非对易标准模型中若干散射过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,人们对超出标准模型的新物理的探索经历了一个重大的转变,将注意力从单纯扩充四维标准模型更多地转移到探索时空结构的奇异性上来。额外维理论的提出使得人们意识到超出四维的时空可能是解决标准模中能量等级问题的有效手段。与此同时,上世纪九十年代后期人们在弦论研究中发现如果将开弦末端限制在D-brane上并与膜上的恒定的NS-NS B场相互作用,那么在低能极限下的开弦理论将退化为一个定义在非对易时空流形上的量子场论。黑洞和量子引力方面的其他研究也指出时空存在一个最小尺度是任何量子引力理论的共同特性。自此,非对易时空上的量子场论及其TeV能标上现象学成为近十多年来备受关注的热点课题。经过多年的努力,一个重要的进展是人们已经建立起了一个基于Weyl-Moyal乘积的非对易时空上的标准模型(NCSM),这个模型的最大特点是它不是在SU(3)*SU(2)*U(1)李代数下封闭,而是在李代数的覆盖代数(Enveloping Algebra)下封闭的,这是规范场在Weyl-Moyal乘积的自恰性所要求的。另一方面Seiberg和Witten指出非对易规范场和对易规范场存在着一个映射,即Seiberg-Witten映射,覆盖代数的系数可以表达成对易时空中规范场的函数,这就避免了覆盖代数下必须要引入无穷多个场的困难,也导致了非对易标准模型中存在着大量对易时空中所禁止的新相互作用顶点,如破坏Lorentz不变性的三光子顶点,Z玻色子-光子-光子顶点,中微子和光子的耦合等。这些新相互作用在唯象上有丰富的内涵。
     本文的研究是在基于Weyl乘积和Seiberg-Witten映射所构建的非对易标准模型(NCSM)下,探讨在下一代正负电子对撞机上探测Tev能标上非对易效应。目前为止,现有的研究大部分是在Seiberg-Witten映射下对非对易参数θ作有限阶展开(大多是一阶或二阶),利用微扰的方法得到相关Feynman图的一阶或二阶非对易修正以作为进一步计算的基础。这在低能过程下是有效的,然而如果假设非对易的能标是TeV,那么下一代对撞机的能量很可能会达到甚至超过非对易能标,这样大多数文献所用的对展开的低阶微扰就不准确了。为了克服这一困难,本文找到了一个包含任意阶的Seiberg-Witten映射并利用它研究了正负电子对撞机上高能现象学。我们首先研究了两个Higgs粒子的产生过程e+e-→ZH和e+e-→HH过程,发现非对易效应对总散射截面和角分布有着显著的影响。值得注意的是e+e-→HH在树图下是被标准模型所禁止的,因此相关新物理的信号对探测非对易效应有重要意义。研究发现,对于不同的非对易能标,存在一个最佳的碰状能量使得反应截面在这个碰撞能量下产生最大的非对易修正。通过数值拟合可以给出了ANG和Eoc线性关系。规范场论在非对易时空中存在着多余的自由度,这些自由度一部分来自于Seiberg-Witten映射的齐次解,另一部分源自U(1)规范群在Weyl-Moyal积乘积下本身的自由度,即混合规范变换(Hybrid gauge transfomation).本文通过考察e+e-→μ+μ-散射过程来研究混合规范变换自由度对非对易散射过程的影响。计算表明,在未考虑混合规范变换的非对易标准模型中,非对易效应对散射振幅只贡献一个相因子,最后导致散射截面没有任何的非对易修正。而在新的模型下,混合规范变换会对物理过程有重要的贡献。文中在地球坐标系下计算了总散射截面和角分布。并讨论了自发性Lorentz破坏效应。
In the recent decades, there is a big change for people's exploration of new physics beyond the standard model. More consideration is taken from only extending the standard model in four dimensions to probing the singularity of space-times. People believe that the possible existence of extra dimension is an effective solution to overcome the hierarchy problem of standard model. At the mean time, it is founded that when the open string is fixed at D-brane and interact with NS-NS B field, the string theory at low energy limit will lead to a quantum field theory in noncommutative space-time. Black hole physics and quantum gravity also strongly suggest the existence of noncommutative space-time. By this reason, the quantum field theory in noncommutative space-time and its implication to high energy phenomenology at TeV scale become a focus in recent ten years. After some effort, people have build a noncommutative standard model(NCSM) based on Weyl-Moyal product where the gauge group is not closed in SU(3)*SU(2)*U(1) Lie algebra but in the enveloping algebra. This property is necessity for the consistence of noncommutative gauge theory under Weyl-Moyal product. On the other hand, Seiberg and Witten point out that there is a map between the field in noncommutative space and ordinary space-time. i,e. Seiberg-Witten map. Using Seiberg-Witten map, the coefficient of enveloping algebra become the function of field variable in ordinary space-time. In this sense, the infinity of field is avoid. The NCSM induce many new particle vertex beyond the ordinary Sm, such as γ-γ-γ vertex, Z-γ-γ vertex, neutrino-photon vertex etc, leading to interesting phenomenological implication.
