3.0T MRI R2'和T2'随年龄变化规律及在急性缺血性脑中风中的初步临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.R2’和T2’成像随年龄变化规律
     目的了解在3.0T磁共振上R2、T2、R2*、T2*、R2’、T2’各个年龄组的正常值,探讨正常人上述各值随年龄变化的规律;了解R2、T2、R2*、T2*、R2’、T2’两侧大脑半球和男女性别之间有无差异。
     材料和方法共59位志愿者参与本研究,年龄25~76岁,平均49.73±14.65岁。其中男28人,平均年龄50.25±15.07岁;女31人,平均年龄49.26±14.51岁。将所有志愿者以10岁为一个年龄组,共分为6组,分别为21~30岁10例,31~40岁9例,41~50岁12例,51~60岁11例,61~70岁10例和70岁以上组7例。半卵圆中心和脑室周围高信号按照轻重程度分为0-Ⅵ级,作为脑白质稀疏的程度。将扫描得到的T2map和T2*map原始图像转到ADW4.3工作站,处理后得到R2、T2、R2*、T2*、R2’、T2’图像。在上述各序列图像中测量双侧额叶白质、枕叶白质、皮层下白质、尾状核头、壳核、苍白球、丘脑的值并记录进行统计分析。
     结果总体上脑内中央灰质核团R2、R2*、R2’所测的数值与年龄均呈正相关,而T2、T2*、T2’所测的数值与年龄均呈负相关。总体脑白质除了R2和T2分别与年龄呈负相关和正相关外,其余R2*、T2*、R2’、T2’与年龄均无相关性。尾状核、壳核R2值左侧稍高于右侧(t=-3.607~-3.749,P=0.037~0.000);额叶及枕叶白质T2(t=11.16~3.659,P=0.000~0.001)值均显示左侧稍低于右侧。男女性别间各序列均没有统计学差异(P>0.05)。T2、T2*弛豫时间随脑白质稀疏等级增高而增加,与其呈正相关(r=0.270~0.276,P<0.05),而T2’则与脑白质稀疏没有相关性(P>0.05)。
     结论①脑内中央灰质随年龄增加,T2、T2*、T2’值逐渐降低,而R2、R2*、R2’值逐渐升高;②脑白质区随年龄增加,T2值逐渐升高,而R2值逐渐降低;R2’和T2’值与年龄没有相关性;③尾状核、壳核R2值左侧稍高于右侧;额叶及枕叶白质T2值左侧低于右侧;④男女性别间各个部位R2、T2、R2*、T2*、R2’、T2’值均无统计学差异;⑤T2’值与脑白质稀疏没有相关性。
     二.BOLD成像在急性脑梗死中的初步临床应用
     目的了解R2’和T2’在急性脑梗死中的表现,并与MR/-DWI比较,探讨其在判断脑缺血半暗带中的价值。
     材料和方法14例发病时间<24h的急性缺血性脑中风患者,其中男8例,女6例,年龄44~75岁,平均56.36±9.28岁。发病时间6~22h,平均16.73±4.65h。患者于就诊首日和发病后7~20天分别进行MRI检查。首次检查DWI高信号区定义为初始病灶面积(LO),第二次复查的T2WI或T2-FLAIR图像上病灶面积定义为最终梗死面积。最终梗死面积小于第一次DWI面积的部分定义为组织存活区(ST),最终梗死面积大于第一次DWI面积者为病灶扩大区(LG)。扫描序列包括横轴位T1WI、T2WI、DWI、T2-FLAIR、T2map、T2*map、3D-TOF MRA、FAIR。总的检查时间约为20min。将所得图像在ADW4.3工作站Functool软件中采用图像重叠的方法,分别手动绘出每个序列图像的病灶形态,并进行比较。
     结果根据影像表现,初次检查时DWI和R2’图像上异常信号的面积大小可分为三种情况:①R2'>DWI,共4例;②R2'=DWI,共6例;③R2’     结论①在发病24小时内,脑内梗死灶在BOLD图像上可以分为三种情况:R2'>DWI、R2'=DWI和R2’PartⅠ:Age-dependent normal values of R2'and T2'in brain parenchyma on 3.0T MRI
     Objective In our study, R2, T2, R2*, T2*, R2' and T2'values of brain parenchyma were determined with 3.0T MRI in healthy subjects to determine standard values and to investigate the age-related pattern of them. The differences of two cerebral hemispheres and gender of the above values were also studied.
