Born-Infeld理论中的光线偏折及暗能量宇宙学模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1934年波恩(Born)和英菲尔德(Infeld)为克服麦克斯韦理论的内在困难而提出非线性电动力学以来,Born-Infeld(B-I)的非线性理论得到长足的发展,特别是最近在弦理论和D-Brane理论中的发展使得B-I理论重新得到重视,它在宇宙学中的应用正在被广泛研究着。
     本论文中我们研究了B-I型引力理论中的光线偏折问题并求出光线偏转角为△(?)≈4M/r_(min)[1-(4M/r_(min))~3 9k~2β/r_(min)~6]。当参数β或k趋向于0时,偏转角回到第一项爱因斯坦理论的结果。在宇宙小尺度上第二项给出的修正非常小,目前的观测精确还不足以区分。
     作为暗能量模型的候选者,我们提出了拉格朗日为L_(NLBI)=1/η(1-(?))-u(φ)的非线性B-I(Nonlinear B-I,NLBI)标量场模型。该标量场和正则标量场(Quintessence)一样,违反强能量条件,态参量w演化处于±1之间,可以解释当前的宇宙加速膨胀现象。NLBI标量场可以看成是态参量w为-1的暗能量和压强为0的暗物质的统一模型。对自治系统的稳定性分析得到宇宙演化存在晚期类de Sitter稳定吸引子解的充分条件为势存在正的最小值。
     针对态参量w可能小于-1的观测结果,我们提出了拉格朗奇为L_(PNLBI)=1/η(1-(?))-u(φ)的Phantom NLBI标量场模型,此时标量场违反弱能量条件。宇宙演化存在晚期类de Sitter稳定吸引子解的充分条件为势存在正的最大值,此时Phantom模型中的大劈裂可以避免。在势为常数时,宇宙标度因子存在最小值可以避免奇性。在普通物质和辐射存在时宇宙的演化能和当前观测吻合,而且Phantom标量场的密度参量在早期很小以至于不影响原初的核合成。
     基于负势对宇宙演化的重要影响和它在循环宇宙模型中的应用,我们研究了负势的NLBI标量场模型,其中的宇宙在经历加速膨胀,减速膨胀后会塌缩到奇点。由于NLBI标量场在φ很大时的行为会和正则标量场明显不同,因此研究宇宙塌缩到奇点附近的行为并和正则标量场模型比较对研究它们的差异和优缺点非常重要。我们详细研究了宇宙演化的几个重要阶段,并和正则标量场的情况进行了类比。在奇点附近,NLBI标量场的演化表现为普通物质而正则标量场则表现为“stiff”物质。我们研究了模型中势参数取不同值对宇宙演化的影响并得出结论:基于人择原理的考虑,负势情况下模型的势参数值必然要存在上限。
     在势为线性势和平方势时我们详细考察了NLBI标量场和正则标量场的宇宙演化。在相同初始条件和参数值情况下,NLBI标量场模型中的宇宙年龄更大,暗能量态参量w的值更负,从而比正则标量场更与观测吻合;运用超新星数据对两模型的分析显示NLBI标量场模型要略优于正则标量场模型。不过这一优势在暗能量态参量w趋向-1时变得不明显,因此有必要研究其它观测数据对两模型的约束。
     我们研究了Einstein框架下的Brans-Dicke(EBD)理论的自治系统的临界点稳定性问题。该理论下的动力学自治系统等价于耦合正则标量场模型;但只有普通物质和Dilaton标量场耦合,而辐射实质上没有耦合。我们分析了各个临界点的稳定性并给出了它们的相空间演化图。利用太阳系观测给予EBD理论中β参数的限制并结合临界点的分析结果,我们讨论了宇宙未来的演化。
     作为NLBI标量场模型的推广,我们研究了一般非正则标量场模型(GeneralNon-canonical Scalar Field Model)。在标量场随时间线性演化的前提下我们精确求出了具有负最小值的平方势,此时宇宙将会经历加速膨胀,减速膨胀并最终塌缩到奇点。我们发现场随时间线性演化的模型有着很高的简并性质:只要不同形式的非正则动能项F(X)在X=X_0处泰勒展开的零阶和一阶系数F_0,F(?)_0一样,则宇宙的演化就完全一样,我们还给出了场随时间线性演化解的稳定性条件。我们研究并发现声速发散的模型实际上是场随时间线性演化模型的一种。对正压指数γ为常数解的研究发现只有γ_0≤1的常数解才是稳定的。对势为常数情况的研究表明此时的非正则标量场可以作为统一暗物质和暗能量的模型。
Nonlinear Born-Infeld theory has won full-grown development since it is firstly proposed by Born and Infeld in order to overcome the inherent problem of classical Maxwell theory in 1934. Especially due to its development in string and D-Brane theory, Nonlinear Born-Infeld theory recovers new emphasis. Its important role in cosmology has been widely studied these years.
     We considered the deviation of the light path and calculated the deviation valuewas△(?)≈4M/r_(min)[1-(4M/r_(min))~3 9k~2β/r_(min)~6],which would recover the Einstein's result whenβor k equals zero. The second term in the result is so small that can not be detected by current observational apparatus.
     As a candidate of dark energy, we proposed a Nonlinear Born-Infeld (NLBI) typescalar field model that was described by lagrangian L_(NLBI)=1/η(1-(?))-u(φ).NLBI scalar field violated the strong energy condition and its state equation w was between -1 and 1, just like the canonical scalar field (i.e. Quintessence). NLBI scalar field can be thought as the sum of dark energy with state equation w=-1 and matter with state equation w=0. Via phase plane and critical point analysis, we get a sufficient condition for an arbitrary potential that admits a later time attractor solution: the potential must have a positive minimum.
     As to the observational result that state equation w may be less than -1. we proposed the Phantom NLBI scalar field which was described by lagrangianL_(PNLBI)=1/η(1-(?))-u(φ). This phantom NLBI scalar field violated the weakenergy condition. When the potential is constant, we find that the scale factor has minimum and therefore the universe can avoid the singularity. We find the sufficient condition for the phantom NLBI scalar field that admits a later time attractor solution is the potential must have a positive maximum. In this case, the universe can avoid the "big rip" destiny. We study a specific potential with the form ofu(φ) = u_0(1+φ/φ_0)exp(-φ/φ_0) via phase plane analysis and compute the cosmologicalevolution by numerical analysis in detail. In the presence of radiation and matter, the results show that the phantom field can survive till today(to account for the present observed accelerating expansion) without interfering with the nucleosynthesis of the standard model(the density parameterΩ_φ≈10~(-12) at the equipartition epoch), and alsoavoid the future collapse of the universe. This evolution of universe can fit the observation.
     Due to the important effect of negative potentials on cosmological evolution and its role in cyclic universe, we investigate the NLBI scalar field model with negative potentials, in which the universe undergoes accelerating expansion, decelerating expansion and then contract to singularity. We study some important evolutive epochs and compare them with the Quintessence model. A notable characteristic is that NLBI scalar field behaves as ordinary matter near the singularity while the canonical scalar field behaves as stiff matter. We compare the cosmological evolutions with different potential parameters and find that the value of potential parameters must have an upper bound for anthropic consideration.
     We study the NLBI scalar field model and the canonical scalar field model with the linear negative potential and the square potential in detail. In the case of same initial conditions and same potential parameters, we find that the age of the universe in NLBI scalar field model is older than the one in canonical scalar field model, and the state parameter w is less than the one in canonical scalar field model. We also use the Gold dataset of 157 SN-Ia to constrain the parameters of the two models. All the results show that the NLBI scalar field is slightly superior to the canonical scalar field model. However, it shows that this superiority is not distinct when the state parameter w approaches -1 and we need compare two models with other observations.
     We present the Brans-Dicke theory in Einstein frame (EBD) in which Pauli metric is regarded as the physical space-time metric and study the stability of the critical points of the autonomous system. The EBD theory is essentially equivalent to coupled quintessence model. However, the dilatonic scalar field only couples to ordinary matter and does not couple to radiation. We present the stable condition for all critical points and numerically plot the phase plane. We discuss the future destiny of universe using the results of stable condition of critical points and the bound onβfrom the solar-system gravitational experiments.
     We generalize the NLBI scalar field model and investigate the General Non-canonical Scalar Field Model。We find that a special square potential with a negative minimum is needed to drive the linear field solutionφ=φ_0/, in which theuniverse will undergo accelerating expansion, decelerating expansion, accelerating contraction, decelerating contraction and then collapse to singularity. We find that the linear field solution model is highly degenerate since the cosmic evolutions with any F(X) will be equivalent as long as the first two coefficients ( F_0, F_0) of the seriesexpansion of the function F(X) around X = X. are the same, disregarding the higher order terms of F(X). We give the stable condition for the linear field solution. Westudy the special model where the sound speed diverges and find it is actually one type of the linear field solution model. We analyze the case with a constant barotropic indexγand show that this constantγsolution is only stable forγ_0≤1 . When thepotential is taken to be constant, we obtain the first integral of the field equation and find that in this case the scalar field can be a model unified the dark matter and dark energy.
引文
[1]. M.Born and Z.Infeld, Foundations Of The New Field Theory, Proc.Roy.SocA144(1934),425
    
