 females) in 3D part. The study finds that:1) Digital span test, immediate and delay logical memory test scores are significantly lower in patients compared with controls(p=0.000, p=0.000, p=0.000). In verbal fluency test, the patients produce significantly less correct words than the controls (p=0.000), and the repeated and error words produced by the patients and the controls are of no significant difference (p=0.107, p=0.227). Digital span test, verbal fluency test and logical memory test scores are similar between the patients with complex partial seizure and secondary generalized seizure (p=0.439, p=0.473, p=0.403, p=0.228). The scores of SDS and SAS are significantly higher in patients compared with controls(p=0.001, p=0.001); The scores of SDS and SAS are of no significant difference between the patients with complex partial seizure and secondary generalized seizure(p=0.443, p=0.173).2) As far as BOLD-fMRI data are concerned:(1) ReHo analysis:patients with partial epilepsy showed significantly decreased ReHo in left inferior parietal lobule, postcentral gyrus and precentral gyrus, right thalamus, cerebellum, precuneus and paracentral lobule, bilateral insula compared with control subjects; no region with significantly increased ReHo in patients is found. (2) Default mode network (DMN):The DMN of patients include left precuneus and adjacent posterior cingulate cortex (Pcu/PCC), angular gyrus, cingulate gyrus; the DMN of controls include left Pcu/PCC, right angular gyrus, bilateral medial frontal lobe and temporal lobe. (3) Functional connectivity:Compared with control subjects, patient with partial epilepsy show significantly decreased functional connectivity of DMN region in left inferior parietal lobule, supramarginal gyrus, parahippocampa gyrus and superior temporal gyrus, bilateral uncus; while no region with significantly increased functional connectivity in patients is found.3) As far as DTI data are concerned:(1) Compared with healthy controls, patients with partial epilepsy show significantly decreased FA values in left parahippocampa gyrus, uncus, cerebellum posterior lobe uvula, fusiform gyrus, right middle temporal gyrus, middle frontal gyrus, caudate, subcallosal gyrus, cerebellum anterior lobe culmen, cingulate gyrus, temporal lobe and frontal lobe sub-gyral white matter, bilateral superior temporal gyrus; while significantly increased FA values in left corpus callosum, middle temporal gyrus, anterior cingulate and medial globus pallidus. (2) Compared with healthy controls, patients with partial epilepsy show significantly increased ADC values in left middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus and cerebellum posterior lobe declive, right medial frontal gyrus, frontal lobe sub-gyral white matter, Subcallosal Gyrus, subcallosal gyrus, parahippocampa gyrus and posterior cerebellum, bilateral fusiform gyrus and uncus; while no region with significantly decreased ADC value in patients is found.4) As far sa 3D data are concerned:(1) Compared with healthy controls, patients with partial epilepsy show significantly increased gray matter density in bilateral lateral globus pallidus and Putamen; while no region with significantly decreased gray matter density in patients is found. (2) Compared with healthy controls, patients with partial epilepsy show significantly decreased gray matter volume in left orbital gyrus, medial frontal gyrus, paracentral lobule, transverse temporal gyrus and superior temporal gyrus, right inferior parietal lobule, posterior cingulate, inferior occipital gyrus and cuneus, bilateral precentral gyrus, insula, anterior cingulate, precuneus and anterior cerebellum lobe; while no region with significantly increased gray matter volume in patients is found
     Conclusions 1. The cognitive function of the partial epilepsy patients is impaired, with depression and anxiety as common symptoms in the patients. The neuropsychic scale is the convenient and effective method to estimate the neuropsychic state of epilepsy patients.2. The resting-state brain function and functional connectivity is abnormal in in left inferior parietal lobule, medial parietal lobe, precentral gyrus, insula, thalamus, limbic lobe and superior temporal gyrus of partial epilepsy patients. It may be the potential pathophysiological mechanism.3. The wide abnormality in integrity of white matter and gray matter suggest a extensive neural network disorder that might be the neuropathological basis of partial epilepsy and correlate with the impaired cognition, depression and anxiety.4. The multi modal MRI can detect the extensive changes of brain function and structure in MRI-negative partial epilepsy.
引文
[1]World, Health, Organization. The World Health Report 2001:mental health, new understanding new hope. Geneva:World Health Organization.2001.
    [2]Leonardi M, Ustun TB. The global burden of epilepsy. Epilepsia.2002;43:21-25.
    [3]Kwan P, Brodie MJ. Neuropsychological effects of epilepsy and antiepileptic drugs. The Lancet.2001;357:216-222.
    [4]Meador KJ. Cognitive outcomes and predictive factors in epilepsy. Neurology. 2002;58:21-26.
    [5]Jokeit H, Ebner A. Effects of chronic epilepsy on intellectual functions. Prog Brain Res.2002;135:455.
    [6]Devinsky O. Cognitive and behavioral effects of antiepileptic drugs. Epilepsia. 1995;36:46.
    [7]Meador KJ. Cognitive effects of antiepileptic drugs. Psychiatric issues in epilepsy: a practical guide to diagnosis and treatment.2006:83.