     Material and methods Total 59 healthy volunteers ranged 25-76 years of old (mean age 49.73±14.65 years) took part in our study.28 male volunteers with the mean age 50.25±15.07 years and 31 female with the mean age 49.26±14.51 years were studied.59 volunteers were divided into 6 groups according to each group 10 years. Leukoaraiosis was considered a regular aging process and was graded 0-Ⅵcorresponding to semioval center and periventricular high signal intensity on T2WI. The raw date including T2map and T2*map were transferred to ADW4.3 workstation. After calculation of R2, T2, R2*, T2*, R2',T2'maps, the values of deep gray matter (head of caudate nucleus, putamen, globus pallidus, thalamus) and white matter (frontal white matter, occipital white matter and subcortical white matter) were measured in distinct regions of interest (ROI).
     Results In general, there was a positive correlation between age and R2, R2* and R2'values in deep gray matter. Correspondingly, there was a negative correlation between age and T2, T2* and T2'values in gray matter. In general, there was no correlation between age and R2*,T2*, R2', T2'values except R2 and T2 which was respectively negative and positive correlation with age in white matter. R2 values of left side caudate nucleus and putamen was slightly higher than that of right side (t=11.16~3.659, P=0.000~0.001). T2 values of left frontal and occipital white matter were lower than that of right side (t=11.16~3.659, P=0.000-0.001).There was no statistic differences between male and female in all sequences (P>0.05). T2 and T2* values increased corresponding to the high degree of leukoaraiosis. Contrast to T2 and T2*, there was no association of T2'values with the degree of leukoaraiosis.
     Conclusion①The increase of T2, T2* and T2'values but decrease of R2, R2* and R2'values correlate with the progress of the brain aging in central gray matter.②In general, the increase of T2 values and decrease of R2 values in white matter correlate with the progress of brain aging. There is no correlation between R2', T2'values and aging.③R2 values of left side is higher than that of right side in both gray matter(head of caudate nucleus, putamen)and white matter(frontal white matter and occipital white matter) but the T2 values is lower.④There is no statistic differences between male and female in R2, T2, R2*, T2*, R2'and T2'sequences.⑤There is no association of T2'values with the degree of leukoaraiosis.
     PartⅡ:The early clinical use of BOLD imaging in acute ischemic stroke
     Objective To show the features of R2'and T2'in acute ischemic stroke. Compare them with diffusion weighted imaging (DWI) to estimate the value of them in judging the infarction core and ischemic penumbra (IP)
     Material and methods 14 patients (male 8 and female 6) with acute ischemic stroke within 24 hours of symptom onset underwent MRI examination. The mean age was 56.36±9.28 years old, with a rang of 44~75 years. The mean time from symptom onset to hospital was 16.73±4.65 hours (6-22 hours). The high signal intensity on DWI in first MRI examination was difined L0. Follow-up were performed on day 7 to 20 days. The final infarct size was defined on T2WI or T2-FLAIR imaging in follow 7-20 days. Lesion growth (LG)from day 1 to day 7-20 was derived by subtracting day 1 from day 7-20, and surviving tissue (ST)was calculated by subtracting day 7-20 from day 1. The MRI sequences include T1WI, T2WI, DWI, T2-FLAIR, T2map, T2*map and 3D-TOF MRA. The total time of examination was 20 minutes. Functool software in ADW4.3 workstation was used to overlap the pictures. The lesion shape were manually drawn in each picture and then compared them eachother.
     Results Three conditions were defined according to the area of abnormal signal intensity on DWI and R2'in first MRI:①R2'>DWI,4 cases;②R2'=DWI,6 cases; ③R2'     Conclusion①Within 24 hours since symptom onset, cerebral ischemic lesion can be divided into three conditions according to BOLD images:R2'>DWI, R2'=DWI and R2'
引文
[1]Ding XQ, Kucinski T, Wittkugel O, et al. Normal brain maturation characterized with age-related T2 relaxation times:an attempt to develop a quantitative imaging measure for clinical use[J]. Invest Radiol,2004,39(12):740-746.
    [2]Neil Gelman, Jay M. Gorell, Peter B. Barker,et al. MR Imaging of Human Brain at 3.0 T:Preliminary Report on Transverse Relaxation Rates and Relation to Estimated Iron Content[J]. radiology,1999,210(3):759-767.
    [3]John C. Wood, Cathleen Enriquez, Nilesh Ghugre, et al. MRI R2 and R2* mapping accurately estimetes heptic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients[J]. blood,2005,106:1460-1465.