     In this paper, we discuss the possibility of testing the TeV noncommutative effect at electron collision machine in the frame work of noncommutative standard model. By this time, most of the work is based on the Seiberg-Witten map by expanding to θ order or θ2order and getting the noncommutative correction of Feynman diagram up to θ or θ2order correspondingly. This method is effective for low energy processes. If We assume the non- commutative effect is located at TeV scale, however, the collision energy of LHC or ILC may access or even exceed the noncommutative scale. Then the first or second perturbative method is not accurate. To overcome this problem, we find a Seiberg-Witten map involv-ing any order of noncommutative parameter θ and apply it to the high energy collision process. We first study the Higgs production process e+e-→ZH and e+e-→HH. It is shown that the noncommutative effect have extensive impact on the cross section and angular distribution. It is noted that the the process e+e-→HH is forbid in the ordinary standard model, so any signal of the Higgs pair production has an important meaning for detecting the noncommutative space-time. For each noncommutative scle ANC, there exist a optimal collision energy where the noncommutative correction get the most. We give a linear relation between the noncommutative scle and optimal collision energy. There are also many degrees of freedom in noncommutative gauge theory. Some of them come from the solution of Seiberg-Witten map and some of them are derived from the Weyl-Moyal product of U(1) gauge theory. i.e. the hybrid gauge transformation. We study the process e+e-→μ+μ-and discuss the impact of hybrid gauge transformation. It is shown that without the hybrid gauge transformation the noncommutative effect only contribute a exp phase to the magnitude, leading to no noncommutative correction. When the hybrid gauge transformation is considered, the process get a large noncommutative correction. We cal-culate the total cross section and angular distribution at rotational reference on earth. The intrinsic Lorentz breaking effect is also discussed.
引文
[1]Snyder H. Quantized space-time. Phys. Rev.,1947,71(1):38-41. Snyder H. The Electromagnetic field in Quantized space-time. Phys. Rev.,1947, 72(1):68-71.
    [2]Connes A, Noncommutative Differential Geometry. Inst. Hautes Etudes Sci. Publ. Math.62(1985):257. Madore J. An introduction to noncommutative Geometry and its physical applica-tions. (Cambridge University Press,1999). Landi G. An introduction to noncommutative spaces and therir geometries (Springer-Verlog,1997).
    [3]Connes A. A Short survey of noncommutative geometry. J.Math.Phys.,2000,41(6): 3832-3866. Connes A, Rieffel M A, Yang-Mills for noncommutative two-tori, Contemp. Math. 62(1987):237
    [4]Dubois-Violette M, Madore J, Kerner R. Gauge bosons in a Noncommutative Ge-ometry. Phys. Lett. B,1989,217(4):485-488.
    [5]Connes A, Lott J. Particle models and noncommutative geometry. Nucl. Phys. B (Proc. Suppl.),1990,11(2):29-47.
    [6]Chamseddine A H, Felder G, Frohlich J. Unified gauge theories in non-commutative geometry. Phys. Lett. B,1992,296(1-2):109-116.
    [7]Connes A. Non commutative geometry and reality. J. Math. Phys.1995,36 (11): 6194-6231. Connes A. Gravity coupled with matter and the foundation of noncommutative ge-ometry. Comm. Math. Phys.,1996,182(1):155-176.
    [8]Lizzi F, Mangano G, Miele G, Sparano G. Fermion Hilbert space and fermion dou-bling in the noncommutative geometry approach to gauge theories. Phys. Rev. D, 1997,55(10):6357-6366.
    [9]Chamseddine A H, Connes A. Universal formula for noncommutative geometry ac-tions:unification of gravity and the standard model. Phys. Rev. Lett.,1996,77(24): 4868-4871. Chamseddine A H, Connes A. The spectral Action Principle. Commun. Math. Phys., 1997,186(3):731-750.
    [10]Gracia-Bondia J M, Iochum B, Schucker T. The standard model in noncommutative geometry and fermion doubling. Phys. Lett. B,1998,416(1-2):123-128.
    [11]Kastler D. Noncommutative geometry and fundamental physical interactions:the Lagrangian level. J. Math. Phys.,2000,41(6):3867-3891.
    [12]Colatto L P, Penna A L A, Santos W C. Noncommutative geometry induced by spin effects. Phys.Rev. D,2006,73(10):105007.
    [13]Chamseddine A H, Connes A. Scale invariance in the spectral action. J. Math. Phys., 2006,47(6):063504.
    [14]Connes A. Noncommutative geometry and the standard model with neutrino mixing. J. High Energy Phys.,2006,11:081.
    [15]Chamseddine A H, Connes A. Quantum Gravity Boundary Terms from the Spectral Action of Noncommutative Space. Phys.Rev.Lett.,2007,99(7):071302.
    [16]Veneziano G. A stringy nature needs just two constants. Europhys. Lett.,1986,2(3): 199-204.
    [17]Amati D, Ciafaloni M, Veneziano G. Can spacetime be probed below the string size?. Phys.Lett. B,1989,216(1-2):41-47.
    [18]Gaillard M K, Grannis P D, Sciulli F J. The standard model of particle physics. Rev. Mod. Phys.,1999,71(2):S96-S111.
    [19]Jackiw R. Physical instances of noncommuting coordinates. Nucl. Phys. B (Proc. Suppl.),2002,108:30-36. hep-th/0110057.
    [20]Prange R E, Girvin S M, Joynt R. Quantum Hall Effect. Am. J. Phys.,1988,56(7): 667-668.
    [21]Kempf A, Mangano G, Mann R B. Hilbert Space Representation of the Minimal Length Uncertainty Relation. Phys. Rev. D,1995,52(2):1108-1118.
    [22]Witten E. Noncommutative geometry and string field theory. Nucl. Phys. B,1986, 268(2):253-294.
    [23]Connes A, Douglas M R, Schwarz A. Noncommutative Geometry and Matrix The-ory:Compactification on Tori. J. High Energy Phys.,1998,02:003.
    [24]Kawano T, Okuyama K. Matrix theory on non-commutative torus. Phys. Lett. B, 1998,433(1-2):29-34.
    [25]Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative ge-ometry. Phys. Rep.,2002,360(5-6):353-465.
    [26]Douglas M R, Hull C. D-branes and non-commutative torus. J. High Energy Phys., 1998,02:008.
    [27]Cheung Yeuk-Kwan E, Krogh M. Noncommutative Geometry from 0-branes in a Background B-field. Nucl.Phys. B,1998,528(1-2):185-196.
