基于多项式展开的弥散张量图像配准
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,我们基于多项式展开的配准模型,提出了对于两幅磁共振弥散张量图像(DTI)的配准方法;根据临床研究需要,我们在此基础上提出了多幅图象的几何无偏配准方法。
     DTI张量成像提供了一种对大脑神经纤维束活体成像的方法,脑功能障碍病人的神经纤维束一般都具有某种程度的变异,对病人和正常人的神经纤维束的变异性分析,对于脑功能障碍病人的病情诊断具有重要的意义。由于成像时间的不同、空间坐标系的不同,或者病人和正常人大脑间的差异,要进行精确的对比分析,一般需要先对病人和正常人的图像序列进行配准。在实际应用中,正常人的图像序列,有时也用正常人的脑图谱代替。为了考察某种疾病病人的共同特征,临床上需要通过分析一组同一种疾病病人的大脑神经纤维束的共同特征来确定该种疾病对于大脑神经纤维束的结构影响。这种情况下,需要同时配准一组具有相同疾病的病人大脑DTI图像序列。
     在接下来的工作中,我们主要针对临床上的上述两个需要,提出了一种基于多项式展开的对于两幅或者一组图像的配准方法。首先,我们基于多项式展开的配准模型,提出了两幅DTI图像间的配准方法。由于张量图像所包含的信息量非常大,我们把临床上最关心的张量特征:各向异性和张量方向作为重点考虑对象。第一步基于多项式展开的配准模型完成对张量各向异性特征的配准;第二步,根据各向异性特征配准的结果,对张量场的方向进行逐像素的矫正,以完成张量场的方向匹配。其次,基于两幅图像的配准方法,我们进一步的提出了多幅图像的无偏配准。在以往的多幅图像配准方法中,往往指定其中一幅、或者脑图谱作为目标图像,把其余图像序列配准到目标图像,这就使得配准结果偏向于目标图像。在我们的方法中,我们通过寻找这些图像序列的几何中心位置,把他们都配准到该位置,从而实现了多幅图像的无偏配准。
     概括的说,在本文中我们的贡献主要包括以下几点:(1)改进了基于多项式展开的配准模型,提出了更为精确的位移场估计公式,并进一步的提出了对于3D数据的整体仿射配准算法;(2)提出了基于局部邻域的Multi-Affine变形配准算法,实现了对于DTI图像的稳定的高精度配准;(3)基于Multi-Affine的高精度配准,在配准后逐像素的对张量场进行方向矫正,提出了张量方向的整体矫正方法;(4)基于多幅图像的几何中心,提出了多幅图像的快速无偏配准方法,包括仿射配准算法和变形配准算法。
In this dissertation, we proposed affine and deformable registration algorithms for diffusion tensor magnetic resonance images based on polynomial expansion model. Required by clinical research, then we proposed a geometric unbiased pop-ulation registration framework based on the pairwise registration method.
     Diffusion tensor imaging is an in-vivo magnetic resonance imaging method based on the diffusion of water molecule, which provides an insight for the white matter fiber of human brain. The comparison analysis of white matter fiber of brain function obstacle patients with healthy subjects is helpful for patients diagnosis. Since the scanning time and spatial coordinate is different, or the difference be-tween different subjects exists, registering the patients'image volume to the healthy subjects'volume is a basic step before analyzing the difference between them ac-curately. In application, researchers sometime use the atlas as the target volume replacing the healthy subjects'volume. For other cases, in order to find the common character of a special brain function obstacle disease, a group brain image volumes with the same disease symptom are required to be registered together.