    [2]. D.N.Vollick, Anisotropic Born-Infeld cosmologies, Gen.Rel.Grav.35(2003),1511-1516
    
    [3]. R.Garcia-Salcedo et.al., Born-Infeld cosmologies, Int.J.Mod.Phys.A 15(2000),4341
    
    [4]. V.V.Dyadichev et.al., Non - Abelian Born-Infeld cosmology, Phys.Rev.D65(2002), 084007
    
    [5]. P.V.Moniz, FRW wormhole instatons in the non-Abelian Born-Infeld theory,Phys.Rev.D 66(2002), 064012
    
    [6]. D.Galtsov, Classical Glueballs in Non-Abelian Born-Infeld Theory,Phys.Rev.Lett84(2000), 5955
    
    [7]. A.Sen, Time and Tachyon, Int .J.Mod.Phys. A18 (2003), 4869-4888
    
    [8]. GW.Gibbons, Thoughts on Tachyon Cosmology , Class.Quant.Grav. 20(2003) , S321-S346
    
    [9]. L.Kofrnan and A.Linde, Problems with Tachyon Inflation, JHEP 0207 (2002),004
    
    [10]. Y.S.Piao, R.G.Cai, X.M.Zhang and Y.Z.Zhang, Assisted Tachyonic Inflation,Phys.Rev. D66 (2002) , 121301
    
    [11].[奥]泡利,相对论[M](凌德洪,周万生译),上海科学出版社(1979)
    
    [12]. 王永久.唐智明著,引力理论和引力效应[M],湖南科学技术出版社(1990)
    
    [13]. [美]S.温伯格,引力论和宇宙论[M](邹振隆,张历宁译),科学出版社 (1980)
    
    [14]. 赵展岳,相对论导引[M],清华大学出版社(2002)
    
    [15].钮卫星,从光线弯曲的验证历史看广义相对论的正确性问题,上海交通大学学报(哲科版)No.5(2003)
    
    [16]. S.M.Fber, S.J.Gmlasher, Masses and mass-to-light ratios of galaxies. Annu Rev Astron Astrophys 17(1979), 135-187
    
    [17].赵军亮,宇宙的诞生和结局,科学(2003).55(5)
    
    [18]. 爱因斯坦,相对论原理(狭义相对论和广义相对论经典论文集)[M],科学出版社(1980)
    
    [19]. AH.Guth, Inflationary universe: A possible solution to the horizon and flatnessproblems, Phys.Rev.D23 (1981) ,347
    
    [20]. V.F.Mukhanov, H.A.Feldman and R.H.Brandenberger, Theory of cosmologicalperturbations, Phys.Rept215 (1992), 203
    
    [21]. A.D.Linde, A new inflationary universe scenario: A possible solution of thehorizon, flatness, homogeneity, isotropy and primordial monopole problems ,Phys.Lett.B108(1982), 389
    
    [22]. A.D.Linde, Chaotic inflation, Phys.Lett.B 129(1983), 177
    
    [23]. A.Albrecht and P.J.Steinhardt, Cosmology for Grand Unified Theories withRadiatively Induced Symmetry Breaking , Phys.Rev.Lett48 (1982), 1220
    
    [24]. 朴云松,张元仲,第三讲 暴涨宇宙学的研究和进展,物理(2005),Vol.34(7)
    
    [25]. 陆琰,宇宙-物理学的最大研究对象[M],湖南教育出版社(1994)
    
    [26]. 俞允强,热大爆炸宇宙学[M],北京大学出版社(2001)
    
    [27]. A.Riotto, Inflation and the Theory of Cosmological Perturbations hep-ph/0210162
    
    [28]. 景益鹏,WMAP:宇宙学研究的新纪元.,科学55(2003),11
    
    [1]. D.Palatnik, Born-Infeld theory of gravitation: Static, spherically symmetricsolutions, Phys.Lett.B432 (1998), 287-292
    