    [28]Chu C S, Ho P M. Noncommutative open string and D-brane. Nucl.Phys.B,1999, 550(1-2):151-168. Chu C S, Ho P M. Constrained quantization of open string in background B field and noncommutative D-brane. Nucl.Phys.B,2000,568(1-2):447-456.
    [29]Ardalan E, Arfaei H, Sheikh-Jabbari M M. Non-commutative Geometry from Strings and Branes. J. High Energy Phys.,1999,02:016.
    [30]Schomerus V. D-branes and Deformation Quantization. J. High Energy Phys.,1999, 06:030.
    [31]Bigatti D, Susskind L. Magnetic fields, branes, and noncommutative geometry. Phys. Rev. D,2000,62(6):066004.
    [32]Bergshoeff E, Berman D S, Schaar J P, Sundell P. A noncommutative M-theory five-brane. Nucl.Phys.B,2000,590(1-2):173-197.
    [33]Witten E. Bound states of strings and p-branes. Nucl. Phys. B,1996,460(2):335-350.
    [34]Seiberg N, Witten E. String Theory and Noncommutative Geometry. J. High Energy Phys.,1999,09:032.
    [35]Garriga J, Tanaka T. Gravity in the Randall-Sundrum Brane World. Phys.Rev.Lett., 2000,84(13):2778-2781.
    [36]Jing J, Long Z-W. Open string in the constant B-field backgroud. Phys.Rev. D,2005, 72(12):126002.
    [37]Banks T, Fischler W, Shenker S H, Susskind L. M-theory as a matrix model:A conjecture. Phys. Rev. D,1997,55(8):5112-5128.
    [38]Douglas M R, Nekrasov N A. Noncommutative field theory. Rev. Mod. Phys.,2001, 73(4):977-1029.
    [39]Szabo R J. Quantum Field Theory on Noncommutative Spaces. Phys. Rep.,2003, 378(4):207-299.
    [40]Moyal J E. Quantum mechanics as a statistical theory. Proc.Cambridge Phil. Soc., 1949,45(1):99-124.
    [41]Martin C P, Sanchez-Ruiz D. The one-loop UV divergent structure of U(1) Yang-Mills theory on noncommutative R4. Phys. Rev. Lett.,1999,83(3):476-479.
    [42]Matusis A, Susskind L, Toumbas N. The IR/UV connection in the non-commutative gauge theories. J. High Energy Phys.,2000,12:002.
    [43]Landsteiner K, Lopez E, Tytgat M. H. Excitations in hot noncommutative theories. J. High Energy Phys.,2000,09:027.
    [44]Griguolo L, Pietroni M. Wilsonian renormalization group and the non-commutative IR/UV connection. J. High Energy Phys.,2001,05:032.
    [45]Armoni A. Comments on perturbative dynamics of non-commutative Yang-Mills theory. Nucl. Phys. B,2001,593(1-2):229-242.
    [46]Kinar Y, Lifschytz G, Sonnenschein J. UV/IR connection:A matrix perspective. J. High Energy Phys.,2001,08:001.
    [47]Arefeva I Ya, Belov D M, Koshelev A S, Rytchkov O A. UV/IR Mixing for Noncommutative Complex Scalar Field Theory Interacting with Gauge Fields. Nucl.Phys.Proc.Suppl.,2001,102-103:11-17.
    [48]Van Raamsdonk M. The meaning of infrared singularities in noncommutative gauge theories. J. High Energy Phys.,2001,11:006.
    [49]Khoze V V, Travaglini G. Wilsonian effective actions and the IR/UV mixing in non-commutative gauge theories. J. High Energy Phys.,2001,01:026.
    [50]Arcioni G, Barbon J L, Gomis J, Vazquez-Mozo M A. On the stringy nature of winding modes in noncommutative thermal field theories. J. High Energy Phys., 2000,06:038.
    [51]Arefeva I Y, Belov D M, Koshelev A S, Rychkov O A. Renormalizability and UV/IR mixing in noncommutative theories with scalar fields. Phys. Lett. B,2000,487(3-4): 357-365.
    [52]Micu A, Sheikh-Jabbari M M. Noncommutative φ4 theory at two loops. J. High Energy Phys.,2001,01:025.
    [53]Chepelev I, Roiban R. Renormalization of quantum field theories on noncommuta-tive Rd, I. Scalars. J. High Energy Phys.,2000,05:037. Chepelev I, Roiban R. Convergence theorem for non-commutative Feynman graphs and renormalization. J. High Energy Phys.,2001,03:001.
    [54]Nicholson E. UV-IR mixing and the quantum consistency of noncommutative gauge theories. Phys. Rev. D,2002,66(10):105018.
    [55]Andreev O D, Dorn H. Diagrams of noncommutative field theory from string theory. Nucl. Phys. B,2000,583(1-2):145-158.
    [56]Kiem Y, Lee S. UV/IR mixing in noncommutative field theory via open string loops. Nucl. Phys. B,2000,586(1-2):303-314.
    [57]Bilal A, Chu C S, Russo R. String theory and noncommutative field theories at one loop. Nucl. Phys. B,2000,582(1-3):65-94.
    [58]Gomis J, Kleban M, Mehen T, Rangamani M, Shenker S H. Noncommutative gauge dynamics from the string worldsheet. J. High Energy Phys.,2000,08:011.
    [59]Armoni A, Lopez E. UV/IR mixing via closed strings and tachyonic instabilities. Nucl.Phys. B,2002,632(1-3):240-256.
    [60]Filk T. Divergencies in a field theory on quantum space. Phys. Lett. B,1996,376(1-3):53-58.
    [61]Arefeva I Ya, Belov D M, Koshelev A. S. Two-Loop Diagrams in Noncommutative φ44 theory. Phys.Lett. B,2000,476(3-4):431-436.
    [62]Girotti H O. Noncommutative Quantum Field Theories, hep-th/0301237.