     In the following work, we proposed pair-wise and group-wise registration algo-rithms focusing on the above cases required in clinical diagnosis. First, we proposed an affine and a deformable pair-wise registration algorithms based on quadratic poly-nomial expansion model. As the diffusion tensor images include a lot of information, we complete the registration of diffusion tensor images with two steps focusing on two characters which is the most important in clinical diagnosis. In the first step, we register the shape information of diffusion tensors, and then we reorient the ten-sor's orientation based on the first step's registration. Second, using the method developed for pair-wise registration, we further proposed unbiased population reg-istration for a group of volumes. Different with the former work on this problem using a selected volume as the target, which leads a bias to the selected target in registration, here we search for the geometric center position as the target and reg- ister all the volumes to the center, hereby we complete the registration without any bias.
     In a summary, we contribute several points in this thesis:First, we generalized the registration model based on polynomial expansion by proposing a more accurate displacement estimation formula, and then we developed a new affine registration algorithm for 3D medical images based on the proposed method. Second, we pro-posed a deformable registration algorithm named with multi-affine which aimed to register every local regions well. The output with an affine transform pixel by pixel is suitable for diffusion tensor reorientation. Third, we apply a pixel by pixel tensor reorientation strategy into diffusion tensor image registration based on the accurate and steady registration of multi-affine algorithm. Fourth, we further proposed an unbiased population registration for a group of image volumes, which is very useful in neuroscience, clinical research.
引文
[1]J.C. Gee and D.C. Alexander, Diffusion-tensor Image Registration. In Joachim Weickert and Hans Hagen (Eds), Visualization and Processing of Tensor Fields [M], Springer Berlin Herdeberg NewYork 2005:328-342.
    [2]D.C. Alexander, C. Pierpaoli, P.J. Basser and J.C. Gee, Spatial Transformations of Diffusion Tensor Magnetic Responance Images [J]. IEEE Transactions on Medical Imaging 2001,20(11):1131-1139.
    [3]Kalvis M Jansons, Daniel C Alexander, Persistent Angular Structure:New Insight from Diffusion Magnetic Resonance Imaging Data [J], Inverse Problems 2003,19:1031-1046.
    [4]H. Zhang, P.A. Yushkevich, D.C. Alexander, J.C. Gee, Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization [J]. Medical Image Analysis 2006; 10:764-785.
    [5]H. Zhang, P.A. Yushkevich, J.C. Gee, Registration of Diffusion Tensor Images [C]. Proceedings of Computer Vision and Pattern Recognition 2004; 1(27):842-847.
    [6]J.T. Duda, M. Rivera, D.C. Alexander and J.C. Gee, A Method for Non-rigid Registration of Diffusion Tensor Magnetic Responance Images [C]. Proceedings of SPIE 2003, LNCS 5032:1186-1196.
    [7]D.C. Alexander and J.C. Gee, Elastic Matching of Diffusion Tensor Images [J]. Computer Vision and Image Understanding 2000; 77:233-250.
    [8]Punam K. Saha, Hui Zhang, Jayaram K, Udupa, James C. Gee, Tensor Scalr-Based Image Registration [C]. Milan Sonka, J. Michael Fitzpatrick(Eds.) Pro-ceedings of SPIE 2003, LNCS 5032,314-324.
    [9]J. Yang, D. Shen, C. Davatzikos, R. Verma, Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features [C]. D. Metaxas et al.(Eds.): MICCAI 2008; LNCS 5242:905-913.
    [10]D. Xu, S. Mori, D. Shen, P.C.M. Vanzijl, C. Davatzikos, Spatial Normalization of Diffusion Tensor Fields [J]. Magnetic Responance in Medicine 2003,50:175-82.
    [11]D. Xu, S. Mori, D. Shen, C. Davatzikos, Statistically-Based Reorientation of Diffusion Tensor Field [C]. Proceedings of Biomedical Imaging 2002,757-760.
    [12]A. Guimond, C.R.G. Guttmann, S.K. Warfield, C.F. Westin, Deformable Reg-istration of DT-MRI Data Based on Transforation Invariant Tensor Charac-teristics [C]. Proceedings of the IEEE International Symposium on Biomedical Imaging 2002,1-4.