    [4]Voskaridou E, Douskou M, Terpos E, et al. Magnetic resonance imaging in the evaluation of iron overload in patients with beta thalassaemia and sickle cell disease[J]. Br J Haematol,2004,126(5):736-742.
    [5]Holst B, Siemonsen S, Finsterbusch J,et al. T2'imaging indicates decreased tissue metabolism in frontal white matter of MS patients[J]. Mult Scler,2009, 15(6):701-707.
    [6]Calamante F, Lythgoe MF, Pell GS, et al. Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T[J]. Magn Reson Med,1999,41(3):479-485.
    [7]Hongyu An, Weili Lin. Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging[J]. J Cereb Blood Flow Metab, 2000,20(8):1225-1236.
    [8]Geisler B S, Brandhoff F, Fiehler J,et al. Blood Oxygen Level-Dependent MRI Allows Metabolic Description of Tissue at Risk in Acute Stroke Patients[J]. Stroke,2006,37(7):1778-1784.
    [9]Siemonsen S, Fitting T, Thomalla G, et al. T2'imaging predicts infart growth beyond the acute diffusion-weight imaging lesion in acute stroke[J]. Radiology, 2008,248(3):979-986.
    [10]Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5T in Alzheimer's dementia and normal aging[J]. AJR Am J Roentgenol,1987,149(2): 351-356.
    [11]Hashemi.R.H等著,尹建忠译.MRI基础[M].天津:天津科技翻译出版公司,2004.44-52.
    [12]Geisler BS, Brandhoff F, Fiehler J, et al. Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients[J]. Stroke, 2006,37(7):1778-1784.
    [13]Tamura H, Hatazawa J, Toyoshima H, et al. Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging[J]. Stroke,2002,33(4):967-971.
    [14]Baron JC, Bousser MG, Rey A, et al. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 150 positron emission tomography[J]. Stroke, 1981,12(4):454-459.
    [15]Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman Primate[J]. ILAR J,2003,44(2):96-104.
    [16]Heiss WD, Fink GR, Huber M, Herholz K. Positron emission tomography imaging and the therapeutic window[J]. Stroke,1993,24(12 suppl):I50-3; discussion 148-9,154-6.
    [17]Furlan M, Marchal G, Viader F, et al. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra[J]. Ann Neurol,1996,40(2):216-226.
    [18]Hakim AM, Evans AC, Berger L, et al. The effect of nimodipine on the evolution of human cerebral infarction studied by PET[J]. J Cereb Blood Flow Metab,1989,9(4):523-534.
    [19]Heiss WD, Huber M, Fink GR, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke[J]. J Cereb Blood Flow Metab,1992,12(2): 192-203.
    [20]Bandettini PA, Wong EC, Jesmanowicz A, et al. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast:a comparative study at 1.5 T[J].NMR Biomed,1994,7(1-2):12-20.
    [21]Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model[J]. Biophys J,1993,64(3):803-812.
    [22]Lee JM, Vo KD, An H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients[J]. Ann Neurol,2003,52 (2): 227-232.
    [23]Jensen UR, Liu JR, Eschenfelder C. The correlation between quantitative T2_and regional cerebral blood flow after acute brain ischemia in early reperfusion as demonstrated in a middle cerebral artery occlusion/reperfusion model of the rat[J]. J Neurosci Methods,2009,178(1):55-58.
    [24]Vymazal J, Brooks RA, Zak O, et al. T1 and T2 of ferritin at different field strengths:effect on MRI[J]. Magn Reson Med,1992,27(2):368-374.
    [25]Bartzokis G, Aravagiri M, Oldendorf WH, et al. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores[J]. Magn Reson Med,1993,29(4):459-464.
    [26]Inglese M, Ge Y. Quantitative MRI:hidden age-related changes in brain tissue[J]. Top Magn Reson Imaging,2004,15(6):355-363.
    [27]Agartz I, Saaf J, Wahlund LO et al. T1 and T2 relaxation time estimates in the normal human brain[J]. Radiology,1991,181(2):537-43.
    [28]Fan G, Wu Z, Pan S et al. Quantitative study of MR T1 and T2 relaxation times and 1HMRS in gray matter of normal adult brain[J]. Chin Med J (Engl),2003, 116(3):400-404.
    [29]Breger RK, Yetkin FZ, Fischer ME, et al. T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors[J]. Radiology.1991 Nov;181(2):545-7,1991,181(2):545-547.