    [63]Ishibashi N, Iso S, Kawai H, Kitazawa Y. Wilson Loops in Noncommutative Yang-Mills. Nucl. Phys. B,2000,573(1-2):573-593.
    [64]Sheikh-Jabbari M M. Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus. J. High Energy Phys.,1999,06:015.
    [65]Girotti H O, Gomes M, Rivelles V O, da Silva A J. A Consistent Noncommutative Field Theory:the Wess-Zumino Model. Nucl.Phys. B,2000,587(1-3):299-310.
    [66]Bonora L, Salizzoni M. Renormalization of noncommutative U(N) gauge theories. Phys. Lett. B,2001,504 (1-2):80-88. Armoni A, Minasian R, Theisen S. On non-commutative N=2 super Yang-Mills. Phys. Lett. B,2001,513(3-4):406-412.
    [67]Girotti H O, Gomes M,Petrov A Yu, Rivelles V O, da Silva A J. The Low Energy Limit of the Noncommutative Wess-Zumino Model. J. High Energy Phys.,2002, 05:040.
    [68]Martin C P, Sanchez-Ruiz D. The BRS invariance of noncommutative U(N) Yang-Mills theory at the one-loop level. Nucl.Phys. B,2001,598(1-2):348-370.
    [69]Derrick G. Comments on nonlinear wave equations as models for elementary parti-cles. J. Math. Phys.,1964,5(9):1252-1254.
    [70]Jatkar D P, Mandal G, Wadia S R. Nielsen-Olesen vortices in noncommutative Abelian Higgs model. J. High Energy Phys.,2000,09:018.
    [71]Gorsky A S, Makeenko Y M, Selivanov K G. Noncommutative vacua and solitons. Phys. Lett. B,2000,492(3-4):344-348.
    [72]Gopakumar R, Minwalla S, Strominger A. Non-commutative solitons. J. High En-ergy Phys.,2000,05:020. Gopakumar R, Headrick M, Spradlin M. On noncommutative multi-solitons. Com-mun. Math.Phys.,2003,233(2):355-381.
    [73]Lindstrom U, Rocek M,von Unge R. Non-commutative soliton scattering. J. High Energy Phys.,2000,12:004.
    [74]Araki T, Ito K. Scattering of noncommutative (n,1) solitons. Phys. Lett. B,2001, 516(1-2):123-133.
    [75]Matsuo Y. Topological charges of noncommutative soliton. Phys. Lett. B,2001, 499(1-2):223-228.
    [76]Hadasz L, Lindstrom U, Rocek M, von Unge R. Non-commutative multisolitons: moduli spaces, quantization, finite 9 effects and stability. J. High Energy Phys.,2001, 06:040.
    [77]Durhuus B, Jonsson T. Nest R. The Existence and Stability of Noncommutative Scalar Solitons. Commun. Math.Phys.,2003,233(1):49-78.
    [78]Spradlin M, Volovich A. Noncommutative solitons on Kahler manifolds. J. High Energy Phys.,2002,03:011.
    [79]Sasai Y, Sasakura N. Domain wall solitons and Hopf algebraic translational symme-tries in noncommutative field theories. Phys. Rev.D,2008,77(4):045033.
    [80]Polychronakos A P. Flux tube solutions in noncommutative gauge theories. Phys. Lett. B,2000,495(3-4):407-412.
    [81]Harvey J A, Kraus P, Larsen F. Exact noncommutative solitons. J. High Energy Phys.,2000,12:024.
    [82]Aganagic M, Gopakumar R,Minwalla S, Strominger A. Unstable solitons in non-commutative gauge theory. J. High Energy Phys.,2001,04:001.
    [83]Hollowood T J, Khoze V V, Travaglini G. Exact results in noncommutative N= 2 supersymmetric gauge theories. J. High Energy Phys.,2001,05:051.
    [84]Hamanaka M. Terashima S. On exact noncommutative BPS solitons. J. High Energy Phys.,2001,03:034. Hamanaka M. Atiyah-Drinfeld-Hitchin-Manin and Nahm constructions of localized solitons in noncommutative gauge theories. Phys. Rev. D,2002,65(8):085022. Tian Y, Zhu C-J. Remarks on the noncommutative Atiyah-Drinfeld-Hitchin-Manin construction. Phys. Rev. D,2003,67(4):045016. Lagraa M. Atiyah-Drinfeld-Hitchin-Manin construction of noncommutative U(2) k-instantons. Phys. Rev. D,2006,73(6):065021.
    [85]Bak D. Exact solutions of multi-vortices and false vacuum bubbles in noncommuta-tive Abelian-Higgs theories. Phys. Lett. B,2000,495(1-2):251-255.
    [86]Gross D J, Nekrasov N A. Monopoles and strings in non-commutative gauge theory. J. High Energy Phys.,2000,07:034. Gross D J, Nekrasov N A. Dynamics of strings in noncommutative gauge theory. J. High Energy Phys.,2000,10:021. Gross D J, Nekrasov N A. Solitons in noncommutative gauge theory. J. High Energy Phys.,2001,03:044.
    [87]Chu C S, Khoze V V, Travaglini G. Notes on noncommutative instantons. Nucl. Phys. B,2002,621(1-2):101-130. Sako A. Instanton number of noncommutative U(n) gauge theory. J. High Energy Phys.,2003,04:023. Araki T, Takashima T, Watamura S. Instantons in N= 1/2 super Yang-Mills theory via deformed super ADHM construction. J. High Energy Phys.,2005,12:044.
    [88]Lechtenfeld O, Popov A D. Non-commutative multi-solitons in 2+1 dimensions. J. High Energy Phys.,2001,11:040. Lechtenfeld O, Popov A D. Non-commutative't Hooft instantons. J. High Energy Phys.,2002,03:040.
    [89]Ghosh S. Noncommutative Chern-Simons soliton. Phys. Rev. D,2004,70(8): 085007.