    [13]A. Guimond, Alexis Roche, Nicholas Ayache, Jean Meunier, Multimodel Brain Warping Using the Demons Algorithm and Adaptative Intensity Corrections [R]. INRIA, France, No 3796,1999.
    [14]G.K. Rohde, S.Pojevic, C. Pierpaoli, Multi-channel Registration of Diffusion Tensor Images Using Directional Information [C]. IEEE International Sympo-sium on Biomedical Imaging 2004,712-715.
    [15]J. Ruiz-Alzola, C.F. Westin, S.K. Warfield, C. Alberda, S. Maier, R. Kikinis, Nonrigid Registration of 3D Tensor Medical Data [J]. Medical Image Analysis 2002,6:143-161.
    [16]H. Park, M. Kubicki, M.E. Shenton, A. Guimond, F.A. Jolesz and C.F. Westin, Spatial Normalization of Diffusion Tensor MRI Using Multiple Channels [J]. Neurolmage 2003; 20:1995-2009.
    [17]J.Ruiz-Alzola, R. Kikinis, C.F. Westin, Detection of Point Landmarks in Mul-tidimensional Tensor Data [J], Signal Processing 2001,2243-2247.
    [18]G.K. Rohde, S. Pajevic, C. Pierpaoli, P.J. Basser, A Comprehensive Approach for Multi-Channel Image Registration [C]. J.C. Gee etal. (Eds.):WBIR 2003, Springer-Verlag Berlin Heidelberg, LNCS 2717,214-223.
    [19]A. Leemans, J. Sijbers, S.D. Backer, E. Vandervliet, P.M. Parizel, Affine Coreg-istration of Diffusion Tensor Magnetic Responance Images Using Mutual Infor-mation [C]. J.Blanc-Talon et al.(Eds.):ACIVS 2005; LNCS 3708,523-530.
    [20]W.V. Hecke, A. Leemans, E.D. Agostino, S.D. Backer, E. Vandervliet, P.M. Parizel, J. Sijbers, Nonrigid Coregistration of Diffusion Tensor Images Using a Viscous Fluid Model and Mutual Information [J]. IEEE Translactions on Medical Imaging 2007; 26(11):1598-612.
    [21]O. Faugeras, C. Lenglet, T. Papadopoulo, R. Deriche, Non Rigid Registration of Diffusion Tensor Images [R]. Research Report, No 6104, INRIA,2007.
    [22]X. Tao and J.V. Miller, A Method for Registering Diffusion Weighted Magnetic Resonance Images [C]. MICCAI 2006; LNCS 4191,594-602.
    [23]Jesper L.R. Andersson, Stefan Skare, A Model-Based Method for Retrospective Correction of Geometric Distrotions in Diffusion-Weighted EPI [J]. NeuroImage 2002,16:177-199.
    [24]Thomas Netsch, Arianne Van Muiswinkel, Image Registration for Distortion Correction in Diffusion Tensor Imaging [C]. J.C. Gee etal. (Eds.) WBIR 2003, Springer-Verlag Berlin Heidelberg, LNCS 2717,171-180.
    [25]Hava Lester, Simon R. Arridge, A Survey of Hierarchical Non-linear Medical Image Registration [J]. Pattern Recognation 1999,32:129-149.
    [26]Chunlei Liu, Roland Bammer, Burak Acar, Michael E. Moseley, Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors [J]. Magnetic Resonance in Medicine 2004.51:924-937.
    [27]Alvina Goh, Rene Vidal, Algebraic Methods for Direct and Feature Based Reg-istration of Diffusion Tensor Images [C]. A. Leonardis, H. Bischof, A. Pinz (Eds.):ECCV 2006, Part Ⅲ, LNCS 3953, Springer-Verlag Berlin Herdelberg, 514-525.
    [28]J.P. Thirion, Image Matching as a Diffusion Process:An Analogy with Maxwell's Demons [J]. Medical Image Analysis 1998.2(3):243-260.