    [30]Dezortova M, Hajek M, Tintera J et al. MR in phenylketonuria-related brain lesions[J]. Acta Radiol,2001,42(5):459-66.
    [31]Okujava M, Schulz R, Ebner A, et al. Measurement of temporal lobe T2 relaxation times using a routine diagnostic MR imaging protocol in epilepsy [J]. Epilepsy Res,2002,48(1-2):131-142.
    [32]Siemonsen.S, Finsterbusch.J, Matschke.J, et al. Age-Dependent Normal Values of T2* and T2_ in Brain Parenchyma[J]. AJNR Am J Neuroradiol,2008,29(5): 950-955.
    [33]昌仁民,刘广保,张玉忠,等.3.0T磁共振的临床应用特点研究[J].CT理论与应用研究,2008,17(4):76-81.
    [34]Rivkin MJ, Wolraich D, Als H, et al. Prolonged T2* values in newborn versus adult brain:Implications for fMRI studies of newborns[J]. Magn Reson Med, 2004,51(6):1287-1291.
    [35]Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron:birth of a biomarker?[J]. NMR Biomed,2004,17(7):433-445.
    [36]Schenck JF. Magnetic resonance imaging of brain iron[J]. J Neurol Sci, 2003,207(1-2):99-102.
    [37]Brass SD, Chen NK, Mulkern RV, et al. Magnetic resonance imaging of iron deposition in neurological disorders[J]. Top Magn Reson Imaging,2006,17(1): 31-40.
    [38]Haacke E M, Cheng N Y.C, House M.J, et al. Imagingiron stores in the brain using magnetic resonance imaging[J]. Magnetic resonance imaging,2005, 23(1):1-25.
    [39]An H, Lin W. Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo-and hypercapnic conditions using an asymmetric spin echo approach[J]. Magn Reson Med, 2003,50(4):708-716.
    [40]Nair D.G. About being BOLD[J]. Brain Res Brain Res Rev,2005,50(2): 229-243.
    [41]Lin W, Paczynski RP, Celik A, et al. Experimental hypoxemic hypoxia:changes in R2* of brain parenchyma accurately reflect the combined effects of changes in arterial and cerebral venous oxygen saturation[J]. Magn Reson Med,1998, 39(3):474-481.
    [42]Hongyu An,Weili Lin. Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging[J]. Journal of Cerebral Blood Flow and Metabolism,2000,20(8):1225-1236.
    [43]Yamauchi H, Fukuyama H, Nagahama Y, et al. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET[J]. J Neurol Neurosurg Psychiatry,1996,61(1):18-25.
    [44]Powers WJ, Grubb RL, Darriet D, et al. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans[J]. J Cereb Blood Flow Metab,1985,5(4):600-608.
    [45]Touzani O, Young AR, Derlon JM, et al. Progressive impairment of brain oxidative metabolism reversed by reperfusion following middle cerebral artery occlusion in anaesthetized baboons[J]. Brain Res,1997,767(1): 17-25.
    [46]Akiyama H, Meyer JS, Mortel KF, et al. Normal human aging:factors contributing to cerebral atrophy[J]. J Neurol Sci,1997,152(1):39-49.
    [47]Drayer BP. Imaging of the aging brain. Part I. Normal findings[J]. Radiology, 1988,166(3):785-796.
    [48]Breteler MM, van Swieten JC, Bots ML, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study:the Rotterdam Study[J]. Neurology,1994,44(7):1246-1252.
    [49]Schmidt R, Fazekas F, Kapeller P, et al. MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study[J]. Neurology, 1999,53(1):132-139.
    [50]Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease [J]. Prog Neurobiol,2001,64(6):575-611.
    [51]Bartzokis G, Mintz J, Sultzer D, et al. In vivo MR evaluation of age-related increases in brain iron[J]. AJNR Am J Neuroradiol,1994,15(6):1129-1138.
    [52]Brooks DJ, Luthert P, Gadian D, et al. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels[J]. J Neurol Neurosurg Psychiatry,1989,52(1):108-111.
    [53]Marner L, Nyengaard JR, Tang Y. Marked loss of myelinated nerve fibers in the human brain with age[J]. J Comp Neurol,2003,462(2):144-152.
    [54]Courchesne.E, Chisum.H.J, Townsend.J,et al. Normal Brain Development and Aging:Quantitative Analysis at in Vivo MR Imaging in Healthy Volunteers [J]. Radiology,2000,216(3):672-682.