    [90]Teo E, Ting C. Monopoles, vortices, and kinks in the framework of noncommutative geometry. Phys. Rev. D.,2004,56(4):2291-2302. Konoplya R A, Vassilevich D V. Quantum corrections to the noncommutative kink. J. High Energy Phys.,2008,01:068.
    [91]Gomis J, Mehen T. Space-Time Noncommutative Field Theories And Unitarity. Nucl. Phys. B,2000,591(1-2):265-276.
    [92]Seiberg N, Susskind L, Toumbas N. Space/Time Non-Commutativity and Causality. J. High Energy Phys.,2000,06:044.
    [93]Chaichian M, Demichev A, Presnajder P, Tureanu A. Space-Time Noncommutativ-ity, Discreteness of Time and Unitarity. Eur.Phys.J.C,2001,20(4):767-772.
    [94]Greenberg O W. Failure of microcausality in quantum field theory on noncommuta-tive spacetime. Phys.Rev.D,2006,73(4):045014.
    [95]Alvarez-Gaume L, Barbon J L F, Zwicky R. Remarks on Time-Space Noncommu-tative Field Theories. J. High Energy Phys.,2001,05:057.
    [96]Bozkaya H, Fischer P, Grosse H, Pitschmann M, Putz V, Schweda M, Wulkenhaar R. Space/time noncommutative field theories and causality. Eur. Phys. J. C,2003, 29(1):133-141.
    [97]Sheikh-Jabbari M M. C, P, and T Invariance of Noncommutative Gauge Theories. Phys. Rev. Lett.,2000,84(23):5265-5268.
    [98]Chaichian M, Nishijima K, Tureanu A. Spin-Statistics and CPT Theorems in Non-commutative Field Theory. Phys. Lett.B,2003,568 (1-2):146-152.
    [99]Hayakawa M. Perturbative analysis on infrared aspects of noncommutative QED on R4. Phys. Lett. B,2000,478(1-3):394-400.
    [100]Minwalla S, Van Raamsdonk M, Seiberg N. Noncommutative perturbative dynam-ics. J. High Energy Phys.,2000,02:020.
    [101]Van Raamsdonk M, Seiberg N. Comments on Noncommutative Perturbative Dy-namics. J. High Energy Phys.,2000,03:035.
    [102]Bichl A et al. Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map. J. High Energy Phys.,2001,06:013.
    [103]Wulkenhaar R. Non-renormalizability of θ-expanded noncommutative QED. J. High Energy Phys.,2002,03:024.
    [104]Grimstrup J M, Wulkenhaar R. Quantisation of θ-expanded noncommutative QED. Eur. Phys. J. C,2002,26(1):139-151.
    [105]Buric M, Radovanovic V. The one-loop effective action for quantum electrodynam-ics on noncommutative space. J. High Energy Phys.,2002,10:074.
    [106]Martin C P, Sanchez-Ruiz D, Tamarit C.The noncommutative U(1) Higgs-Kibble model in the enveloping-algebra formalism and its renormalizability. J. High Energy Phys.,2007,02:065.
    [107]Huang J-H, Sheng Z-M. Renormalizability of noncommutative quantum electrody-namics at 92 order. Phys. Lett. B,2009,678(2):250 253.
    [108]Buric M, Latas D, Radovanovic V. Absence of the 4Ψ divergence in noncommuta-tive chiral models. Phys. Rev.D,2008,77(4):045031.
    [109]Hewett J L, Petriello F J, Rizzo T G. Signals for non-commutative interactions at linear colliders. Phys.Rev.D,2001,64(7):075012.
    [110]Rizzo T G. Signals for Noncommutative QED at Future e+e- Colliders. Int.J.Mod.Phys. A,2003,18(16):2797-2805.
    [111]OPAL Collaboration. Test of non-commutative QED in the process e+e→γγ at LEP. Phys.Lett.B,2003,568(3-4):181-190.
    [112]Sheng Z-M, Fu Y, Yu H. The noncommutative QED threshold energy versus the optimum collision energy. Chin.Phys.Lett.,2005,22(3):561-564.
    [113]Fu Y, Sheng Z-M. Noncommutative QED corrections to process e+e-→μ+μ-γ at linear collider energies. Phys.Rev. D,2007,75(6):065025.
    [114]Mathews P. Compton scattering in noncommutative space-time at the Next Linear Collider. Phys.Rew. D,2001,63:075007.
    [115]Godfrey S, Doncheski M A. Signals for noncommutative QED in eγ and γγ colli-sions. phys.Rev. D,2001,65:015005.
    [116]Grosse H. Liao Y. Pair Production of Neutral Higgs Bosons through Noncommuta-tive QED Interactions at Linear Colliders. Phys.Rev. D.2001.64.115007.
    [117]Grosse H. Liao Y. Anomalous C-violating Three Photon Decay of the Neutral Pion in Noncommutative Quantum Electrodynamics. Phys.Lett. B.2011.520:63
    [118]Liao Y, Sibold K. Time-ordered Perturbation Theory on Noncommutative Space-time:Basic Rules. Eur.Phys J.C. 2002.25:469
    [119]Liao Y, Sibold K. Time-ordered Perturbation Theory on Noncommutative Spacetime II:Unitarity. Eur.Phys.J.C.2002.25:479
    [120]Liao Y, Dehne C. Some Phenomenological Consequences of the Time-Ordered Perturbation Theory of QED on Noncommutative Spacetime. Eur.Phys.J.C.2003. 29:125
    [121]Witten E. Strong coupling expansion of Calabi-Yau compactification. Nucl. Phys. B,1996,471:135.
    [122]Arkani-Hamed N, Dimopoulos S, Dvali G. Phenomenology, astrophysics and cos-mology of theories with sub-millimeter dimensions and TeV scale quantum gravity, phys. Rev. D,1999.59:086004.
    [123]Randall L, Sundrum R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett.,1999,83(17):3370-3373.