    [29]Mark Holden, Derek L.G. Hill, Erika R.E. Denton, J.M. Jarosz, T.C.S. Cox, T. Rohlfing, J. Goodey, D.J. Hawkes, Voxel Similarity measures for 3D Serial MR Brain Image Registration [J], IEEE Translactions on Medical Imaging 2000, 19(2):94-102.
    [30]U.Ziyan, M.R. Sabuncu, L.J. O'Donnell, C.F. Westin, Nonlinear Registration of Diffusion Tensor Images Based on Fiber Bundles [C]. MICCAI 2007; LNCS 4791,351-358.
    [31]Denis Le Bihan, Jean-Francois Mangin, Cyril Poupon, Chris A. Clark, Sabina Pappata, Nicolas Molko, Hughes Chabriat, Diffusion Tensor Imaging:Concepts and Applications [J], Journal of Magnetic Resonance Imaging 2001; 13:534-546.
    [32]Denis Le Bihan, Peter Van Zijl, From the Diffusion Coefficient to the Diffusion Tensor [J], NMR In Biomedicine 2002,15:431-434.
    [33]Marc Niethammer, Raul San Jose Estepar, Sylvain Bouix, Martha Shenton, Carl-Fredrik Westin [C], On Diffusion Tensor Estimation, Processingd of the 28th IEEE EMBS ANnual International Conference, New York City, USA 2006, 2622-2625.
    [34]Susumu Mori, Jiangyang Zhang, Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research [J], Neuron 2006,51:527-539.
    [35]Bing Jian, Baba C. Vemuri, Evren Ozarslan, Paul R. Carney, Thomas H. Mareci, A Novel Tensor Distribution Model for The Diffusion-Weighted MR Signal [J], NeuroImage 2007,37:164-176.
    [36]Stephan E. Maier, Sridhan Vajapeyam, Hatsuho Mamata, Carl-Fredrik Westin, Ferenc A. Jolesz, Robert V. Mulkern, Biexpontial Diffusion Tensor Analysis of Human Brain Diffusion Data [J], Magnetic Resonance in Medicine 2004,51: 321-330.
    [37]Valerij G. Kiselev and Kamil A. Il'yasov, Is "Biexponential Diffusion" Biexpo-nential? [J]. Magnetic Resonance in Medicine 2007,57:464-469.
    [38]Peter B. Kingsley, Introduction to DTI Mathematics Ⅰ:Tensors, Rotations and Eigenvectors [J]. Magnetic Responace in Medicine 2006; 28A(2):101-122.
    [39]Peter B. Kingsley, Introduction to DTI Mathematics Ⅱ:Anisotropy, Diffusion Weighting Factors, and Gradient Encoding Schemes [J]. Magnetic Responance in Medicine 2006; 28A(2):123-154.
    [40]Peter B. Kingsley, Introduction to DTI Mathematics Ⅲ:Tensor Calculation, Noise, Simulations, and Optimization [J]. Magnetic Resonance in Medicine 2006; 28A(2):155-179.
    [41]Susana Munoz Maniega, Mark E. Bastin, Paul A. Armitage, A Quantitative Comparison of Two Methods to Correct Eddy Current-Induced Distortions in DT-MRI [J], Magnetic Resonance Imaging 2007,25:341-349.
    [42]Jiancheng Zhuang, Jan Hrabe, Alayar Kangarlu, Dongrong Xu, Rari Bansal, Craig A. Branch, Branley S. Peterson, Correction of Eddy-Current Distortions in Diffusion Tensor Images Using the Known Directions and Strengths of Diffu-sion Gradients [J], Journal of Magnetic Resonance Imaging 2006,24:1188-1193.
    [43]Daniel B. Ennis, Gordon Kindlmann, Ignacio Rodriguez, Patrick A. Helm, El-liot R. McVeigh, Visualization of Tensor Fields using Superquadratic Glyphs [J], Magnetic Resonance in Medicine 2005; 53:169-176.