    [2]. Takashi and Tamaki, Black hole solutions coupled to Born-Infeldelectrodynamics with derivative corrections, JCAP05 (2004), 004
    
    [3]. M.Cederwall , On the Dirac-Born-Infeld action for D-branes ,Phys.Lett.B390(1997), 148
    
    [4]. J.A.Feigenbaum, P.GO.Freund and M.Pigli, Gravitational Analogues ofNon-linear Born Electrodynamics, Phys.Rev.D57 (1998), 4738-4744
    
    [5]. M.Wirschins, A.Sood and J.Kunz, Non-Abelian Einstein-Born-Infeld BlackHoles, Phys Rev. D63( 2001), 084002
    
    [6]. E.Ayon-Beato and A.Garcia, Non-Singular Charged Black Hole Solution forNon-Linear Source, Gen. Rel. Grav31(1999), 629-633
    
    [7]. E.Ayon-Beato and A.Garcia, Regular Black Hole in General Relativity Coupledto Nonlinear Electro-dynamics , Phys. Rev. Lett80 (1998), 5056-5059
    
    [8]. A.Tseytlin, Vector field effective action in the open superstring theoryk, Nucl.Phys. B276 (1986), 391
    
    [9]. E.Fradkin and A.Tseytlin, Non-Linear Electrodynamics from QuantizedStrings, Phys.Lett.B163 (1985), 123
    
    [10]. E. Bergshoeff, E.Sezgin, C.Pope and P.Townsend, The Born-Infeld Action fromConformal Invariance of the Open Superstring, Phys.Lett.B188 (1987), 70
    
    [11]. James A. Feigenbaum, Bom-regulated Gravity In four dimensions. Phys. Rev.D58(1998) , 124023
    
    [12]. H.Q.Lu and P.C.Fung, Contribution of vacuum field to angular deviation oflight path and radar echo delay, Astrophysics and Space science 253(1997), 291
    
    [13].方励之.(意)R.鲁菲尼,相对论天体物理的基本概念[M],上海科学技术出 版社(1981),184页
    
    [14]. K.F.Zhang, Z.GHuang, W.Fang and H.Q.Lu, Deviation of light path inBorn-Infeld type gravitational field, Journal of shanghai University, 2006, 10(6) ,497-499
    
    [15]. J.H.Zhou, H.Q.Lu, W.Fang and C.X.Wei, A comparison of Phantom linear scalar field and Non-linear Born-Infeld Scalar Field(Journal of Shanghai University, in press)
    
    [16]. X.H.Meng and P.Wang, Modified Friedmann Equations in 1/R-Modified Gravity, Class.Quant.Grav.20(2003), 4949
    
    [17]. X.H.Meng and P.Wang, Palatini formulation of modified gravity with lnR terms, Phys.Lett.B584(2004), 1
    
    [18]. S.M.Carroll et.al., Cosmology of generalized modified gravity models, Phys.Rev.D71 (2005), 063513
    
    [19]. M.S.Movahed, S.Baghram and S.Rahvar, Consistency of f(r)=(R~2-R_0~2)~(1/2) gravity with cosmological observations in the Palatini formalism, Phys.Rev. D76 (2007), 044008
    
    [20]. B.J.Li, J.D.Barrow and D.F.Mota, Cosmology of modified Gauss-Bonnet gravity, Phys. Rev. D76 (2007) ,044027
    [1]. 陈学雷. Review on dark matter research, 科技导报, No.24, 15 (2006)
    [2]. 韦浩,蔡荣根, A Brief Overview of Recent Theoretical Study on Dark Energy, 科技导报,No.23, 28 (2005)
    [3]. S.M.Carroll et al, Is Cosmic Speed-Up Due to New Gravitational Physics , Phys Rev, D70(2004), 043528
    [4]. S.M.Carroll et al, The Cosmology of Generalized Modified Gravity Models, Phys. RevD71(2005), 063513.
    [5]. S.Nojiris and S.D.Odintsov, Modified gravity with In R terms and cosmic acceleration, Gen Rel.Grav36(2004), 1765
    [6]. C.H.Brans and R.H.Dicke, Mach's Principle and a Relativistic Theory of Gravitation, Phys.Rev. 124(1961), 925
    [7]. N.Arkani-Hamed, S.Dimopoulos and G.Dvali, The Hierarchy Problem and New Dimensions at a Millimeter, PhysLett.B429(1998), 263
    [8]. I.Antoniadis, et al, New Dimensions at a Millimeter to a Fermi and Superstrings at a TeV, Phys Lett.B436(1998), 257
    [9]. L.Randall, R.Sundrum , An Alternative to Compactification, Phys Rev Lett83(1999), 4690
    [10]. G.Dvali,G.Gabadadze and M.Porrati, 4D Gravity on a Brane in 5D Minkowski Space,Phys.Lett.B485 (2000), 208
    [11]. P.Brax et al, Brane World Cosmology, Rept Prog Phys67(2004), 2183
    [12]. V.Sahni and Y.Shtanov, Braneworld models of dark energy, JCAP0311(2003),014
    [13]. R.G.Cai, H.S.Zhang and A.Z.Wang, Crossing w=-1 in Gauss-Bonnet Brane World with Induced Gravity, Comm.Theor. Phys44(2005), 948
    [14]. V.Sahni, Cosmological Surprises from Braneworld models of Dark Energy, astro-ph/0502032
    [15]. C.Charmousis and J.F.Dufaux , General Gauss-Bonnet brane cosmology, Class.Quant.Grav 19(2002), 4671
    [16]. S.Nojiris , S.D.Odintsov and M.Sasaki , Gauss-Bonnet dark energy , Phys.RevD71(2005), 123509
    
    [17]. G. Kofinas, G. Panotopoulos and T.N.Tomaras, Brane-bulk energy exchange :a model with the present universe as a global attractor, JHEP 0601 (2006) 107
    
    [18]. K.Freese and M.Lewis, Cardassian Expansion: a Model in which the Universe is Flat, Matter Dominated, and Accelerating, Phys.Lett.B540 (2002), 1
    
    [19]. C.Skordis, Tensor-vector-scalar cosmology: Covariant formalism for the background evolution and linear perturbation theory, Phys. Rev. D 74 (2006), 103513
    
    [20]. J.D.Bekenstein, Relativistic gravitation theory for the modified Newtonian dynamics paradigm Phys. Rev. D 70(2004), 083509
    