    [55]Aboitiz F, Rodriguez E, Olivares R, et al. Age-related changes in fibre composition of the human corpus callosum:sex differences[J]. Neuroreport, 1996,7(11):1761-1764.
    [56]Kapeller P, Schmidt R, Fazekas F. Qualitative MRI:evidence of usual aging in the brain [J]. Top Magn Reson Imaging,2004,15(6):343-347.
    [57]Hendrie HC, Farlow MR, Austrom MG, et al. Foci of increased T2 signal intensity on brain MR scans of healthy elderly subjects [J]. AJNR Am J Neuroradiol,1989,10(4):703-707.
    [58]Moeller JR, Ishikawa T, Dhawan V, et al. The metabolic topography of normal aging[J]. J Cereb Blood Flow Metab,1996,16(3):385-398.
    [59]Pardo JV, Lee JT, Sheikh SA, et al. Where the brain grows old:Decline in anterior cingulate and medial prefrontal function with normal aging [J]. Neuroimage,2007,35(3):1231-1237.
    [60]Baron JC, Chetelat G, Desgranges B, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease[J]. Neuroimage, 2001,14(2):298-309.
    [61]Ivancevic V, Alavi A, Souder E, et al. Regional cerebral glucose metabolism in healthy volunteers determined by fluordeoxyglucose positron emission tomography:Appearance and variance in the transxial, coronal, and sagittal planes[J]. Clin Nucl Med,2000,25(8):596-602.
    [62]Loessner A, Alavi A, Lewandrowski KU, et al. Regional cerebral function determined by FDG-PET in healthy volunteers:Normal patterns and changes with age[J].J Nucl Med,1995,36(7):1141-1149.
    [63]Martin AJ, Friston KJ, Colebatch JG, et al. Decreases in regional cerebral blood flow with normal aging[J]. J Cereb.Blood Flow Metab,1991,11(4):684-689.
    [64]Schultz SK, O'Leary DS, Boles LL, et al. Age-related changes in regional cerebral blood flow among young to mid-life adults[J]. Neuro Report,1999, 10(12):2493-2496.
    [65]Aoki S, Okada Y, Nishimura K, et al. Normal deposition of brain iron in childhood and adolescence:MR imaging at 1.5 T[J]. Radiology,1989,172(2): 381-385.
    [66]徐晓俊.磁敏感成像技术脑铁含量测定研究[D].杭州:浙江大学;2008.
    [67]张静.帕金森病高场MRI系列研究[D].天津:天津医科大学;2009.
    [68]Schenker C, Meier D, Wichmann W,et al. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen[J]. Neuroradiology, 1993,35(2):119-124.
    [69]Haacke EM, Cheng NY, House MJ,et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging.2005 Jan;23(1):1-25, 2005,23(1):1-25.
    [70]Whittall KP, MacKay AL, Li DK, et al. Normal-appearing white matter in multiple sclerosis has heterogeneous, diffusely prolonged T(2)[J]. Magn Reson Med,2002,47(2):403-408.
    [71]Whittall KP, MacKay AL, Graeb DA, et al. In vivo measurement of T2 distributions and water contents in normal human brain[J]. Magn Reson Med, 1997,37(1):34-43.
    [72]Zywicke HA, van Gelderen P, Connor JR. Microscopic R2* mapping of reduced brain iron in the Belgrade rat[J]. Ann Neurol,2002,52(1):102-105.
    [73]Ordidge RJ, Gorell JM, Deniau JC, et al. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla[J]. Magn Reson Med,1994,32(3):335-341.
    [74]Gelman N, Gorell JM, Barker PB, et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content[J]. Radiology,1999,210(3):759-767.
    [75]Gorell JM, Ordidge RJ, Brown GG, et al. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease[J]. Neurology,1995,45(6):1138-1143.
    [76]Hikita T, Abe K, Sakoda S, et al. Determination of transverse relaxation rate for estimating iron deposits in central nervous system[J]. Neurosci Res,2005,51(6): 67-71.
    [77]Cass WA, Grondin R, Andersen AH. Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys[J]. Neurobiol Aging, 2007,28(2):258-271.
    [78]Glick SD, Ross DA, Hough LB. Lateral asymmetry of neurotransmitters in human brain[J]. Brain Res,1982,234(1):53-63.