    [44]Eugene Zhang, Harry Yeh, Zhongzong Lin, Robert S. Laramee, Asymmetric Tensor Analysis for Flow Visualization [J]. IEEE Transactions on Visualization and Computer Graphics 2009; 15(1):106-122.
    [45]Gordon Kindlmann, Carl-Fredrik Westin, Diffusion Tensor Visualization with Glyph Packing [J]. IEEE Transactions on Visualization and Computer Graphics 2006,12(5):1329-1335.
    [46]Abhir Bhalerao, Paul Summers, Interactive Visualization of MRI Vector and Tensor Fields [C], W.Niessen, M. Viergever (Eds.):MICCAI2001, LNCS2208, 1401-1403, Springer-Verlag Berlin Heidelberg.
    [47]Gordon Kindlmann, David Weinstein, David Hart, Strategies of Direct Volume Rendering of Diffusion Tensor Fields [J], IEEE Transactions on Visualization and Computer Graphics 2000; 6(2):124-138.
    [48]David Tschumperle, Rachid Deriche, Variational Frameworks for DT-MRI Es-timation Regularization and Visualization [C], Proceedings of the Ninth IEEE International Conference on Computer Vision 2003.
    [49]C.F. Westin, S.E. Maier, B. Khidhir, P.Everett, F.A. Jolesz, R. Kikinis, Image Processing for Diffusion Tensor Magnetic Resonance Imaging [C]. In Proceed-ings of Second Int. Conf. on Medical Image Computing and Computer-assisted Interventions (MICCAI'1999),441-452.
    [50]Alexander Daniel, Note on Indices of Shape and Similarity for Diffusion Tensors [R], London, Oct.2000.
    [51]Susumu Mori, Peter C.M. Van Zijl, Fiber Tracking Principles and Strategies-A Technical Review [J]. NMR In Biomedicine 2002,15:468-480.
    [52]N.F. Lori, E. Akbudak, J.S. Shimony, T.S. Cull, A.Z. Snyder, R.K. Guillory, T.E. Conturo, Diffusion Tensor Fiber Tracking of Human Brain Connectivity: Acquisition Methods, Realibility, Analysis and Biological Results [J]. NMR In Biomedicine 2002,15:493-515.
    [53]Ken E. Sakaie, Mark J. Lowe, An Objective Method for Regularization of Fiber Orientation Distrbutions Derived from Diffusion-weighted MRI [J]. NeuroImage 2007,34:169-176.
    [54]M. Kubicki, C.F. Westin, Stephan E. Maier, Hatsuho Mamata, Melissa Fru-min, Hal Ersner-Hershfield, Ron Kikinis, Ferenc A. Jolesz, Robert McCarley, and Martha E. Shenton. Diffusion Tensor Imaging and Its Application to Neu-ropsychiatric Disorders [J], Harvard Rev Psychiatry 2002,10(6):324-336.
    [55]Qian Dong, Reberct C. Welsh, Thomas L. Chenevert, Ruth C. Carlos, Pia Maly-Sundgren, Diana M. Gomez-Hassan, Suresh K. Mukerigi, Clinical Applications of Diffusion Tensor Imaging [J], Journal of Magnetic Resonance Imaging 2004, 19:6-18.
    [56]Saurabh Sinha, Mark E. Bastin, Ian R. Whittle, Joanna M. Ward Law, Dif-fusion Tensor MR Images of High-Grade Cerebral Gliomas [J], AJNR Am J Neuroradiol 2002,23:520-527.
    [57]Ralf G.M. Schlosser, Igor Nenadic, Gerd Wagner, Daniel Gullmar, Katrin von Consbruch, Sabine Kohler, C. Christoph Schultz, Kathrin Koch, Clemens Fitzek, Paul M. Matthews, Jurgen R. Reichenbach, Heinrich Sauer, White mat-ter abnormalities and brain activation in schizophrenia:A combined DTI and fMRI study [J], Schizophrenia Research 2007; 89:1-11.