    [21]. R.R.Caldwell, R.Dave and P.J.Steinhardt, Cosmological Imprint of an Energy Component with General Equation of State, Phys.Rev.Lett. 80 (1998), 1582
    
    [22]. B.Ratra and P.J.Peebles, Cosmological consequences of a rolling homogeneous scalar field ,Phys.Rev.D37(1998), 3406
    
    [23]. I.Zlatev, L.Wang and P.J. Steinhardt, Quintessence, Cosmic Coincidence, and the Cosmological Constant, Phys.Rev.Lett.82(1996),896
    
    [24]. X.Z.Li, J.G.Hao and D.J.Liu, O(N) quintessence, Class.Quantum Grav. 19(2002), 6049
    
    [25]. E.J.Copeland, A.R.Liddle and D. Wands, Exponential potentials and cosmological scaling solutions, Phys.Rev.D57(1998), 4686
    
    [26]. G.W.Gibbons, Phantom Matter and the Cosmological Constant, hep-th/0302199
    
    [27]. M.Sami and A.Toporensky, Phantom Field and the Fate of Universe, Mod.Phys.Lett.A19 (2004), 1509
    
    [28]. A.G.Riess et al., Type Ia Supernova Discoveries at z>1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophys.J.607(2004), 665-687
    
    [29]. R.J.Scherree, Purely kinetic k-essence as unified dark matter, Phys.Rev.Lett.93 (2004), 011301
    
    [30]. L.P.Chimento, Extended tachyon field, Chaplygin gas and solvable k-essence cosmologies, Phys.Rev. D69 (2004) , 123517
    
    [31]. T.Chiba, T.Okabe and M.Yamaguchi, Kinetically Driven Quintessence, Phys.Rev.D62(2000), 023511
    
    [32]. C.Armendariz-Picon, V.Mukhanov and Paul J.Steinhardt, A Dynamical Solution to the Problem of a Small Cosmological Constant and Late-time Cosmic Acceleration, Phys.Rev.Lett.85(2000), 4438
    [33]. N.Bilic, GB.Tupper and R.D.Viollier, Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas, Phys.Lett.B535(2002), 17
    [34]. A.Yu.Kamenshchik, U.Moschella and V.Pasquier, An alternative to quintessence, Phys.Lett.B511 (2001), 265
    [35]. M.C.Bento, O.Bertolami and A.A.Sen, Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification, Phys.Rev.D66(2002), 043507
    [36]. L.Amendola, Coupled Quintessence, Phys.Rev. D62 (2000), 043511
    [37]. L.Amendola and Domenico Tocchini-Valentini, Stationary dark energy: the present universe as a global attractor, Phys.Rev.D64 (2001) 043509
    [38]. L.Amendola amd Claudia Quercellini, Tracking and coupled dark energy as seen by WMAP, Phys.Rev. D68 (2003), 023514
    [39]. L.Amendola, Linear and non-linear perturbations in dark energy models, Phys.Rev. D69 (2004), 103524
    [40]. L.Amendola, Phantom energy mediates a long-range repulsive force, Phys.Rev.Lett.93 (2004), 181102
    [41]. L.A.Boyle, R.R.Caldwell and M.Kamionkowski, Spintessence! New Models for Dark Matter and Dark Energy, Phys.Lett. B545 (2002), 17
    [42]. J.A.Gu and W.Y.P.Hwang, Can the quintessence be a complex scalar field, Phys.Lett. B517 (2001), 1
    [43]. S. Kasuya, Difficulty of a spinning complex scalar field to be dark energy, Phys.Lett. B515 (2001), 121 -124
    [44]. C.J.Gao and Y.GShen, Quintessence cosmology with coupled complex scalar field, Phys.Lett.B541 (2002), 1
    [45]. X.H.Zhai and Y.B.Zhao, A cosmological model with complex scalar field, Nuovo Cim. 120B (2005), 1007-1016
    [46]. H.Wei, R.G.Cai and D.F.Zeng, Hessence: A New View of Quintom Dark Energy, Class.Quant.Grav. 22 (2005), 3189-3202
    [47]. R.Bousso, The holographic principle, Rev.Mod.Phys.74 (2002), 825-874
    [48]. M.Li, A Model of Holographic Dark Energy, Phys.Lett.B603 (2004) , 1
    [49]. B.Wang, E.Abdalla and R.K.Su, Constraints on the dark energy from holography, Phys.Lett. B611 (2005), 21-26
    [50]. B.Wang, Y.GGong and E.Abdalla, Transition of the dark energy equation of state in an interacting holographic dark energy model, Phys.Lett. B624 (2005), 141-146
    [51]. Ke Ke and M.Li, Cardy-Verlinde Formula and Holographic Dark Energy, Phys.Lett. B606 (2005), 173-176
    [52]. Q.G.Huang and M.Li, Anthropic Principle Favors the Holographic Dark Energy, JCAP 0503 (2005), 001
    [53]. B.Feng, X.L.Wang and X.M.Zhang, Dark Energy Constraints from the Cosmic Age and Supernova, Phys.Lett. B607 (2005), 35-41
    [54]. X.F.Zhang et al, Two-field Models of Dark Energy with Equation of State Across-1,Mod.Phys.Lett.A21 (2006), 231-242
    [55]. G.B.Zhao et al, Perturbations of the Quintom Models of Dark Energy and the Effects on Observations, Phys.Rev. D72 (2005), 123515
    [56]. S.Weinberg, The cosmological constant problem, Rev Mod Phys61(1989), 1
    [57]. J.M.Overduin and F.I.Cooperstock, Evolution of the scale factor with a variable cosmological term, Phys. Rev. D58(1998), 043506
    [58]. J.M.Overduin and P.S.Wesson, Dark Matter and Background Light , Phys.Rept.402(2004), 267-406
    [59]. P.Wang and X.H.Meng, Can vacuum decay in our Universe, Class.Quant.Grav. 22(2005), 283-294
    [60]. D.L.Wiltshire, Viable inhomogeneous model universe without dark energy from primordial inflation, gr-qc/0503099
    [61]. E.W. Kolb, Primordial inflation explains why the universe is accelerating today, hep-th/0503117
    [62]. R.Bean, S.Carroll and M.Trodden, Insights into Dark Energy: Interplay Between Theory and Observation, astro-ph/0510059
    [63]. S.M.Carroll, Why is the Universe Accelerating, astro-ph/0310342
    [64]. E.J.Copeland , M.Sami and S.Tsujikawa, Dynamics of dark energy, Int.J.Mod.Phys. D15 (2006), 1753-1936
    [65]. B.Ratra and P.J.E.Peebles, Cosmological consequences of a Rolling homogeneous scalar field, Phy.Rev.D37(1988), 3406
    [66]. S.M.Carroll,M.Hoffman and M.Trodden, can the dark energy equation of stat parameter w be less than -1, Phys.Rev.D68(2003), 023509
    [67]. W.Heisenberg , Z.Phys. 133(1952) , 79 ; Z.Phys. 126(1949) , 519 , Z.Phys. 113(1939), 61
    [68]. H.P.de Oliveira, Black holes and nonlinear scalar field: A dynamical system approach, J.Math.Phys36(1995), 2988
    [69]. H.Q.Lu, Phantom cosmology with a Nonlinear B-I type Scalar Field, Int.J.Mod.Phys.D14(2005), 355-362
    [70]. K.F.Zhang, Wei Fang and H.Q.Lu, Dark Energy Model With Canonical Scalar Field and Non-Linear Born-Infeld Type Scalar Field, Int.J.Theor.Phys46(2006), 1341-1358
    [71]. J.G.Hao and X.Z.Li , Phantom with Born-Infeld-Type Lagrangian, Phys.Rev.D68(2003), 043501
    [72]. J.G.Hao and X.Z.Li, Phantom Cosmic Dynamics: Tracking Attractor and Cosmic Doomsday, Phys.Rev.D70(2004), 043529
    [1]. A.Melchiorri, New constraints on dark energy, astro-ph/0406652
    [2]. R.R.Caldwell, A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state, Phys.Lett.B545(2002), 23
    [3]. H.P.Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep110(1984), 1-162
    [4]. M.D.Pollock, On the initial conditions for super-exponential inflation, Phys.Lett.B215(1988), 635
    [5]. A.Vikman, Can dark energy evolve to the Phantom, Phys.Rev.D71(2005), 023515
    [6]. J.G.Hao and X.Z.Li , Phantom with Born-Infeld-Type Lagrangian, Phys.Rev.D68(2003), 043501
    [7]. J.G.Hao and X.Z.Li, Phantom Cosmic Dynamics: Tracking Attractor and Cosmic Doomsday, Phys.Rev.D70(2004), 043529
    [8]. P.Singh, M.Sami and N.Dadhich, Cosmological Dynamics of Phantom Field, Phys.Rev.D68(2003), 023522
    [9]. S.M.Carroll, M.Hoffman and M.Trodden, Can the dark energy equation-of-state parameter w be less than -1, Phys.Rev.D68(2004), 023509
    [10]. V.Faraoni , Phantom cosmology with general potentials, Class.Quant.Grav22(2005), 3235
    [11]. R.R.Caldwell, M.Kamionkowski and N.N.Weinberg, Phantom Energy and Cosmic Doomsday , Phys.Rev.Lett91 (2003), 071301
    [12]. G.W.Gibbons, Phantom Matter and the Cosmological Constant, hep-th/0302199
    [13]. B.Mcinnes, The dS/CFT Correspondence and the Big Smash, JHEP 0208 (2002), 029
    [14]. H.Q.Lu, Phantom cosmology with a Nonlinear B-I type Scalar Field, Int.J.Mod.Phys.D14(2005), 355-362
    [15]. W.Fang, H.Q.Lu, Z.G.Huang and K.F.Zhang, The Evolution of the universe with the B-I Type Phantom Scalar Field, Int.J.Mod.Phys.D15(2006), 199
    [1]. A. de la Macorra and C. Stephan-Otto, Quintessence Restrictions on Negative Power and Condensate Potentials,Phys.Rev.D65(2002), 083520
    
