杀螨剂唑螨酯对牙鲆及其鳃细胞系的毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
唑螨酯是日本在二十世纪九十年年代开发的一种新型吡唑类杀螨剂,由于其具有高选择性杀螨作用,在世界各国农业生产中的使用越来越广泛。对唑螨酯的代谢和残留研究表明唑螨酯在土壤和水体中具有较长的残留期,而且与其作用机理相似的农药均显示对鱼类高毒,并且与人类帕金森综合征有密切关系。因此唑螨酯对水体的污染以及对水生生物的毒性和人类健康的影响也越来越受到关注。本文采用了牙鲆活体及其鳃细胞系FG-9307作为体内外检测体系,系统研究了唑螨酯对于牙鲆这种海洋经济鱼类代表物种的急性毒性作用,并初步探讨了牙鲆及其鳃细胞系这两种体内外检测体系对污染物毒性检测的相关性。
     本研究首先探讨了唑螨酯对FG细胞系的体外急性毒性作用。研究发现:(1)三种检测方法测定的唑螨酯对FG细胞的48h IC50介于0.48-0.51μmol/L之间,96h IC50介于0.89-1.25μmol/L之间,说明唑螨酯对于体外培养鱼类细胞系具有毒性作用;同时也说明牙鲆鳃细胞系对于唑螨酯毒性作用比较敏感;(2)唑螨酯在0.1-30μmol/L浓度范围内对FG细胞生长具有明显抑制作用,并引起细胞形态明显改变;(3)唑螨酯影响了细胞抗氧化系统活性以及超氧阴离子的含量。经唑螨酯处理后的FG细胞,超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPX)和过氧化物酶(CAT)的活性均受到显著抑制,而超氧阴离子的含量明显升高。
     其次,本研究通过对牙鲆幼体LC50测定、肝脏抗氧化酶系统活性检测以及组织化学染色等研究方法,探讨了唑螨酯对牙鲆体内急性毒性作用。研究发现:(1)唑螨酯对牙鲆幼体48h和96h LC50分别为28.77 nmol/ L和11.74 nmol/ L;(2)唑螨酯影响了牙鲆肝脏抗氧化系统活性。肝脏抗氧化酶SOD、CAT和GPX活性在唑螨酯作用下出现明显的升高,随后又降低至低于正常的水平;(3)唑螨酯还能够造成牙鲆鳃、肝脏等组织器官的急性组织结构损伤,影响组织器官正常功能。
     最后,本研究对本实验室近年采用FG细胞系及玫瑰无须靶和牙鲆作为体内外毒性检测体系开展的环境污染物毒性研究数据资料进行了汇总分析,初步探讨了FG细胞系体外毒性与体内毒性检测结果之间的相关性。分析结果表明:体外毒性检测体系对环境污染物毒性检测敏感度低于体内检测体系,目前研究资料尚不能对牙鲆体内外检测体系的相关性关系做出明确判断,需要更多数据资料支持。
     总之,本研究表明唑螨酯对于牙鲆显示出高毒性。牙鲆及其鳃细胞系在近年来被越来越多应用于环境污染物毒性检测中,在本实验室开展的研究中也显示出对于环境污染物具有较高的敏感性,说明牙鲆及其鳃细胞系能够很好地反映环境污染物对海洋鱼类的体内外毒性效应。这对牙鲆及鳃细胞系作为环境污染物对海洋鱼类污染检测的模式动物提供了很好的理论依据。
Fenpyroximate is a kind of mitochondrial electron transport inhibitors and acaricide, which have been developed by Japan from 1990s’, and now has been used more and more widely all over the world because of its high selective acaricide effect. Studies on the toxic metabolism and remaining of fenpyroximate in the environment show that, fenpyroximate could remain in soil and water for a relatively long period, and all the pesticides which have the same toxic mechanism to fenpyroximate show high toxicity to fish, and are closely related to human Parkinson’s Disease. So more and more attention has been paid to the toxicity of fenpyroximate on water environment, aqueous organisms, and human health. In this study, Flounder Paralichthy olivaceus and its gill cell line FG -9307 were selected as in vitro and in vivo testing systems, acute toxicity of fenpyroximate to this economical marine fish species was investigated, and the correlation of toxicities between these two testing systems were also discussed .
     In vitro toxicity of fenpyroximate to FG cells was investigated at first. The results showed that: (1) 48h IC50 tested by three methods was 0.48-0.51μmol/L, and 96h IC50 was 0.89-1.25μmol/L, indicating that fenpyroximate was toxic to in vitro fish cells, or FGl cells were highly sensitive to fenpyroximate; (2) fenpyroximate showed obvious inhibition effect on the proliferation of FG cells in the concentration range from 0.1 to 30μmol/L, and can cause FG cells obvious morphological changes; (3) fenpyroximate affected the activities of antioxidant enzyme system and the concentration of superoxide anion in FG cells. FG cells exposed to fenpyroximate exhibited prominent inhibition on the enzyme activities of SOD, CAT and GPX, and obvious increase of the concentration of superoxide anion in FG cells.