    [58]Gudrun Rosenberger, Marek Kubicki, Paul G. Nestor, Erin Connor, Georgia B. Bushell, Douglas Markant, Margaret Niznikieqicz, Carl-Fredrik Westin, Ron Kinis, Andrew J. Saykin, Robert W. McCarley, Martha E. Shenton, Age-related deficits in fronto-temporal connections in schizoprenia:A diffusion tensor imag-ing study [J], Schizoprenia Research 2008; 102:181-188.
    [59]Ning Ma, Lingjiang Li, Ni Shu, Jun Liu, Gaolang Gong, Zhang He, Zexuan Li, Liwen Tan, William S. Stone, Zishu Zhang, Lin Xu, Tianzi Jiang, White matter abnormalities in first-episode, treatment navie young adults with major depressive disorder [J], Am J Psychiatry 2007; 164:823-826.
    [60]David A. Forsyth, Jean Ponce, Computer Vision:A Modern Approach [M]. Beijing:Publishing House of Tinghua University 2004.
    [61]Rafael C. Gonzalez, Richard E. Woods, Dgital Image Processing [M], Second Edition, Beijing:Publishing House of Electronics Industry 2005.
    [62]Donald Hearn, M. Pauline Baker, Computer Graphics with OpenGL [M], Third Edition, Beijing:Publishing House of Electronics Industry 2005.
    [63]G. Farneback, C.F. Westin. Affine and deformable registration based on poly-nomial expansion [C]. In:Proceedings of conference medical image computing and computer assisted intervention(MICCAI)2006,857-864.
    [64]G. Farneback. Polynomial Expansion for Orientation and Mortion Estimation [E]. Linkoping Studies in Science and Technology. Dissertations. No.790,2002.
    [65]G.H. Golub, C.F. Van Loan. Matrix Computations [M]. The Johns Hopkins University Press, second edition,1989.
    [66]Bjorck Ake, Numerical Methods for Least Square Problems [M], The Society for Industrial and Applied Mathematics(SIAM) 1996.
    [67]Jin Yun Yuan, Numerical Methods for Generailzed Least Square Problems [J], Journal of Computational and Applied Mathematics 1996,66:571-584.
    [68]K. Maswn, H.B. Nielsen,O. Tingleff. Methods for Non-linear Least Square Problems [M].2nd Edition, Informatics and Mathematical Modelling Technical University of Denmark, April 2004.
    [69]Shi-Nine Yang, Wei-Chang Du, Numerical Methods forr Approximating Dig-itized Curves by Piecewise Circular Arcs [J]. Journal of Computational and Applied Mathematics 1996.66:557-569.
    [70]Robert M. Haralick, Layne Watson, A facet model for image data [J], Computer graphics and image processing 1981; 15:113-129.
    [71]Robert M. Haralick, Digital step edges from zero crossings of second directional derivatives [J], IEEE Trans. Pattern Analysis and Machine Intelligence 1984; 6(1):58-68.
    [72]Stephen M. Smith, Mark Jenkinson, Mark W. Woolrich, Christian F. Beck-mann, Timothy E.J. Behrens, Heidi Johansen-Berg, Peter R. Bannister, Mar-ilena De Luca, Ivana Dronjak, David E. Flitney, Rami K. Niazy, James Saun-ders, John Vickers, Yongyue Zhang, Nicola De Stefano, J. Michael Brandy, Paul M. Matthews, Advances in Functional and Structural MR Images Analysis and Implementation as FSL [J]. NeuroImage 2004, S208-S219.
    [73]Mark W. Woolrich, Saad Jbabdi, Brian Patenaude, Michael Chappell, Salima Makni, Timothy Behrens, Christian Beckmann, Mark Jenkison, Stephen M. Smith, Bayesian Analysis of Neuroimaging data in FSL [J]. NeurpImage 2009, 45:S173-S186.