    [79]Bartzokis G, Tishler TA, Lu PH. Brain ferritin iron may influence age-and gender-related risks of neurodegeneration[J]. Neurobiol Aging,2007,28(3): 414-423.
    [80]Supprian T, Hofmann E, Warmuth-Metz M. MRI T2 relaxation times of brain regions in schizophrenic patients and control subjects[J]. Psychiatry Res,1997, 75(3):173-182.
    [81]Steen RG, Reddick WE, Ogg RJ. More than meets the eye:significant regional heterogeneity in human cortical T1 [J]. Magn Reson Imaging,2000,18(4): 361-368.
    [82]Beard J. Iron deficiency alters brain development and functioning[J]. J Nutr. 2003 May;133),2003,133(5 Suppl 1):1468S-72S.
    [83]Chinta SJ, Andersen JK. Dopaminergic neurons[J]. Int J Biochem Cell Biol, 2005,37(5):942-946.
    [84]Toga AW, Thompson PM. Mapping brain asymmetry[J]. Nat Rev Neurosci, 2003,4(1):37-48.
    [85]Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia:the ischemic penumbra[J]. Stroke,1981,12(6):723-725.
    [86]Rother J, Schellinger PD, Gass A, et al. Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke<6 hours [J]. Stroke, 2002,33(10):2438-2445.
    [87]Kidwell CS, Alger JR, Saver JL. Beyond mismatch:evolving paradigms in imaging the ischemia with multimodal magnetic resonance imaging[J]. Stroke, 2003,34(11):2729-2735.
    [88]Fiehler J, Knudsen K, Kucinski, et al. Predictors of Apparent Diffusion Coefficient Normalization in Stroke Patients [J]. Stroke,2004,35(2):514-519.
    [89]Grandin CB, Duprez TP, Smith AM, et al. Which MR-derived perfusion parameters are the best predictors of infarction growth in hyperacute stroke? Comparative study between relative and quantitative measurements [J]. Radiology,2002,223(2):361-370.
    [90]Kucinski T, Naumann D, Knab R, et al. Tissue at risk is overestimated in perfusion-weighted imaging:MR imaging in acute stroke patients without vessel recanalization[J]. AJNR Am J Neuroradiol,2005,26(4):815-819.
    [91]Ogawa S, Lee TM, Nayak AS,et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magn.Reson.Med, 1990,14(1):68-78.
    [92]Hakim AM. Ischemic penumbra:The therapeutic window[J]. Neurology, 1998,51(3 Suppl 3):s44-46.
    [93]Collins F, Schmidt MF, Guthrie PB, et al. Sustained increase in intracellular calcium promotes neuronal survival[J]. J Neurosci,1991,11(8):2582-2587.
    [94]Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage[J]. Neuropharmacology,2008,55(3):310-318.
    [95]Chopp M, Chan PH, Hsu CY, et al. DNA damage and repair in central nervous system injury:National Institute of Neurological Disorders and Stroke Workshop Summary[J]. Stroke,1996,27(3):363-369.
    [96]Darby DG, Barber PA, Gerraty RP, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI[J]. Stroke. 1999 Oct;30(10):2043-52,1999,30(10):2043-2052.
    [97]Kidwell C, Starkman S, Jahan R, et al. Pretreatment MRI penumbral pattern predicts good clinical outcome following mechanical embolectomy[J]. stroke, 2004,35(1):294.
    [98]钟进,张云亭.弥散张量成像在急性脑梗死中的临床应用[J].中华放射学杂志,2005,39(7):677-681.
    [99]孙志华.脑缺血半暗带影像学演变规律实验研究[D].天津:天津医科大学;2006.
    [100]Chalela JA, Kang DW, Luby M, et al. Early magnetic resonance imaging findings in patients receiving tissue plasminogen activator predict outcome:Insights into the pathophysiology of acute stroke in the thrombolysis era[J]. Ann Neurol,2004,55(1):105-112.
    [101]Harris AD, Coutts SB, Frayne R. Diffusion and Perfusion MR Imaging of Acute Ischemic Stroke[J]. Magn Reson Imaging Clin N Am,2009,17(2): 291-313.
    [102]Parsons MW, Yang Q, Barber PA, et al. Perfusion magnetic resonance imaging maps in hyperacute stroke:relative cerebral blood flow most accurately identifies tissue destined to infarct[J]. Stroke,2001,32(7):1581-1587.
    [103]Rohl L, Ostergaard L, Simonsen CZ, et al. Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient[J]. Stroke,2001,32(5):1140-1146.