    [8]Piazzini A, Canevini MP, Maggiori G, et al. Depression and anxiety in patients with epilepsy. Epilepsy and Behavior.2001;2:481-489.
    [9]Robertson M. Mood disorders associated with epilepsy. Psychiatric comorbidity in epilepsy American Psychiatric Press, London.1998.
    [10]Hermann BP, Whitman S. Psychosocial predictors of interictal depression. Journal of Epilepsy.1989;2:231-237.
    [11]李心天.中国人的左右利手分布.心理学报.1983;15:268-275.
    [12]龚耀先.修订韦氏成人智力量表手册.长沙:湖南医学院.1982;1:50.
    [13]龚耀先,江达威,邓君林.修订韦氏记忆量表手册.长沙:湖南医科大学.1989;50.
    [14]舒良,汪向东,王希林等.自评抑郁量表(SDS).见:汪向东,王希林,马弘心理卫生评定量表手册.1999;196.
    [15]Zung WW. A rating instrument for anxiety disorders. Psychosomatics. 1971;12:371-379.
    [16]Motamedi G, Meador K. Epilepsy and cognition. Epilepsy and Behavior. 2003;4:25-38.
    [17]Silvia O, Patricia S, Damian C, et al. Mesial temporal lobe epilepsy and hippocampal sclerosis:cognitive function assessment in Hispanic patients. Epilepsy and Behavior.2003;4:717-722.
    [18]Pedersen B, Dam M. Memory disturbances in epileptic patients. Acta Neurol Scand Suppl.1986;109:11-14.
    [19]Schwarcz R, Witter MP. Memory impairment in temporal lobe epilepsy:the role of entorhinal lesions. Epilepsy Res.2002;50:161-177.
    [20]Perrine K, Kiolbasa T. Cognitive deficits in epilepsy and contribution to psychopathology. Neu-rology.1999;53:S39-48.
    [21]Nolan MA, Redoblado MA, Lah S, et al. Memory function in childhood epilepsy syndromes. J Paediatr Child Health.2004;40:20-27.
    [22]Hermann BP, Seidenberg M, Schoenfeld J, et al. Neuropsychological characteristics of the syn-drome of mesial temporal lobe epilepsy. Arch Neurol. 1997;54:369.
    [23]Oyegbile T, Hansen R, Magnotta V, et al. Quantitative measurement of cortical surface features in localization-related temporal lobe epilepsy. Neuropsychology. 2004;18:729-737.
    [24]Helmstaedter C. Effects of chronic epilepsy on declarative memory systems. Prog Brain Res.2002;135:439.
    [25]Engel J. Surgery for seizures. N Engl J Med.1996;334:647.
    [26]Williamson PD, French JA, Thadani VM, et al. Characteristics of medial temporal lobe epilepsy:Ⅱ. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology. Ann Neurol.1993;34:781-787.
    [27]Eichenbaum H. A cortical-hippocampal system for declarative memory. Nature Reviews Neuro-science.2000;1:41-50.
    [28]Helmstaedter C, Kurthen M. Memory and epilepsy:characteristics, course, and influence of drugs and surgery. Curr Opin Neurol.2001;14:211-216.
    [29]Janszky J, Jokeit H, Kontopoulou K, et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia.2005;46:244-250.
    [30]Pulliainen V, Kuikka P, Jokelainen M. Motor and cognitive functions in newly diagnosed adult seizure patients before antiepileptic medication. Acta Neurol Scand. 2000;101:73-78.
    [31]Powell HWR, Parker GJM, Alexander DC, et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage.2007;36:209-221.
    [32]Mazzini L, Cossa FM, Angelino E, et al. Posttraumatic epilepsy:neuroradiologic and neuropsy-chological assessment of long-term outcome. Epilepsia. 2003;44:569-574.
    [33]Northcott E, Connolly AM, Berroya A, et al. The neuropsychological and language profile of children with benign rolandic epilepsy. Epilepsia.2005; 46:924-930.
    [34]Bell B, Dow C, Watson ER, et al. Narrative and procedural discourse in temporal lobe epilepsy. J Int Neuropsychol Soc.2003;9:733-739.
    [35]Hermann BP, Wyler AR, Steenman H, et al. The interrelationship between language function and verbal learning/memory performance in patients with complex partial seizures. Cortex.1988;24:245-253.
    [36]Jackson MJ, Turkington D. Depression and anxiety in epilepsy. Br Med J. 2005;76:i45.
    [37]Kimiskidis VK, Triantafyllou NI, Kararizou E, et al. Depression and anxiety in epilepsy:the asso-ciation with demographic and seizure-related variables. Annals of General Psychiatry.2007;6:28.
    [38]O'Donoghue MF, Goodridge DM, Redhead K, et al. Assessing the psychosocial consequences of epilepsy:a community-based study. The British Journal of General Practice.1999;49:211.
    [39]Kanner AM. Depression in epilepsy:prevalence, clinical semiology, pathogenic mechanisms, and treatment. Biol Psychiatry.2003;54:388-398.
    [40]Robertson MM, Trimble MR, Townsend HRA. Phenomenology of depression in epilepsy. Epilep-sia.1987;28:364-372.
    [41]Ogawa S, Lee TM, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68-78.