    [2]. I.P.C.Heard and David Wands, Cosmology with positive and negative exponential potentials, Class.Quant.Grav.19(2002), 5435
    
    [3]. A.de la Macorra and G.German, Cosmology for Scalar Fields with Negative Potentials and w<-1, Int.J.Mod.Phys.D13(2004), 1939
    
    [4]. L.Perivolaropoulos, Constraints on linear-negative potentials in quintessence and phantom models from recent supernova data, Phys.Rev.D71(2005), 063503
    
    [5]. 蔡荣根, 第五讲 暗能量和德西特时空. 物理.Vol34 (2005), 555-564
    
    [6]. G.Felder, A.Frolov, L.Kofman and A.Linde, Cosmology With Negative Potentials, Phys.Rev.D66(2002), 023507
    
    [7]. A.Friedman, (U|¨)ber die Krümmung des Raumes, Z.Phys. 10(1922), 377-386 [English translation in: Gen. Rel. Grav. 31 (1999), 1991-2000.)]
    [8]. R.C.Tolman, Relativity, Thermodynamics, and Cosmology, Oxford(1934), Clarendon Press.LCCN340-32023 [Reissued (1987) New York: Dover ISBN 0-486-65383-8]
    
    [9]. P.J.Steinhardt and N.Turok, a cyclic model of the universe, hep-th/0111030
    [10]. P.Horava and E.Witten, Heterotic and Type I String Dynamics from Eleven Dimensions, Nucl.Phys.B460(1996), 506-524
    
    [11]. P.Horava and E.Witten, Eleven-Dimensional Supergravity on a Manifold with Boundary, Nucl.Phys.B475(1996), 94-114
    
    [12]. J.Khoury, B.A.Ovrut, P.J.Steinhardt and N.Turok, Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys.Rev.D64(2001), 123522
    [13]. P.J.Steinhardt and N.Turok, The cyclic universe:an informal introduction, astro-ph/0204479
    
    [14]. P.J.Steinhardt and N.Turok, Cosmic evolution in a cyclic universe, Phys.Rev.D65(2002), 126003
    
    [15]. J.Khoury, B.A.Ovrut, P.J.Steinhardt and N.Turok, Density Perturbations in the Ekpyrotic Scenario, Phys.Rev. D66 (2002), 046005
    [16]. J.Khoury, B.A.Ovrut, P.J.Steinhardt and N.Turok, From Big Crunch to Big Bang,Phys.Rev.D65(2002), 086007
    [17]. Y.F.Cai, T. Qiu, Y.S.Piao, M.Z.Li and XM.Zhang, Bouncing Universe with Quintom Matter, JHEP0710(2007), 071
    [18]. Y.F.Cai, T.Qiu, R.Brandenberger, Y.S.Piao and X.M.Zhang, On Perturbations of Quintom Bounce, JCAP0803(2008), 013
    [19]. Wei Fang, H.Q.Lu and Z.G.Huang, Cosmology in Nonlinear Born-Infeld Scalar Field Theory With Negative Potentials, Int.J.Mod.Phy.A22(2007), 2173-2195
    [1]. M.A.Turner and D.Huterer, Cosmic Scceleration, dark energy and fundamental physics, arXiv:07062186
    