    [124]Riad I F, Sheikh-Jabbari M M, Noncommutative QED and anomolous dipole mo-ments. J. High Energy Phys.,2000,08:045.
    [125]Wang X-J, Yan M-L. Noncommutative QED and muon anomalous magnetic mo-ment. J. High Energy Phys.,2002,03:047.
    [126]Nair V P. Quantum mechanics on a noncommutative brane in M(atrix) theory. Phys. Lett. B,2001,505(1-4):249-254. Nair V P, Polychronakos A P. Quantum mechanics on the noncommutative plane and sphere. Phys. Lett. B,2001,505(1-4):267-274.
    [127]Acatrinei C. Path Integral Formulation of Noncommutative Quantum Mechanics. J. High Energy Phys.,2001,09:007.
    [128]Bellucci S, Nersessian A, Sochichiu C. Two phases of the noncommutative quantum mechanics. Phys. Lett. B,2001,522(3-4):345-349.
    [129]Scholtz F G, Chakraborty B, Gangopadhyay S, Hazrax A G. Dual families of non-commutative quantum systems. Phys.Rev. D,2005,71(8):085005.
    [130]Carroll S M, Harvey J A, Kostelecky V A, Lane C D, Okamoto T. Noncommutative Field Theory and Lorentz Violation. Phys.Rev.Lett.,2001,87(14):141601.
    [131]Anisimov A, Banks T, Dine M, Graesser M. Comments on Non-Commutative Phe-nomenology. Phys. Rev. D,2002,65(8):085032.
    [132]Mocioiu I, Pospelov M, Roiban R. Low-energy Limits on the Antisymmetric Tensor Field Background on the Brane and on the Non-commutative Scale. Phys.Lett. B, 2000,489(3-4):390-396.
    [133]Carlson C E,Carone C D, Lebed R F. Bounding Noncommutative QCD. Phys.Lett. B,2001,518(1-2):201-206.
    [134]Chaichian M, Sheikh-Jabbari M M, Tureanu A. Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Phys. Rev.Lett.,2001,86(13):2716-2719.
    [135]Gamboa J, Loewe M,Rojas J C. Noncommutative quantum mechanics. Phys. Rev. D,2001,64(6):067901. Gamboa J, Loewe M, Mendez F, Rojas J C. Noncommutative Quantum Mechanics: The Two-Dimensional Central Field. Int. J.Mod. Phys. A,2002,17(19):2555-2556.
    [136]Muthukumar B, Mitra P. Noncommutative oscillators and the commutative limit. Phys. Rev. D,2002,66(2):027701.
    [137]Smailagic A, Spallucci E. Isotropic representation of the noncommutative 2D har-monic oscillator. Phys. Rev. D,2002,65(10):107701. Kijanka A, Kosinski P. Noncommutative isotropic harmonic oscillator. Phys. Rev.D, 2004,70(12):127702.
    [138]Calmet X, Selvaggi M. Quantum mechanics on noncommutative spacetime. Phys.Rev. D,2006,74(3):037901.
    [139]Chaichian M, Presnajder P, Sheikh-Jabbari M M, Tureanua A. Aharonov-Bohm ef-fect in noncommutative spaces. Phys. Lett. B,2002,527(1-2):149-154.
    [140]Falomir H, Gamboa J, Loewe M, Mendez F, Rojas J C. Testing spatial noncommu-tativity via the Aharonov-Bohm effect. Phys.Rev. D,2002,66(4):045018.
    [141]Li K, Wang J. The topological AC effect on noncommutative phase space. Eur. Phys. J.C,2007,50(4):1007-1011.
    [142]Wang J, Li K. The HMW effect in Noncommutative Quantum Mechanics. J.Phys.A: Math.Theor.,2007,40(9):2197-2202.
    [143]Kokado A, Okamura T,Saito T. Noncommutative quantum mechanics and the Seiberg-Witten map. Phys.Rev.D,2004,69(12):125007.
    [144]Bertolami O, Rosa J G, De Arago C M L, Castorina P, Zappala D. Noncommutative gravitational quantum well. Phys. Rev. D.2005,72:025010
    [145]Gamboa J, Loewe M, Mendez F, Rojas J C. The Landau problem and noncommuta-tive quantum mechanics. Mod. Phys. Lett. A,2001,16(32):2075-2078.
    [146]Zhang J. Testing Spatial Noncommutativity via Rydberg Atoms. Phys. Rev.Lett, 2004,93(4):043002.
    [147]Zhang J. Fractional angular momentum in non-commutative spaces. Phys. Lett. B, 2004,584(1-2):204-209.
    [148]Wu Y, Yang X. Preparation of Schrodinger cat states in noncommutative space. Phys. Rev. D.2006.73:067701.
    [149]Matsubara K. Restrictions on Gauge Groups in Noncommutative Gauge Theory. Phys.Lett.B,2000,482(4):417-419.
    [150]Bonora L, Schnabl M, Sheikh-Jabbari M M, Tomasiello A. Noncommutative SO(n) and Sp(n) Gauge Theories. Nucl.Phys. B,2000,589(1-2):461-474.
    [151]Jurco B, Schraml S, Schupp P, Wess J. Enveloping algebra valued gauge transfor-mations for non-abelian gauge groups on non-commutative spaces. Eur. Phys. J. C, 2000,17(3):521-526.
    [152]Madore J, Schraml S, Schupp P, Wess J. Gauge Theory on Noncommutative Spaces. Eur. Phys. J. C,2000,16(1):161-167.
    [153]Jurco B, Moller L, Schraml S, Schupp P, Wess J. Construction of non-abelian gauge theories on noncommutative spaces. Eur. Phys. J. C,2001,21(2):383-388.