    [42]Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature.2001;412:150-157.
    [43]Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci.1990;87:9868-9872.
    [44]Yagishita A, Arai N, Maehara T, et al. Focal cortical dysplasia:appearance on MR images. Radi-ology.1997;203:553-559.
    [45]Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology.2003;61:699-701.
    [46]Binder JR, Detre JA, Jones-Gotman M, et al. Functional MRI of episodic memory in temporal lobe epilepsy. Epilepsia.2002;43:2.
    [47]Hamandi K, Salek-Haddadi A, Fish DR, et al. EEG/functional MRI in epilepsy: the Queen Square experience. J Clin Neurophysiol.2004;21:241-248.
    [48]Friston KJ, Frith CD, Fiddle PF, et al. Functional connectivity:the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;3:5-14.
    [49]Laufs H, Hamandi K, Salek-Haddadi A, et al. Temporal lobe interictal epileptic discharges affect cerebral activity in" default mode" brain regions. Hum Brain Mapp. 2007;28:1023-1032.
    [50]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537-541.
    [51]Stark CEL, Squire LR. When zero is not zero:the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci.2001;98:12760-12766.
    [52]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100:253-258.
    [53]Gusnard DA, Akbudak E, Shulman GL, et al. Medial prefrontal cortex and self-referential mental activity:relation to a default mode of brain function. Proc Natl Acad Sci.2001;98:4259.
    [54]Foucher JR, Otzenberger H, Gounot D. Where arousal meets attention:a simultaneous fMRI and EEG recording study. Neuroimage.2004;22:688-697.
    [55]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci USA.2001;98:676-682.
    [56]Broyd SJ, Demanuele C, Debener S, et al. Default-mode brain dysfunction in mental disorders:A systematic review. Neurosci Biobehav Rev.2009;33:279-296.
    [57]张志强,卢光明,钟元等.内侧颞叶癫痫患者脑缺省模式网络改变的功能MRI研究.医学研究生学报.2009;22:36-39.
    [58]Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain's Default Network. Ann NY Acad Sci.2008;1124:1-38.
    [59]Fransson P. Spontaneous low-frequency BOLD signal fluctuations:an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp.2005;26:15-29.
    [60]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional mag-netic resonance imaging. Nature reviews Neuroscience.2007;8:700.
    [61]Greicius MD, Supekar K, Menon V, et al. Resting-State Functional Connectivity Reflects Struc-tural Connectivity in the Default Mode Network. Cereb Cortex. 2009;19:72-78.
    [62]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer's dis-ease:a combined structural and resting-state functional MRI study. Neuroimage.2007;35:488-500.
    [63]Firbank MJ, Blamire AM, Krishnan MS, et al. Atrophy is associated with posterior cingulate white matter disruption in dementia with Lewy bodies and Alzheimer's disease. Neuroimage.2007;36:1-7.
    [64]Garrity AG, Pearlson GD, McKiernan K, et al. Aberrant" default mode" functional connectivity in schizophrenia. Am J Psychiatry.2007; 164:450.
    [65]Greicius MD, Flores BH, Menon V, et al. Resting-state functional connectivity in major depres-sion:abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychia-try.2007;62:429-437.
    [66]Zhao XH, Wang PJ, Li CB, et al. Altered default mode network activity in patient with anxiety disorders:An fMRI study. Eur J Radiol.2007;63:373-378.
    [67]Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging.2008;27:1214-1220.
    [68]Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage.2004;22:394-400.
    [69]Liu H, Liu Z, Liang M, et al. Decreased regional homogeneity in schizophrenia:a resting state functional magnetic resonance imaging study. Neuroreport. 2006; 17:19-22.
    [70]Yuan Y, Zhang Z, Bai F, et al. Abnormal neural activity in the patients with remitted geriatric de-pression:A resting-state functional magnetic resonance imaging study. J Affect Disord.2008;111:145-152.
    [71]Liu Y, Wang K, Yu C, et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease:a review of resting-state fMRI studies. Neuropsychologia.2008;46:1648-1656.
    [72]Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci.2005;102:9673.
    [73]Katanoda K, Matsuda Y, Sugishita M. A spatio-temporal regression model for the analysis of functional MRI data. Neuroimage.2002;17:1415-1428.
    [74]Tononi G, McIntosh AR, Russell DP, et al. Functional clustering:identifying strongly interactive brain regions in neuroimaging data. Neuroimage.1998;7:133-149.
    [75]Ives JR, Warach S, Schmitt F, et al. Monitoring the patient's EEG during echo planar MRI. Elec-troencephalogr Clin Neurophysiol.1993;87:417.
    [76]Zang Y, Jia F, Weng X, et al. Functional organization of the primary motor cortex characterized by event-related fMRI during movement preparation and execution. Neurosci Lett.2003;337:69-72.
    [77]Schl sser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working mem-ory performance in schizophrenia:a study with fMRI and structural equation modeling. Neuroimage.2003;19:751-763.
    [78]Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA.2005;102:15236-15240.
    [79]Hamandi K, Salek-Haddadi A, Laufs H, et al. EEG-fMRI of idiopathic and secondarily general-ized epilepsies. Neuroimage.2006;31:1700-1710.