    [2]. W.M.Wood-Vasey et al., Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey, astro-ph/0701041
    
    [3]. S.W.Allen et al., Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters, Mon.Not.Roy.Astron.Soc.353(2004), 457
    
    [4]. M.Tegmark et al., Cosmological Constraints from the SDSS Luminous Red Galaxies, Phys. Rev. D74(2006), 123507
    
    [5]. S. Boughn and R. Crittenden, A correlation of the cosmic microwave sky with large scale structure, Nature 427,45 (2004)
    
    [6]. P.Fosalba and E.Gaztanaga, Measurement of the gravitational potential evolution from the cross-correlation between WMAP and the APM Galaxy survey, Mon.Not.Roy.Astron.Soc, 350, L37 (2004)
    
    [7]. R.Scranton et al., Physical Evidence for Dark Energy, astro-ph/0307335
    
    [8]. N.Afshordi, Yeong-Shang Loh and M.A.Strauss, Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources, Phys. Rev. D, 69, 083524 (2004)
    
    [9]. D.Pietrobon, A.Balbi and D.Marinucci, Dark Energy Constraints from Needlets Analysis of WMAP3 and NVSS Data, astro-ph/0611797
    
    [10]. D.Munshi, P.Valageas, L.Van Waerbeke and A. Heavens, Cosmology with Weak Lensing Surveys, astro-ph/0612667
    
    [11]. P. Schneider, Weak Gravitational Lensing, astro-ph/0509252
    
    [12]. D. Huterer, Weak Lensing and Dark Energy, Phys. Rev. D65 (2002), 063001
    
    [13]. L.M. Krauss and B.Chaboyer, Age estimates of globular clusters in the Milky Way: Constraints on cosmology, Science 299(2003), 65-69
    
    [14]. D.Spergel et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys.J.Suppl.148(2003), 175
    
    [15]. D. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, AstrophysJ.Suppl. 170, 377 (2007)
    
    [16]. Z.G.Dai, E.W.Liang and D.Xu, Constraining ΩM and dark energy with gamma-ray bursts , ApJ612, L101 (2004)
    
    [17]. D.Xu, Z.G.Dai and E.W.Liang, Can Gamma-Ray Bursts Be Used to Measure Cosmology? A Further Analysis, Astrophys.J. 633(2005), 603-610
    
    [18]. A.T.Rodriguez and C.M.Cress, Constraining the Nature of Dark Energy using the SKA, MNRAS 376( 2007), 1831
    
    [19]. S.Carroll, Quintessence and the Rest of the World, Phys.Rev.Lett.81(1998), 3067
    
    [20]. R.Nichol, Measuring Dark Energy with the Wide-Field Multi-Object Spectrograph, arXiv:astro-ph/0611801
    
    [21]. A.AIbrecht et al., Report of the Dark Energy Task Force, astro-ph/0609591
    
    [22]. L.Perivolaropoulos, Constraints on linear-negative potentials in quintessence and phantom models from recent supernova data, Phys. Rev. D 71, 063503 (2005)
    
    [23]. J. Garriga and A. Vilenkin, On likely values of the cosmological constant, Phys. Rev. D 61,083502 (2000)
    
    [24]. J. Garriga and A. Vilenkin, Testable anthropic predictions for dark energy, Phys. Rev. D 67, 043503 (2003)
    
    [25]. J. Garriga, L. Pogosian and T. Vachaspati, Forecasting Cosmic Doomsday from CMB/LSS Cross-Correlations, Phys. Rev. D 69, 063511 (2004)
    
    [26]. J.Garriga, A.Linde and A.Vilenkin, Dark energy equation of state and anthropic selection, Phys. Rev. D 69(2004), 063521
    
    [27]. P. P. Avelino, The coincidence problem in linear dark energy models, Phys. Lett. B 611(2005), 15-20
    
    [28]. A.D.Linde, chaotic inflation, Phys.Lett. B129 (1983), 177-181
    
    [29]. J. K. Erickson et al, Measuring the Speed of Sound of Quintessence, Phys. Rev. Lett.88(2002), 121301
    
    [30]. S.Dedeo, R. R. Caldwell and P. J. Steinhardt, Effects of the Sound Speed of Quintessence on the Microwave Background and Large Scale Structure, Phys. Rev. D 67(2003), 103509
    
    [31]. L.Perivolaropoulos, Constraints on linear-negative potentials in quintessence and phantom models from recent supernova data, Phys. Rev. D71 (2005), 063503
    
    [32]. E.Carretta et al., Distances, ages, and epoch of formation of globular clusters, Astrophys. J533 (2000), 215-235
    
    [33]. W.L.Freedman et.al., Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, Astrophys. J553(2001), 47-72
    
    [34]. H.B.Richer et al. the Lower Main Sequence and Mass Function of the Globular Cluster Messier 4, Astrophys. J.574(2002), L151
    
    [35]. B. M. S. Hansen et al., The White Dwarf Cooling Sequence of the Globular Cluster Messier 4, Astrophys. J. 574 (2002), L155
    
    [36]. L. Krauss, Implications of the WMAP Age Measurement for Stellar Evolution and Dark Energy, Astrophys. J. 596(2003), L1-L3
    
    [37]. J.Cepa, Constraints on the cosmic equation of state: age conflict versus phantom energy, Age-redshift relations in an accelerated universe, Astron.Astrophys.422 (2004), 831-839
    
    [38]. A. G. Riess, the Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration, Astrophys.J.560(2001), 49-71
    
    [39]. M.S.Turner and A.GRiess, Do SNe la Provide Direct Evidence for Past Deceleration of the Universe, Astrophys. J. 569(2002), 18
    
    [40]. R.A.Daly and S.G.Djorgovski, A Model-Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of Redshift and Constraints on Dark Energy, Astrophys. J.597(2003), 9-20
    
    [41]. Y.G.Gong and C.K.Duan, Constraints on alternative models to dark energy, Class. Quant. Grav. 21(2004), 3655
    
    [42]. 徐立昕, 高维宇宙学模型和暗能量, 博士论文(2006), p4-p7
    
    [43]. B.R.Parodi et al., Supernova type la luminosities, their dependence on second parameters, and the value of H_0, Astrophys. J.540(2000), 634
    [44]. E.Di Pietro and J.F.Claeskens, Future supernovae data and quintessence models, Mon.Not.Roy.Astron.Soc. 341 (2003), 1299
    