    [104]Kidwell CS, Alger JR, Saver JL. Evolving Paradigms in Neuroimaging of the Ischemic Penumbra[J]. Stroke,2004,35((11 Suppl 1)):2662-2665.
    [105]Harris AD, Coutts SB, Frayne R. Diffusion and perfusion MR imaging of acute ischemic stroke[J]. Magn Reson Imaging Clin N Am,2009,17(2):291-313.
    [106]Lin W, Lee JM, Lee YZ, et al. Temporal relationship between apparent diffusion coefficient and absolute measurements of cerebral blood flow in acute stroke patients[J]. Stroke,2003,34(1):64-70.
    [107]Baron JC. Perfusion thresholds in human cerebral ischemia:historical perspective and therapeutic implications[J]. Cerebrovasc Dis,2001, 11(Suppll):2-8.
    [108]Schellinger PD, Fiebach JB, Hacke W. Imaging based decision making in thrombolytic therapy for ischemic stroke:present status[J]. Stroke, 2003,34(2):575-583.
    [109]Umemura A, Suzuka T, Yamada K. Quantitative measurement of cerebral blood flow by (99m)Tc-HMPAO SPECT in acute ischaemic stroke:usefulness in determining therapeutic options[J]. J Neurol Neurosurg Psychiatry,2000,69(4):472-478.
    [110]吴光耀,孙俊漠,田志雄.1HMRS在脑梗死中的临床应用[J].临床放射学杂志,2001,20(3):165-169.
    [111]Gillard JH, Barker PB, van Zijl PC, et al. Proton MR spectroscopy in acute middle cerebral artery stroke[J]. AJNR Am J Neuroradiol,1996,17(5):873-886.
    [112]Sager TN, Hansen AJ, Laursen H. Correlation between N-acetylaspartate levels and histopathologic changes in cortical infarcts of mice after middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab,2000,20(5):780-788.
    [113]何洁.SPET和PET显像对缺血性脑血管病病理生理状态的评估[J].中国脑 血管病杂志,2004,1(12):573-576.
    [114]Marchal G, Beaudouin V, Rioux P, et al. Prolonged Persistence of Substantial Volumes of Potentially Viable Brain Tissue After Stroke:A Correlative PET-CT Study With Voxel-Based Data Analysis[J]. Stroke,1996,27(4): 599-606.
    [115]Takahashi W, Takagi S, Ide M, er al. Global reduction of cerebral glucose metabolism in persons with symptomatic as well as asymptomatic lacunar infarction[J]. Keio-J-Med,2000,49(Suppl 1):98-100.
    [116]Read SJ, Hirano T, Abbott DT, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluo-romisonidazole[J]. Nerology,1998, 51:1617-1621.
    [117]Sobesky J, Weber OZ, Lehnhardt FG, et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke [J]. Stroke,2004,35(12):2843-2847.
    [118]Sobesky J, Weber OZ, Lehnhardt FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke[J]. Stroke,2005,36(5):980-985.
    [119]Siemonsen S, Fitting T, Thomalla G, et al. T2'imaging predicts infart growth beyond the acute diffusion-weight imaging lesion in acute stroke[J]. Radiology, 2008,248(3):979-986.
    [120]陈英敏.BOLD及MRS脑温测量对缺血半暗带的价值:实验研究[D].天津:天津医科大学;2008.
    [121]Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis[J]. Ann Neurol,2002,52(6): 698-703.
    [122]Nicoli F, Lefur Y, Denis B,et al. Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke:a brain proton magnetic resonance spectroscopic imaging study[J]. Stroke,2003,34(7): e82-e87.
    1. Ogawa S,Lee TM,Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygen [J]. Proc Natl Acad Sci USA,1990,87 (24):9868-9872.