    [80]成文莲,钱志余,张志强等.基于fMRI的原发全面性癫痫脑活动的局域一致性研究.生物医学工程研究.2009;28:167-170.
    [81]成文莲,钱志余,张志强等.基于ReHo方法的颞叶癫痫功能磁共振成像研究.生物物理学报.2008;24:460-464.
    [82]Huang CW, Hsieh YJ, Tsai JJ, et al. Cognitive performance in cryptogenic epilepsy. Acta Neurol Scand.2005;112:228-233.
    [83]Terra-Bustamante VC, Coimbra ER, Rezek KO, et al. Cognitive performance of patients with mesial temporal lobe epilepsy and incidental calcified neurocysticercosis. Br Med J.2005;76:1080-1083.
    [84]Singh-Curry Victoria, Husain Masud. The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia. 2009;47:1434-1448.
    [85]Cavanna AE, Trimble MR. The precuneus:a review of its functional anatomy and behavioural correlates. Brain.2006;129:564.
    [86]Vogt BA, Laureys S. Posterior Cingulate, Precuneal & Retrosplenial Cortices: Cytology & Com-ponents of the Neural Network Correlates of Consciousness. Prog Brain Res.2005;150:205-217.
    [87]Cavanna AE. The precuneus and consciousness. CNS spectrums.2007; 12:545-552.
    [88]Lundstrom BN, Petersson KM, Andersson J, et al. Isolating the retrieval of imagined pictures during episodic memory:activation of the left precuneus and left prefrontal cortex. Neuroimage.2003;20:1934-1943.
    [89]朱建国,卢光明,张志强等.基于低频振荡幅度算法的脑电功能磁共振同步成像技术对颞叶癫痫的研究.临床放射学杂志.2009;28:297-301.
    [90]Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews.1996;22:229-244.
    [91]Isnard J, Guenot M, Ostrowsky K, et al. The role of the insular cortex in temporal lobe epilepsy. Ann Neurol.2000;48:614-623.
    [92]Aghakhani Y, Bagshaw AP, Benar CG, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain:a journal of neurology. 2004;127:1127-1144.
    [93]Fletcher PC, Frith CD, Grasby PM, et al. Brain systems for encoding and retrieval of audi-tory--verbal memory. An in vivo study in humans. Brain.1995; 118:401-416.
    [94]Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J.1994;66:259-267.
    [95]Melhem ER, Mori S, Mukundan G, et al. Diffusion tensor MR imaging of the brain and white matter tractography. Am J Roentgenol.2002;178:3.
    [96]Guo AC, Jewells VL, Provenzale JM. Analysis of normal-appearing white matter in multiple sclerosis:comparison of diffusion tensor MR imaging and magnetization transfer imaging. American Journal of Neuroradiology.2001;22:1893-1900.
    [97]Focke NK, Yogarajah M, Bonelli SB, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage.2008;40:728-737.
    [98]Thivard L, Lehericy S, Krainik A, et al. Diffusion tensor imaging in medial temporal lobe epi-lepsy with hippocampal sclerosis. Neuroimage.2005;28:682-690.
    [99]Gong Gaolang, Concha Luis, Beaulieu Christian, et al. Thalamic diffusion and volumetry in tem-poral lobe epilepsy with and without mesial temporal sclerosis. Epilepsy Res.2008;80:184-193.
    [100]Diehl B, Busch R, Duncan J, et al. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia.2008;49:1409-1418.
    [101]Eriksson SH, Rugg-Gunn FJ, Symms MR, et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain. 2001;124:617.
    [102]Rugg-Gunn FJ, Eriksson SH, Symms MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain.2001;124:627.
    [103]Thomas D, Christoph K, Siawoosh M, et al. Individual white matter fractional anisotropy analysis on patients with MRI negative partial epilepsy. J Neurol Neurosurg Psychiatry.2010;81:136-139.
    [104]Chen Q, Lui S, Li CX, et al. MRI-negative refractory partial epilepsy:role for diffusion ten-sor imaging in high field MRI. Epilepsy Res.2008;80:83-89.
    [105]Kimiwada T, Juhasz C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia.2006;47:167-175.
    [106]Arfanakis K, Hermann BP, Rogers BP, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging.2002;20:511-519.
    [107]Mayanagi Y, Watanabe E, Kaneko Y. Mesial temporal lobe epilepsy:clinical features and seizure mechanism. Epilepsia.1996;37:57-60.
    [108]陈芹.弥散张量成像在难治性部分癫痫中的应用.四川大学;2006.
    [109]ARMSTRONG DD. The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol.1993;52:433.
    [110]Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol.2005;57:188-196.
    [111]Zhong J., Petroff O. A., Prichard J. W., et al. Changes in water diffusion and relaxation properties of rat cerebrum during status epilepticus. Magn Reson Med. 1993;30:241-246.
    [112]Righini A, Pierpaoli C, Alger JR, et al. Brain parenchyma apparent diffusion coefficient al-terations associated with experimental complex partial status epilepticus. Magn Reson Imaging.1994;12:865-871.