    [45]. S.Nesseris and L.Perivolaropoulos, Comparison of the Legacy and Gold Snla Dataset constraints on DE Models, Phys.Rev. D72 (2005), 123519
    [46]. A.G.Riess et al., Type la Supernova Discoveries at z>1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophys.J607(2004), 665-687
    
    [47]. W.H.Press et al., Numerical Recipes(Third Edition), Cambridge University Press(2007)
    [48]. W.Fang, H.Q.Lu, B. Li and K. F. Zhang, A Comparison of quintessence and Non-Linear Born-Infeld Scalar field Using Gold Supernova Data, Int.J.Mod.Phys.D15(2006), 1947
    [49]. J.H.Zhou, H.Q.Lu, Wei Fang and C.X.Wei, A comparison of Phantom linear scalar field and Non-linear Born-Infeld Scalar Field(Accepted by Journal of Shanghai University)
    
    [1]. 刘式达等,自然科学中的混沌和分形[M],北京大学出版社(2003)
    
    [2]. 朱因远,周纪卿,非线性振动和运动稳定性[J],先交通大学出版社(1992)
    
    [3]. I.Huntley and R.M.Johnson., Linear and Nonlinear Differential Equations, New York, Wiley, (1983)
    
    [4]. E.J.Copeland, M.Sami and S.Tsujikawa, Dynamics of dark energy, Int .J.Mod.Phys.D 15(2006), 1753
    
    [5]. W.Fang, H.Q.Lu and Z.GHuang, Exponential Potentails and Attractor Solution of Dilatonic Cosmology, Int.J.Theor.Phys 46(2007), 2366-2377
    
    [6]. I.Zlatev, L.Wang and P.J.Steinhardt, Quintessence, Cosmic Coincidence, and the Cosmological Constant, Phys.Rev.Lett.82 (1999), 896-899
    
    [7]. E.J.Copeland, A.R.Liddle and D.Wands, Exponential Potentails and Cosmological scaling Solution, Phys.Rev.D57 (1998), 4686-4690
    
    [8]. J.GHao and X.Z.Li, Attractor solution of phantom field, Phys.Rev.D67(2003),
    
    [9]. L.Amendola, Coupled Quintessence, Phys.Rev.D62 (2000), 043511
    
    [10]. Z.K.Guo, R.GCai and Y.Z.Zhang, Cosmological Evolution of Interacting Phantom Energy with Dark Matter, JCAP 0505 (2005) 002
    
    [11]. R.R.Caldwell, R.Dave and P.J.Steinhardt, Cosmological Imprint of an Energy Component with General Equation of State, Phys.Rev.Lett80( 1998), 1582-1585
    
    [12]. A.de la Macorra and GPiccinelli, General Scalar Fields as Quintessence, Phys.Rev.D61 (2000), 123503
    
    [13]. S.C.C.Ng, N.J.Nunes and F.Rosati, Applications of scalar attractor solutions to Cosmology, Phys.Rev.D64 (2001), 083510
    
    [14]. S.Y.Zhou, A New Approach to Quintessence and a Solution of Multiple Attractors, Phys.Lett. B660 (2008), 7-12
    
    [15]. J.M.Aguirregabiria and R.Lazkoz, Tracking solutions in tachyon cosmology, Phys.Rev.D69,123502(2003)
    
    [16]. E.J.Copeland, M.R.Garousi, M.Sami and S.Tsujikawa, What is needed of a tachyon if it is to be the dark energy, Phys.Rev.D71 (2005), 043003
    
    [17]. Z.K.Guo, Y.S.Piao and Y.Z.Zhang, Cosmological Scaling Solutions and Multiple Exponential Potentials, Phys.Lett.B568(2003), 1-7
    
    [18]. Z.K.Guo, Y.S.Piao, R.GCai and Y.Z.Zhang Cosmological Scaling Solutions and Cross-coupling Exponential Potential, Phys.Lett. B576 (2003), 12-17
    [19]. Z.K.Guo and Y.Z.Zhang Cosmological Scaling Solutions of Multiple Tachyon Fields with Inverse Square Potentials, JCAP0408(2004), 010
    
    [20]. G.Magnano and L.M.Sokolowski, Physical equivalence between nonlinear gravity theories and a general-relaticistic self-gravitating scalar field, Phys.Rev.D50(1994), 5035
    
    [21]. M.Ferraris, M.Francaviglia and C.Reina,Variational Formulation of General Relativity from 1915 to 1925 "Palatini's Method" Discovered by Einstein in 1925,Gen.Rel.Grav. 14(1982), 243-254
    
    [22]. E.E.Flanagan, Palatini form of 1/R gravity, Phys.Rev.Lett.92 (2004), 071101
    [23]. L.Amendola, R.Gannouji, D.Polarski and S.Tsujikawa, Conditions for the cosmological viability of f(R) dark energy models, gr-qc/0612180
    [24]. S.Fay, R.Tavakol and S.Tsujikawa, f(R) gravity theories in Palatini formalism: cosmological dynamics and observational constraints, Phys.Rev. D75 (2007). 063509
    [25]. Y.M.Cho, Reinterpretation of Jordan-Brans-Dicke theory and Kaluza-Klein cosmology, Phys. Rev. Lett68(1992), 3133
    
    [26]. A.Strominger, Positive-energy theorem for R+R2 gravity, Phys.Rev.D30(1984), 2257
    
    [27]. V.Faraoni and E.Gunzig, Einstein frame or Jordan frame, Int. J.Theor.Phys38(1999), 217-225
    
    [28]. C.J.Gao and Y.G.Shen, Quintessence cosmology with a coupled real scalar field, Chin.Phys.Lett 19(2002), 1396
    [29]. Z.G.Huang, H.Q.Lu and Wei Fang, Coupled quintessence and phantom based on a dilaton, Class.Quant.Grav23(2006), 6215
    [30]. Z.G.Huang, H.Q.Lu and W.Fang, Attractor Behavior In Dilatonic(phantom) Dark Energy Model With Potential [1 + (σ-A)~2]_e~(-Bσ) ,Mod.Phys.Lett. A21 (2006), 2977
    
    [31]. Z.G.Huang, H.Q.Lu, W.Fang and K.F.Zhang, The Evolution of Dilatonic Universe With A Double Exponential Potential, Astrophys.Space.Sci305(2006), 177-181
    [32]. Z.G.Huang, H.Q.Lu, Wei Fang, Dilaton Coupled Quintessence Model in the ω-ω' Plane, Int. J. Mod. Phys. D16 (2007), 1109-1117
    