    [74]D. Shepard, A two dimensional interpolation function for irregularly spaced data [C]. In:23rd National Conference of ACM.1968.517-524.
    [75]Jay West, J. Michael Fitzpatrick, et al., Comparison and Evaluation of Retropestive Intermodality Brain Image Registration Techniques [J], Journal of Computer Assisted Tomography 1997; 21(4):554-568.
    [76]J.M. Fitzpatrick, West J.B., Maure C.R. Jr, Predicting Error in Rigid-body, Point-based Registration [J], IEEE Transactions on Medical Imaging,1998; 17(5):694-702.
    [77]Zhiyong Xie, Lydia Ng, James C Gee, Two Algorithms for Non-Rigid Image Registration and Their Evaluation [C], J. Michael, Fitzpatrick (Eds.), Process-dings of SPIE 2003, LNCS 5032,157-164.
    [78]H.J. Johnson, and G.E. Christensen, Consistent landmark and intensity-based image registration [J], IEEE Translations on Medical Imaging,2002,21(5):450-461.
    [79]E. Learned-Miller, V. Jain, Many heads are better than one:Jointly remov-ing bias from multiple MRIs using nonparametric maximum likehood [C], In Proceedings of Information Processing in Medical Imaging 2005,615-626.
    [80]E. Learned-Miller and P.z Ahammad, Joint MRI bias removal using entropy minimization across images [C], In Neural Information Processing Systems (NIPS) 17(2005),761-768.
    [81]E.G. Learned-Miller, Data driven image models through continuous joint align-ment [J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(2):236-250.
    [82]Simon K. Warfield, Jan Rexilius, Petra S. Huppi, Ferrie E. Inder, Erik G. Miller, Willam M. Wells, Gary P. Zientara, Ferenc A. Jolesz, Ron Kikinis, A Binary Entropy Measure to Assess Nonrigid Registration Algorithms [C], Fourth International Conference on Medical Image Computing and Computer Assisted Intervention 2001, Utrecht, Netherlands,266-274.
    [83]L. Zollei, E. Learned-Miller, E. Grimson, W. Wells, Efficient population reg-istration of 3D data [C], ICCV 2005, Computer Vision for Biomedical Image Applications. Beijing.
    [84]S. Joshi, Brad Davis, M. Jomier, G. Gerig, Unbiased diffeomorphic atlas con-struction for computational anatomy [J], NeuroImage 23(2004):S151-S160.
    [85]Carole J., Twining, S. Marsland, Groupwise non-rigid registration:The mini-mum description length approach [C], In Proceedings of British Machine Vision Conference (BMVC) 2004.
    [86]S. Baloch, C. Davatzikos, Morphological appearance manifolds in computa-tional anatomy:Groupwise registration and morphlogical analysis [J], Neu-roImage 45(2009):S73-S85.
    [87]X.J. Geng, Gary E. Christensen, Hong Gu, T.J. Ross, Y.H. Yang, Implicit reference-based group-wise image registration and its application to structural and functional MRI [J], NeuroImage 2009,47:1341-1351.
    [88]Yuanjun Wang, Gunnar Farneback, Carl-Fredrik Westin, Multi-Affine Regis-tration Using Local Polynomial Expansion [J], accepted.
    [89]Yuanjun Wang, Carl-Fredrik Westin, Diffusion Tensor Image Registration Using A Polynomial Expansion Model [J], submitted.
    [90]Yuanjun Wang, Carl-Fredrik Westin, Joint Affine Alignment of 3D Medical Images [J], submitted.
    [91]Yuanjun, Yuan Cao, Generalized Fairing Algorithm of Parametric Cubic Splines [J], Journal of Zhejiang University, Science A 2006,7(9):1572-1577.(SCI)
    [92]叶伟,王远军,基于Mumford-Shah理论的最小生成树图象分割方法[J].计算机辅助设计与图形学学报2009,21(8):1127-1133.(EI)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700