    [113]Yoo SY, Chang KH, Song IC, et al. Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers. American Journal of Neuroradiology.2002;23:809.
    [114]Nairismagi J, Grohn OHJ, Kettunen MI, et al. Progression of brain damage after status epi-lepticus and its association with epileptogenesis:a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia.2004;45:1024-1034.
    [115]Gross DW, Concha L, Beaulieu C. Extratemporal white matter abnormalities in mesial tem-poral lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia.2006;47:1360-1363.
    [116]Tokumitsu T, Mancuso A, Weinstein PR, et al.Metabolic and pathological effects of tempo-ral lobe epilepsy in rat brain detected by proton spectroscopy and imaging. Brain Res.1997;744:57-67.
    [117]Chandra PS, Salamon N, Huang J, et al. FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex:a pre-liminary report. Epilepsia.2006;47:1543-1549.
    [118]吕粟,唐鹤菡,陈芹等.弥散张量成像揭示部分及全面发作癫痫患者的丘脑改变.首都医科大学学报.2007;28:713-716.
    [119]Wieshmann UC, Symms MR, Shorvon SD. Diffusion changes in status epilepticus. Lan-cet(British edition).1997;350:493-494.
    [120]Catani M, Jones DK, Donato R. Occipito-temporal connections in the human brain. Brain.2003;126:2093.
    [121]Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans:a quantitative, in vivo, DT-MRI study. Cereb Cortex.2005;15:854.
    [122]Squire LR, Stark CEL, Clark RE. The medial temporal lobe*. Annu Rev Neurosci.2004;27:279-306.
    [123]Phan KL, Orlichenko A, Boyd E, et al. Preliminary Evidence of White Matter Abnormality in the Uncinate Fasciculus in Generalized Social Anxiety Disorder. Biol Psychiatry.2009;66:691-694.
    [124]Mayanagi Y, Watanabe E, Kaneko Y. Mesial temporal lobe epilepsy:clinical features and seizure mechanism. Epilepsia.2005;37:57-60.
    [125]Robbins TW, James M, Owen AM, et al. Cognitive deficits in progressive supranuclear palsy, Parkinson's disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. Br Med J.1994;57:79.
    [126]白卓杰,张志强,卢光明等.基于体素分析的扩散张量成像在内侧颞叶癫痫中的应用.临床放射学杂志.2009;28:924-928.
    [127]Konarski JZ, McIntyre RS, Grupp LA, et al. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci.2005;30:178.
    [128]Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebel-lum-insights from the clinic. The Cerebellum.2007;6:254-267.
    [129]王湘庆,朗森阳,陆虹等.额叶癫痫执行功能损害及磁共振弥散张量成像研究.卒中与神经疾病.2007;14:275-278.
    [130]Dreifuss S, Vingerhoets FJG, Lazeyras F, et al. Volumetric measurements of subcortical nu-clei in patients with temporal lobe epilepsy. Neurology.2001;57:1636.
    [131]Wright IC, McGuire PK, Poline JB, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage.1995;2:244-252.
    [132]Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage.2000; 11:805-821.
    [133]Mechelli A, Price CJ, Friston KJ, et al. Voxel-based morphometry of the human brain:methods and applications. Current Medical Imaging Reviews. 2005;1:105-113.
    [134]Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage.2001;14:21-36.
    [135]Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839-851.
    [136]Focke NK, Thompson PJ, Duncan JS. Correlation of cognitive functions with voxel-based morphometry in patients with hippocampal sclerosis. Epilepsy and Behavior.2008; 12:472-476.
    [137]Segall JM, Turner JA, van Erp TGM, et al. Voxel-based morphometric multisite collabora-tive study on schizophrenia. Schizophr Bull.2009;35:82-95.
    [138]Bernasconi N, Bernasconi A, Caramanos Z, et al. Morphometric MRI analysis of the para-hippocampal region in temporal lobe epilepsy. Annals New York Academy of Sciences.2000;911:495-500.
    [139]Bernasconi N, Bernasconi A, Caramanos Z, et al. Entorhinal cortex atrophy in epilepsy pa-tients exhibiting normal hippocampal volumes. Neurology. 2001;56:1335.
    [140]Bonilha L, Rorden C, Castellano G, et al. Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy. Arch Neurol. 2004;61:1379.
    [141]Bonilha L, Rorden C, Castellano G, et al. Voxel-based morphometry of the thalamus in pa-tients with refractory medial temporal lobe epilepsy. Neuroimage. 2005;25:1016-1021.
    [142]Kim JH, Lee JK, Koh SB, et al. Regional grey matter abnormalities in juvenile myoclonic epilepsy:a voxel-based morphometry study. Neuroimage. 2007;37:1132-1137.
    [143]Betting LE, Mory SB, Li LM, et al. Voxel-based morphometry in patients with idiopathic generalized epilepsies. Neuroimage.2006;32:498-502.
    [144]Keller SS, Mackay CE, Barrick TR, et al. Voxel-based morphometric comparison of hippo-campal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. Neuroimage.2002; 16:23-31.