    2. Ogawa S, Lee TM, Nayak AS,et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magn.Reson.Med, 1990; 14(1):68-78.
    3. Nair D.G. About being BOLD. Brain Res Brain Res Rev,2005,50(2):229-243
    4. Grohn OH, Kauppinen RA. Assessment of brain tissue viability in acute ischemic stroke by BOLD MRI. NMR. Biomed.2001,14(7-8):432-440
    5. Astrup J, Siesjo B, Symon L. Thresholds in cerebral ischemia:the ischemic penumbra. Stroke.1981; 12(6):723-725
    6. Rother J, Schellinger PD, Gass A, et al. Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke<6 hours. Stroke.2002; 33(10):2438-2445
    7. Kidwell CS, Alger JR, Saver JL. Beyond mismatch:evolving paradigms in imaging the ischemia with multimodal magnetic resonance imaging. Stroke. 2003; 34(11):2729-2735
    8. Fiehler J, Knudsen K, Kucinski, et al. Predictors of Apparent Diffusion Coefficient Normalization in Stroke Patients. Stroke.2004;35(2):514-519
    9. Grandin CB, Duprez TP, Smith AM, et al. Which MR-derived perfusion parameters are the best predictors of infarction growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology. 2002,223(2):361-370
    10. Kucinski T, Naumann D, Knab R, et al. Tissue at risk is overestimated in perfusion-weighted imaging:MR imaging in acute stroke patients without vessel recanalization. AJNR Am J Neuroradiol.2005;26(4):815-819
    11.Heiss WD. Ischemic penumbra:evidence from functional imaging in man. J Cereb Blood Flow Metab.2000; 20(9):1276-1293
    12. Baron JC, Rougemont D, Soussaline F, et al. Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients:a positron tomography study. J Cere Blood Flow Metab.1984; 4(2):140-149
    13. Geisler B S., Brandhoff F, Fiehler J, et al. Blood Oxygen Level-Dependent MRI Allows Metabolic Description of Tissue at Risk in Acute Stroke Patients. Stroke. 2006;37 (7):1778-1784
    14. Siemonsen S, Fitting T, Thomalla G, et al. T2'imaging predicts infart growth beyond the acute diffusion-weight imaging lesion in acute stroke. Radiology. 2008,248(3):979-986
    15. Lin W, Paczynski RP, Celik A, et al. Experimental hypoxemic hypoxia:changes in R2* of brain parenchyma accurately reflect the combined effects of changes in arterial and cerebral venous oxygen saturation. Magn Reson Med. 1998;39(3):474-481
    16. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues:the static dephasing regime. Magn Reson Med.1994; 32(6):749-763
    17. Hongyu An,Weili Lin. Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging. Journal of Cerebral Blood Flow and Metabolism.2000;20(8):1225-1236
    18. Yamauchi H, Fukuyama H, Nagahama Y, et al. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry.1996,61 (1):18-25
    19. Lee JM, Vo KD, An H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol.2003; 53(2):227-232
    20. Powers WJ, Grubb RL, Darriet D, et al. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985;5(4):600-608.
    21.Touzani O, Young AR, Derlon JM, et al. Progressive impairment of brain oxidative metabolism reversed by reperfusion following middle cerebral artery occlusion in anaesthetized baboons. Brain Res 1997; 767(1):17-25.
    22. Lin AL, Fox PT, Yang Y,et al. Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn Reson Med.2008;60(2):380-389
    23. Law, M, Saindane, AM, Ge, Y, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis:perfusion MR imaging findings in normal-appearing white matter[J]. Radiology,2004; 231(3):645-652.
    24. Holst B, Siemonsen S, Finsterbusch J,et al. T2'imaging indicates decreased tissue metabolism in frontal white matter of MS patients[J]. Mult Scler,2009; 15(6):701-707.
    25. Bakshi R, Minagar A, Jaisani Z, et al. Imaging of multiple sclerosis:role in neurotherapeutics[J]. Neuro Rx,2005; 2(2):277-303.
    26. Tozer DJ, Davies GR, Altmann DR, et al. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis[J]. Magn Reson Med,2005; 53(6):1415-1422.
    27. Whittall KP, MacKay AL, Li DK, et al. Normal-appearing white matter in multiple sclerosis has heterogeneous, diffusely prolonged T(2)[J]. Magn Reson Med,2002; 47(2):403-408.
    28. Tozer DJ, Davies GR, Altmann DR, et al. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T2 analysis[J]. Magn Reson Med,2005; 53(6):1415-1422.
    29. Ge Y, Jensen JH, Lu H, et al. Quantitative assessment of iron accumulation in the deep gray matter of multiple sclerosis by magnetic field correlation imaging[J]. AJNR Am J Neuroradiol,2007; 28(9):1638-1644.
    30. Bakshi R, Benedict RH, Bermel RA, et al. T2 hypointensity in the deep gray matter of patients with multiple sclerosis:a quantitative magnetic resonance imaging study[J]. Arch Neurol,2002; 59(1):62-68.
    31. Blinkenberg M, Jensen CV, Holm S, et al. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS[J]. Neurology, 1999; 53(1):149-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700