    [33]. Z.G.Huang, Q.Q.Sun, Wei Fang and H.Q.Lu, Dilaton Coupled Quintessence Potentials,hep-th/06121761( accepted by Mod. Phys. Lett. A)
    [1]. P.Binetruy, Models of dynamical supersymmetry breaking and quintessence, Phys.Rev.D 60(1999), 063502
    
    [2]. Q.Shafi and C.Wetterich, Cosmology from higher-dimensional gravity, Phys.Lett.B129(1983), 387-391
    
    [3]. Q.Shafi and C.Wetterich, Inflation with higher dimensional gravity, Phys.Lett.B152(1985), 51-55
    
    [4]. C.Armendariz-Picon, V.Mukhanov and P.J.Steinhardt, Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration, Phys.Rev.Lett85(2000), 4438-4441
    
    [5]. C.Armendariz-Picon, V.Mukhanov and P.J.Steinhardt, essentials of k-essence, Phys.Rev.D63(2001), 103510
    
    [6]. A.Melchiorri, L.Mersini, C.J.Odman and M.Trodden, The state of the dark energy equation of state, Phys.Rev.D68(2003), 043509
    
    [7]. J.Garriga and V.F.Mukhanov, Perturbations in k-inflation, Phys.Lett.B458( 1999), 219-225
    
    [8]. C.Armendariz-Picon, T.Damour and V.Mukhanov, k-lnflation, Phys.Lett.B458(1999), 209-218
    
    [9]. J.M.Aguirregabiria, L.P.Chimento and R.Lazkoz, k-essence cosmologies, Phys.Rev.D70(2004), 023509
    
    [10]. E.P.Copeland, M.R.Garousi , M.Sami and S.Tsujikawa, What is needed of a tachyon if it is to be the dark energy, Phys.Rev.D71(2005), 043003
    
    [11]. G.Panotopoulos, Cosmological constraints on a dark energy model with a non-linear scalar field, astro-ph/0606249
    
    [12]. M.Malquarti, E.J.Copeland and A.R.Liddle, K-essence and the coincidence problem, Phys.Rev.D68(2003), 023512
    
    [13]. R.Lazkoz, Rigidity of cosmic acceleration in a class of k-essence cosmologies, Int.J.Mod.Phys.D14(2005), 635-642
    
    [14]. Y.G.Gong, A.Z.Wang and Y.Z.Zhang, Exact scaling solutions and fixed points for general scalar field, Phys.Lett.B636(2006), 286
    
    [15]. L.P.Chimento, Extended tachyon field, Chaplygin gas and solvable k-essence cosmologies, Phys.Rev.D69(2004), 123517
    
    [16]. J.M.Aguirregabiria, L.P.Chimento and R.Lazkoz, Quintessence as k-essence, Phys.Lett.B631(2005), 93-99
    
    [17]. E .Babichev, Global topological k-defects, Phys.Rev.D74 (2006) ,085004
    
    [18]. V.Mukhanov and A.Vikman, Enhancing the tensor-to-scalar ratio in simple inflation, JCAP 02(2006), 004
    
    [19]. A.Vikman, Inflation with large gravitational waves, astro-ph/0606033
    
    [20]. E.Babichev, V.Dokuchaev and Y.Eroshenko, Black hole mass decreasing due to phantom energy accretion, Phys.Rev.Lett. 93 (2004), 021102
    
    [21]. A.V.Frolov, Accretion of Ghost Condensate by Black Holes, Phys.Rev. D70 (2004), 061501
    
    [22]. S.Mukohyama, Black Holes in the Ghost Condensate, Phys.Rev.D71 (2005) 104019
    
    [23]. E.Babichev, V.Dokuchaev and Y.Eroshenko, The Accretion of Dark Energy onto a Black Hole, J.Exp.Theor.Phys.100 (2005), 528-538
    
    [24]. E.Babichev, V.Mukhanov and A.Vikman, Escaping from the black hole, JHEP 0609(2006), 061
    
    [25]. A.Vikman, Can dark energy evolve to the Phantom, Phys.Rev.D71(2005), 023515
    
    [26]. M.Z.Li, B.Feng and X.M.Zhang, A Single Scalar Field Model of Dark Energy with Equation of State Crossing -1, JCAP 0512 (2005), 002
    
    [27]. A.Anisimov, E.Babichev and A.Vikman, B-Inflation, JCAP 0506 (2005), 006
    
    [28]. X.F.Zhang and T.Qiu, Avoiding the Big-Rip Jeopardy in a Quintom Dark Energy Model with Higher Derivatives, Phys.Lett. B642 (2006), 187-191
    
    [29]. L.P.Chimento and A.Feinstein, Power-law expansion in k-essence cosmology, Mod.Phys.Lett.A19(2004), 761-768
    
    [30]. L.P.Chimento, Extended tachyon field, Chaplygin gas and solvable k-essence cosmologies, Phys.Rev.D69(2004), 123517
    
    [31]. N.Afshordi, D.J.H.Chung and G.Geshnizjani, Cuscuton: A Causal Field Theory with an Infinite Speed of Sound, hep-th/0609150
    
    [32]. N.Afshordi, D.J.H.Chung, M.Doran and G.Geshnizjani, Cuscuton Cosmology: Dark Energy meets Modified Gravity, astro-ph/0702002
    
    [33]. L.P.Chimento, M.Forte and R.Lazkoz, Dark matter to dark energy transition in k-essence cosmologies, Mod.Phys.Lett.A20(2005), 2075
    [34]. R.J.Scherrer, Purely kinetic k-essence as unified dark matter, Phys.Rev.Lett 93(2004), 011301
    
    [35]. M.Novello, M.Makler, L.S.Werneck and C.A.Romero, Extended Bom-Infeld Dynamics and Cosmology, Phys.Rev.D71(2005), 043515
    
    [36]. T.Padmanabhan and T.R.Choudhury, Can the clustered dark matter and the smooth dark energy arise from the same scalar field, Phys.Rev.D66(2002), 081301
    
    [37]. T.Buchert, J.Larena and J.M.AIimi, Correspondence between kinematical backreaction and scalar field cosmologies - the "morphon field", Class.Quant.Grav.23(2006), 6379-6408
    
    [38]. A.Yu.Kamenshchik, U.Moschella and V.Pasquier, An alternative to quintessence, Phys.Lett.B511(2001), 265-268
    
    [39]. N.Bilic, G.B.Tupper and R.D.Viollier, Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas, Phys.Lett.B535 (2002), 17-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700