    [145]Keller SS, Wieshmann UC, Mackay CE, et al. Voxel based morphometry of grey matter ab-normalities in patients with medically intractable temporal lobe epilepsy:effects of side of seizure on-set and epilepsy duration. Br Med J. 2002;73:648-655.
    [146]Woermann FG, Free SL, Koepp MJ, et al. Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain. 1999;122:2101.
    [147]Keller SS, Cresswell P, Denby C, et al. Persistent seizures following left temporal lobe sur-gery are associated with posterior and bilateral structural and functional brain abnormalities. Epilepsy Res.2007;74:131-139.
    [148]K lvi inen R, Salmenper T, Partanen K. MRI volumetry and T2 relaxometry of the amyg-dala in newly diagnosed and chronic temporal lobe epilepsy. Epilepsy Res.1997;28:39-50.
    [149]MARTIN ROYC, HUGG JW, ROTH DL, et al. MRI extrahippocampal volumes and visual memory:correlations independent of MRI hippocampal volumes in temporal lobe epilepsy patients. J Int Neuropsychol Soc.1999;5:540-548.
    [150]Kuzniecky R, Bilir E, Gilliam F, et al. Quantitative MRI in temporal lobe epilepsy:evidence for fornix atrophy. Neurology.1999;53:496-501.
    [151]Mueller SG, Laxer KD, Cashdollar N, et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia.2006;47:900-907.
    [152]Bernasconi N, Bernasconi A, Andermann F, et al. Entorhinal cortex in temporal lobe epi-lepsy:a quantitative MRI study. Neurology.1999;52:1870-1876.
    [153]Dreifuss S, Vingerhoets FJG, Lazeyras F, et al. Volumetric measurements of subcortical nu-clei in patients with temporal lobe epilepsy. Neurology.2001; 57:1636-1641.
    [154]DeCarli C, Hatta J, Fazilat S, et al. Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol.1998;43:41-45.
    [155]Natsume J, Bernasconi N, Andermann F, et al. MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology. 2003;60:1296-1300.
    [156]Sandok EK, O Brien TJ, Jack CR, et al. Significance of cerebellar atrophy in intractable temporal lobe epilepsy:a quantitative MRI study. Epilepsia. 2000;41:1315-1320.
    [157]Slaght SJ, Paz T, Chavez M, et al. On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy. J Neurosci.2004;24:6816.
    [158]Paz JT, Deniau JM, Charpier S. Rhythmic bursting in the cortico-subthalamo-pallidal net-work during spontaneous genetically determined spike and wave discharges. J Neurosci.2005;25:2092.
    [159]Archer JS, Abbott DF, Waites AB, et al. fMRI "deactivation" of the posterior cingulate dur-ing generalized spike and wave. Neuroimage.2003;20:1915-1922.
    [160]Salek-Haddadi A, Lemieux L, Merschhemke M, et al. Functional magnetic resonance imag-ing of human absence seizures. Ann Neurol.2003;53:663-667.
    [161]Labate A, Briellmann RS, Abbott DF, et al. Typical childhood absence seizures are associ-ated with thalamic activation. Epileptic Disorders.2005;7:373.
    [162]Steffens DC, Krishnan KRR. Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry. 1998;43:705-712.
    [163]Husain MM, McDonald WM, Doraiswamy PM, et al. A magnetic resonance imaging study of putamen nuclei in major depression. Psychiatry Research: Neuroimaging.1991;40:95-99.
    [164]Lieb JP, Dasheiff RM, Engel Jr J. Role of the frontal lobes in the propagation of mesial tem-poral lobe seizures. Epilepsia.1991;32:822-837.
    [165]Kramer U, Carmant L, Mikati MA. Electroencephalographic discharges of temporal lobe seizures in children and young adults. Electroencephalogr Clin Neurophysiol.1998; 107:353-360.
    [166]Kasper BS, Stefan H, Paulus W. Microdysgenesis in mesial temporal lobe epilepsy:a clini-copathological study. Ann Neurol.2003;54:501-506.
    [167]Sisodiya SM, Free SL. Disproportion of cerebral surface areas and volumes in cerebral dys-genesis. MRI-based evidence for connectional abnormalities. Brain. 1997;120:271.
    [168]Savic I, Lekvall A, Greitz D, et al. MR spectroscopy shows reduced frontal lobe concentra-tions of N-acetyl aspartate in patients with juvenile myoclonic epilepsy. Epilepsia.2000;41:290-296.
    [169]Hommet C, Sauerwein HC, De Toffol B, et al. Idiopathic epileptic syndromes and cognition. Neurosci Biobehav Rev.2006;30:85-96.
    [170]Cavada C. The anatomical connections of the macaque monkey orbitofrontal cortex. Are-view. Cereb Cortex.2000; 10:220-242.
    [171]Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31:373-385.
    [172]Quigg M, Bertram EH, Jackson T, et al. Volumetric magnetic resonance imaging evidence of bilateral hippocampal atrophy in mesial temporal lobe epilepsy. Epilepsia.1997;38:588-594.
    [173]Tasch E, Cendes F, Li LM, et al. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol. 1999;45:568-576.