    [154]Chaichian M. Noncommutative gauge field theories:a no-go theorem. Phys. Lett. B, 2002.526:132
    [155]Chaichian M, Presnajder P, Sheikh-Jabbari M M, Tureanu A. Noncommutative stan-dard model:model building. Eur. Phys. J. C,2003,29(3):413-432.
    [156]Hewett J L, Petriello F J, Rizzo T G. Noncommutativity and unitarity violation in gauge boson scattering. Phys.Rev.D,2002,66:036001.
    [157]Asakawa T, Kishimoto I. Comments on gauge equivalence in noncommutative ge-ometry. J. High Energy Phys.,1999,11:024.
    [158]Jurco B, Schupp P, Wess J. Nonabelian noncommutative gauge fields and Seiberg-Witten map. Mod. Phys. Lett. A,2001,16(4/6):343-347.
    [159]Jurco B, Schupp P, Wess J. Noncommutative gauge theory for Poisson manifolds. Nucl.Phys.B,2000,584(3):784-794.
    [160]Trampetic J, Wohlgenannt M. Remarks on the second-order Seiberg-Witten maps. Phys. Rev. D,2007,76(12):127703.
    [161]Ulker K, Yapiskan B. Seiberg-Witten maps to all orders. Phys. Rev. D,2008,77(6): 065006.
    [162]Calmet X, Jurco B, Schupp P, Wess J, Wohlgenannt M. The standard model on non-commutative space-time. Eur. Phys. J. C,2002,23(2):363-376.
    [163]Aschieri P, Jurco B, Schupp P, Wess J. Non-commutative GUTs, standard model and C, P, T. Nucl. Phys. B,2003,651(1-2):45-70.
    [164]Melic B, Passek-Kumericki K, Trampetic J, Schupp P, Wohlgenannt M. The stan-dard model on non-commutative space-time:electroweak currents and Higgs sector. Eur. Phys. J.C,2005,42(4):483-497. Melic B, Passek-Kumericki K, Trampetic J, Schupp P, Wohlgenannt M. The stan-dard model on non-commutative space-time:strong interactions included. Eur. Phys. J. C,2005,42(4):499-504.
    [165]Buric M, Radovanovic V. Non-renormalizability of noncommutative SU(2) gauge theory. J. High Energy Phys.,2004,02:040.
    [180]Buric M, Radovanovic V. On divergent 3-vertices in noncommutative SU(2)gauge theory. Class, and Quant. Grav.,2005,22(3):525-531.
    [167]Buric M, Latas D, Radovanovic V. Renormalizability of noncommutative SU(N) gauge theory. J. High Energy Phys.,2006,02:046.
    [168]Buric M, Latas D, Radovanovic V, Trampetic J. The one-loop renormalization of the gauge sector in the θ-expanded noncommutative standard model. J. High Energy Phys.,2007,03:030.
    [169]Iltan E O. The Z→l+l- and W→vll+ decays in the noncommutative standard model. Phys.Rev. D,2002,66 (3):034011.
    [170]Iltan E O. The inclusive b→sγ decay in the noncommutative standard model. NewJ. Phys.,2002,4:54.
    [171]Chang Z, Xing Z Z. Possible effects of noncommutative geometry on weak CP vio-lation and unitarity triangles. Phys.Rev. D,2002,66:056009.
    [172]Mahajan N. t→bW in NonCommutative Standard Model. Phys.Rev. D,2003, 68(9):095001.
    [173]Ohl T, Reuter J. Testing the noncommutative standard model at a future photon collider. Phys. Rev. D,2004.70:076007.
    [174]Behr W, Deshpande N G, Duplancic G, Schupp P, Trampetic J, Wess J. The Z→γγ, gg Decays in the Noncommutative Standard Model. Eur.Phys J. C,2003,29(3):441-446.
    [175]Melic B, Passek-Kumericki K, Trampetic J. Quarkonia decays into two photons induced by the space-time noncommutativity. Phys. Rev. D,2005,72(5):054004.
    [176]Mohammadi Najafabadi. Semileptonic decay of a polarized top quark in the non-commutative standard model. Phys.Rev. D,2006,73:025021.
    [177]Alboteanu A, Ohl T, Ruckl R. Probing the noncommutative standard model at hadron colliders. Phys.Rev. D,2006,74:096004.
    [178]Haghighat M,Ettefaghi M M,Zeinali M. Photon-neutrino scattering in noncommu-tative space. Phys.Rev. D,2006,73(1):013007.
    [179]Buric M, Latas D. Radovanovic V, Trampetic J. Nonzero Z→γγ decay in the renormalizable gauge sector of the noncommutative standard model. Phys.Rev. D, 2006,75(9):097701.
    [180]Hinchliffe I, Kersting N. CP violation from noncommutative geometry. Phys.Rev. D,2001,64(11):116007.
    [181]Alboteanu A, Ohl T, Ruckl R. Noncommutative standard model at O(θ2). Phys.Rev. D,2007,76:105018.
    [182]Das P K, Deshpande N G, Rajasekaran G. Moller and Bhabha scattering in the noncommutative standard model. Phys.Rev. D,2008,77:035010.
    [183]Haghighat M. Bounds on the parameter of noncommutativity from supernova SN1987A. Phys.Rev. D,2009,79:025011
    [184]Tamarit C.Trampetic J. Noncommutative fermions and quarkonia decays Phys.Rev. D,2009,79:025020.
    [185]Prakash A, Mitra A, Das P K, e+e-→μ+μ- scattering in the noncommutative standard model. Phys. Rev. D,2010.82:055020.
    [186]Ohl T, Speckner C, Noncommutative standard model and polarization in charged gauge boson production at the LHC. Phys. Rev. D,2010.82:116011.
    [187]Prakash A, Mitra A, Das P K. Neutral Higgs boson pair production at the linear collider in the noncommutative standard model. Phys. Rev. D,2011.83:056002.
    [188]Batebi S, Etesami S M, Mohammadi-Najafabadi M, Angular correlations in top quark decays in standard model extensions. Phys. Rev. D,2011.83:057502.