    [174]Woermann FG, Barker GJ, Birnie KD, et al. Regional changes in hippocampal T2 relaxation and volume:a quantitative magnetic resonance imaging study of hippocampal sclerosis. Br Med J.1998;65:656.
    [175]McMillan AB, Hermann BP, Johnson SC, et al. Voxel-based morphometry of unilateral temporal lobe epilepsy reveals abnormalities in cerebral white matter. Neuroimage.2004;23:167-174.
    [176]于爱红,李坤成,李琳等.颞叶内侧癫痫全脑灰质基于体素的MRI形态分析.中国医学影像技术.2008;24:1011-1014.
    [177]Dickson JM, Wilkinson ID, Howell SJL, et al. Idiopathic generalised epilepsy:a pilot study of memory and neuronal dysfunction in the temporal lobes, assessed by magnetic resonance spectros-copy. Br Med J.2006;77:834-840.
    [178]de Araujo Filho GM, Jackowski AP, Lin K, et al. Personality traits related to juvenile myo-clonic epilepsy:MRI reveals prefrontal abnormalities through a voxel-based morphometry study. Epi-lepsy and Behavior.2009; 15:202-207.
    [179]Bonilha L, Rorden C, Halford JJ, et al. Asymmetrical extra-hippocampal gray matter loss related to hippocampal atrophy in patients with medial temporal lobe epilepsy. Br Med J.2006;78:286-294.
    [180]Bernasconi N, Duchesne S, Janke A, et al. Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. Neuroimage.2004;23:717-723.
    [181]Wieser HG, Engel Jr J, Williamson PD, et al. Surgically remediable temporal lobe syn-dromes. Surgical Treatment of the Epilepsies, ed.2:49-63.
    [182]Konarski JZ, McIntyre RS, Grupp LA, et al. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci.2005;30:178-186.
    [183]Lee SK, Mori S, Kim DJ, et al. Diffusion tensor MRI and fiber tractography of cerebellar atrophy in phenytoin users. Epilepsia.2003;44:1536-1540.
    [184]Hagemann G, Lemieux L, Free SL, et al. Cerebellar volumes in newly diagnosed and chronic epilepsy. J Neurol.2002;249:1651-1658.
    [1]Strandberg M, Larsson E, Backman S, et al. Pre-surgical epilepsy evaluation using 3T MRI. Do surface coils provide additional information? Epileptic Disord. 2008;10:83-92.
    [2]Bernasconi N, Bernasconi A, Caramanos Z, et al. Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. ANNALS-NEW YORK ACADEMY OF SCIENCES.2000;911:495-500.
    [3]Bernasconi N, Bernasconi A, Caramanos Z, et al. Entorhinal cortex atrophy in epilepsy patients exhibiting normal hippocampal volumes. Neurology. 2001;56:1335-1339.
    [4]Ashburner J, Friston K. Voxel-based morphometry-the methods. Neuroimage. 2000;11:805-821.
    [5]Mehta S, Grabowski T, Trivedi Y, et al. Evaluation of voxel-based morphometry for focal lesion detection in individuals. Neuroimage.2003;20:1438-1454.
    [6]Bonilha L, Rorden C, Castellano G, et al. Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy. Arch Neurol. 2004;61:1379-1384.
    [7]Bonilha L, Rorden C, Castellano G, et al. Voxel-based morphometry of the thalamus in patients with refractory medial temporal lobe epilepsy. Neuroimage. 2005;25:1016-1021.
    [8]Kim J, Lee J, Koh S, et al. Regional grey matter abnormalities in juvenile myoclonic epilepsy:a voxel-based morphometry study. Neuroimage. 2007;37:1132-1137.
    [9]Betting L, Mory S, Li L, et al. Voxel-based morphometry in patients with idiopathic generalized epilepsies. Neuroimage.2006;32:498-502.
    [10]Meeren H, Pijn J, Van Luijtelaar E, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci. 2002;22:1480-1495.
    [11]Ciumas C, Savic I. Structural changes in patients with primary generalized tonic and clonic seizures. Neurology.2006;67:683-686.
    [12]Seeck M, Dreifuss S, Lantz G, et al. Subcortical nuclei volumetry in idiopathic generalized epilepsy. Epilepsia.2005;46:1642-1645.
    [13]Amunts K, Schleicher A, Zilles K. Cytoarchitecture of the cerebral cortex-more than localization. Neuroimage.2007;37:1061-1065.
    [14]Keller S, Roberts N. Voxel-based morphometry of temporal lobe epilepsy:an introduction and review of the literature. Epilepsia.2008;49:741-757.
    [15]ONSIDERABLE C. Diffusion/Perfusion MR Imaging of the Brain:From Structure to Function'. Radiology.1990; 177:328-329.
    [16]Wieshmann U, Symms M, Shorvon S. Diffusion changes in status epilepticus. Lancet(British edition).1997;350:493-494.
    [17]Wehner T, Lapresto E, Tkach J, et al. The value of interictal diffusion-weighted imaging in lateralizing temporal lobe epilepsy. Neurology.2007;68:122-127.
    [18]Thivard L, Adam C, Hasboun D, et al. Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes. Brain.2006;129:375-385.
    [19]Szabo K, Poepel A, Pohlmann-Eden B, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain. 2005;128:1369-1376.