    [189]Bilmi S, Deniz M, Li H B, Li J, Liao H Y, Lin S T, Singh V, Wong H T,Yildirim I O, Yue Q, Zeyrek M. Constraints on a noncommutative physics scale with neutrino-electron scattering. Phys. Rev. D,2012.85:073001.
    [190]Wang W, Tian F, Sheng Z M. Higgs-strahlung and pair production in the e+e- col-lision in the noncommutative standard model. Phys. Rev. D,2011.84:045012.
    [191]Garg S K, Shreecharan T, Das P K, Deshpande N G, Rajasekaran G. TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams. J. High Energy Phys.2011,07:024.
    [192]Wang W, Huang J H, Sheng Z M, TeV scale phenomenology of e+e-→μ+μ-scattering in the noncommutative standard model with hybrid gauge transformation. Phys. Rev. D,2012.86:025003.
    [193]Garg S K, Deshpande N G. Anomalous Triple Gauge Boson Couplings in e-e+→ γγ for Non Commutative Standard Model. Phys. Lett. B.2012.708:150
    [194]Aghababaei S, Haghighat M, Kheirandish A. Lorentz violation in the Higgs sector and the noncommutative standard model. Phys. Rev. D,2013.87:047703.
    [195]ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Ltee. B.2012.716: 1.
    [196]Schwinger J. Quantum Electrodynamics, Dover Publications, New York,1958
    [197]Yang C N, Mills R L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev.1954.96:191.
    [198]Nambu Y. Axial Vector Current Conservation in Weak Interactions. Phys. Rev. Lett. 1960.4:380.
    [199]Nambu Y, Jona-Lasinio G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. Ⅰ. Phys. Rev.1961.122:345.
    [200]Nambu Y, Jona-Lasinio G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. Ⅱ. Phys. Rev.1961.124:246.
    [201]Goldstone J. Field Theories with Superconductor Solutions. Nuovo Cimento.1961. 19:154
    [202]Goldstone J, Salam A, Weinberg S. Broken Symmetries. Phys. Rev.1962.127:965
    [203]Higgs P W. Broken Symmetries and the Masses of Gauge Bosons". Phys. Rev. Lett. 1964.13:508
    [204]Englert F,Brout R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett.1964.13:321.
    [205]Weinberg S. A model of leptons. Phys. Rev. Lett.1967.19:1264.
    [206]Salam A. Svartholm N. ed. Elementary Particle Physics:Relativistic Groups and Analyticity. Eighth Nobel Symposium. Stockholm:Almquvist and Wiksell.1968. pp.367.
    [207]Glashow S L. Partial-symmetries of weak interactions. Nuclear Physics.1961.22: 579 588
    [208]Gell-Mann, Murray. The Quark and the Jaguar. Owl Books.1995. ISBN 978-0-8050-7253-2.
    [209]Hooft G. Renormalization of massless Yang-Mills fields. Nucl. Phys. B.1971.33: 173.
    [210]Hooft G. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B 1971.35:167.
    [211]Cabibbo N. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett.1962.10:531.
    [212]Kobayashi M, Maskawa T. CP-Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys.1973.49:652.
    [213]SNO Collaboration. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev.Lett. 2002.89:011301.
    [214]KamLAND Collaboration. First Results from KamLAND:Evidence for Reactor Antineutrino Disappearance. Phys. Rev. Lett.2003.90:021802.
    [215]K2K Collaboration. Indications of Neutrino Oscillation in a 250 km Long-Baseline Experiment. Phys. Rev. Lett.2003.90:041801.
    [216]Daya-Bay Collaboration. Observation of Electron-Antineutrino Disappearance at Daya Bay. Phys. Rev. Lett.2012.108:171803.
    [217]Gonzalez-Garcia M C, Nir Y. Neutrino masses and mixing:evidence and implica-tions. Rev. Mod. Phys.,2003,75(2):345-402.
    [218]Weinberg S. Baryon-and Lepton-Nonconserving Processes. Phys. Rev. Lett.1979. 43:1566.
    [219]Minkowski P.μ→eγ at a rate of one out of 109 muon decays. Phys. Lett. B.1977. 67:421.
    [220]Mohapatra R N, Senjanovi G. Neutrino masses and mixings in gauge models with spontaneous parity violation. Phys. Rev. D.1981.23:165.
    [221]Konetschny W, Kummer W. Nonconservation of total lepton number with scalar bosons. Phys. Lett. B.1977.70:433.
    [222]Magg M, Wetterich C. Neutrino mass problem and gauge hierarchy. Phys. Lett. B. 1980.94:61.
    [223]Schechter J, Valle J W F. Neutrino masses in SU(2)*U(1) theories. Phys. Rev. D. 1980.22:2227.
    [224]Cheng T P, Li L F. Neutrino masses, mixings, and oscillations in SU(2)* U(1) models of electroweak interactions. Phys. Rev. D.1980.22:2860.
    [225]Root R, Lew H, He X G, Joshi G C, Z. Phys. C.1989.44:441.
    [226]Morita M. Beta decays and mu capture. Benjaming A. Reading. Massachusetts, 1973.
    [227]Polchinski J. String Theory. Cambridge:Cambridge University Press,1998.
    [228]Yang C N. Selection Rules for the Dematerialization of a Particle into Two Photons. Phys. Rev.1950.77:242.
    [229]Horvat R, Ilakovac A, Schuppc P, Trampetic J, You J. Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory. Phys. Lett. B.2012.751:340
    [230]Kamoshita J. Probing Noncommutative Space-Time in the Laboratory Frame. Eur.Phys.J.C.2007.52:451
    [231]Mertig R,Bohm M, Denner A. FeynCalc:Computer algebraic calculation of Feyn-man amplitudes. Comput. Phys. Commun.1991.64:345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700