    [20]SK H, EJ J. Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus. Seizure.2004;13:317-321.
    [21]El-Koussy M, Mathis J, L vblad K, et al. Focal status epilepticus:follow-up by perfusion-and diffusion MRI. Eur Radiol.2002;12:568-574.
    [22]Basser P, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J.1994;66:259-267.
    [23]Wieshmann U, Symms M, Parker G, et al. Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. Journal of Neurology, Neurosurgery, and Psychiatry.2000;68:501.
    [24]Denis Le Bihan M, Mangin J, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging.2001;13:534-546.
    [25]Rugg-Gunn F, Eriksson S, Symms M, et al. Diffusion tensor imaging in refractory epilepsy. The Lancet.2002;359:1748-1751.
    [26]Rugg-Gunn F, Eriksson S, Symms M, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain.2001; 124:627-636.
    [27]吕粟,唐鹤菡,陈芹等.弥散张量成像揭示部分及全面发作癫痫患者的丘脑改变.首都医科大学学报.2007;28:713-716.
    [28]Assaf B, Mohamed F, Abou-Khaled K, et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. American journal of neuroradiology. 2003;24:1857-1862.
    [29]Focke N, Yogarajah M, Bonelli S, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage. 2008;40:728-737.
    [30]Thivard L, Lehericy S, Krainik A, et al. Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage.2005;28:682-690.
    [31]Gong G, Concha L, Beaulieu C, et al. Thalamic diffusion and volumetry in temporal lobe epilepsy with and without mesial temporal sclerosis. Epilepsy Res. 2008;80:184-193.
    [32]Diehl B, Busch R, Duncan J, et al. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia. 2008;49:1409-1418.
    [33]Eriksson S, Rugg-Gunn F, Symms M, et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain.2001;124:617-626.
    [34]Yogarajah M, Powell H, Parker G, et al. Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage.2008;40:1755-1764.
    [35]Ogawa S, Lee T, Nayak A, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68-78.
    [36]Logothetis N, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature.2001;412:150-157.
    [37]Ogawa S, Lee T, Kay A, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences. 1990;87:9868-9872.
    [38]Yagishita A, Arai N, Maehara T, et al. Focal cortical dysplasia:appearance on MR images. Radiology.1997;203:553-559.
    [39]Stern J. Simultaneous electroencephalography and functional magnetic resonance imaging applied to epilepsy. Epilepsy and Behavior.2006;8:683-692.
    [40]Ives J, Warach S, Schmitt F, et al. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol.1993;87:417.
    [41]Hamandi K, Salek-Haddadi A, Fish D, et al. EEG/functional MRI in epilepsy:the Queen Square experience. J Clin Neurophysiol.2004;21:241-248.
    [42]Al-Asmi A, Benar C, Gross D, et al. fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia.2003;44:1328-1339.
    [43]Sveller C, Briellmann R, Saling M, et al. Relationship between language lateralization and handedness in left-hemispheric partial epilepsy. Neurology. 2006;67:1813-1817.
    [44]Zang Y, Jia F, Weng X, et al. Functional organization of the primary motor cortex characterized by event-related fMRI during movement preparation and execution. Neurosci Lett.2003;337:69-72.
    [45]Schl sser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working memory performance in schizophrenia:a study with fMRI and structural equation modeling. Neuroimage.2003;19:751-763.
    [46]Woermann F, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology.2003;61:699-701.
    [47]Golby A, Poldrack R, Illes J, et al. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia.2002;43:855-863.
    [48]Powell H, Koepp M, Richardson M, et al. The application of functional MRI of memory in temporal lobe epilepsy:a clinical review. Epilepsia.2004;45:855-863.
    [49]Raichle M, MacLeod A, Snyder A, et al. A default mode of brain function. Proc Natl Acad Sci USA.2001;98:676-682.
    [50]Laufs H, Hamandi K, Salek-Haddadi A, et al. Temporal lobe in-terictal epileptic discharges affect cerebral activity in" default mode" brain regions. Hum Brain Mapp. 2007;28:1023-1032.
    [51]Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3 T in generalized vs. partial seizure. J Magn Reson Imaging.2008;27:1214-1220.
    [52]Connelly A, Van Paesschen W, Porter D, et al. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology.1998;51:61.
    [53]Cendes F, Caramanos Z, Andermann F, et al. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy:a series of 100 patients. Ann Neurol. 1997;42:737-746.
    [54]Concha L, Beaulieu C, Gross D. Bilateral limbic diffusion ab-normalities in unilateral temporal lobe epilepsy. Ann Neurol.2005;57:188-196.
    [55]Lee S, Kim D, Kim K, et al. Effect of seizure on hippocampus in mesial temporal lobe epilepsy and neocortical epilepsy:an MRS study. Neuroradiology. 2005;47:916-923.
    [56]Matthews P, Arnold D. Magnetic resonance imaging of multiple sclerosis:new insights linking pathology to clinical evolution. Curr Opin Neurol.2001; 14:279-287.
    [57]Garcia P, Laxer K, van der Grond J, et al. Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol.1995; 37:279-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700