     Second, the in vivo toxicity of fenpyroximate to flounder was investigated by assay of the antioxidant enzyme activities and histochemistry examination. The results showed that, (1) 48 h and 96 h LC50 of fenpyroximate to young flounder were 28.77 nmol/ L and 11.74 nmol/ L, respectively; (2) fenpyroximate influenced r the antioxidation enzyme activities of flounder liver. the activities of SOD, CAT and GPX in the liver of flounder exposed to fenpyroximate increased obviously at the first several exposure hours and then were inhibited to be a level lower than that of control; (3) fenpyroximate can cause obvious damages to the structures of gill and liver of exposed flounder.
     In the end, we also analyzed the results of the toxicities of environmental pollutants using FG cell line, rosy barb(Puntius conchonius) and flounder as in vitro and in vivo toxicity testing systems, which have been carried out in our lab and investigated the correlation between in vitro and in vivo bioassay systems. The results indicated that the in vivo toxic testing system is more sensitive than in vitro system, and more data are needed to make a conclusion on the correlation of in vitro (FG cells) and in vivo (flounder) toxicity testing system
引文
[1] Anderson S, Sadinski W, Shugart L, Brussard P, Depledge M, Ford T, Hose J, Stegeman J, Suk W, Wirgin I. Genetic and molecular ecotoxicology: A research framework. Environ. Health Perspect, 1994, 102: 3– 8
    [2] Anders Goks?yr, Jonny Beyer, Eliann Egaas, Bj?rn Einar Gr?svik, Ketil Hylland, Morten Sandvik and Janneche Utne Skaare. Biomarker responses in flounder (Platichthys flesus) and their use in pollution monitoring Mar Pollut Bull, 1996, 33(126) : 36-45.
    [3] Argelia Casta?o, María JoséGómez-Lechón. Comparison of basal cytotoxicity data between mammalian and fish cell lines: A literature survey. Toxicology in Vitro. 2005, 19, 695–705.
    [4] Araujo CS, Marques SA, Carrondo MJ, Goncalves LM. In vitro response of the brown bullhead catfish (BB) and rainbow trout (RTG-2) cell lines to benzo[a]pyrene. Sci. Total Environ., 2000, 247: 127–35.
    [5] Babich, H., Borenfreund, E. Cytotoxicity and genotoxicity assays with cultured fish cells: A review. Toxicology in Vitro. 1991,5: 91–100.
    [6] Babich, H., Rosenberg, D.W., Borenfreund, E. In vitro cytotoxicity studies with the fish hepatoma cell line, PLHC-1 (Poeciliopsis lucida). Ecotoxicology and Environmental Safety . 1991, 21: 327–336.
    [7] Babich H., Goldstein S.H., Borenfreund E. In vitro cyto- and genotoxicity of organomercurials to cells in culture. Toxicol. Lett. 1990, 50: 143-149.
    [8] Babich, H., Borenfreund, H. In vitro cytotoxicity of metals to bluegill (BF-2) cells. Archives of Environmental Contamination and Toxicology. 1986 15: 31–37.
    [9] Babich H., Borenfreund E. Fethead minnow FHM cells for use in in vitro cytotoxicity assays of aquatic pollutants. Ecotoxicol. Environ. Saf. 1987b, 14: 78–87
    [10] Babich H., Borenfreund E. In vitro cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. Environ. Res., 1987a, 42: 229–237
    [11] Bieberstein U, Braunbech T. Light and scanning election mictoscopic cytopathology of 3,5-dichlorophenol in the permanent fish cell line RTG-2. Ecotoxicol Environ Saf., 1998, 41: 298–306
    [12] Bols, N.C., Boliska, S.A., Dixon, D.G., Hodson, P.V., Kaiser, K.L.E. The use of fish cells cultures as an indication of contaminant toxicity to fish. Aquatic Toxicology .1985,6: 147–155.
    [13] Brandao, J.C., Bohets, H.H.L., van De Vyver, I.E., Dierickx, P.J. Correlation between the in vitro cytotoxicity to cultured fathead minnow fish cells and fish lethality data for 50 chemicals. Chemosphere . 1992, 25: 553–562.
    [14] Broeg K, K?hler A, Westernhagen H. Disorder and recovery of environmental health monitored by means of lysosomal stability in liver of European flounder (Platichthys flesus L.). Mar Environ Res. 2002 Sep-Dec, 54(3-5): 569-73.
    [15] Broeg K, Lehtonen KK. Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Mar Pollut Bull. 2006, 53(8-9):508-22..
    [16] Brüschweiler, B.J., Würgler, F.E., Fent, K., 1995. Cytotoxicity in vitro of organotin compounds to fish hepatoma cells PLHC-1 (Poeciliopsis lucida). Aquatic Toxicology 32, 143–160.
    [17] Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT. Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis. 2006, 22(2): 404-20.
    [18] Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000, Dec, 3(12):1301-6.
    [19] Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT., Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis. 2006 May, 22(2): 404-20.
    [20] Bieberstein U, Braunbech T. Light and scanning election mictoscopic cytopathology of 3,5-dichlorophenol in the permanent fish cell line RTG-2. Ecotoxicol Environ Saf., 1998, 41: 298–306.
    [21] Borenfreund E., Puerner J.A.. Toxicity determined in vitro by morphological alterations and neural red absorption. Toxicol. Lett. 1985a, 24:119-124.
    [22] Borenfreund E., Puerner J.A.. A simple quantitative procedure using monolayer cultures for cytotoxicity assays. J. Tiss. Cult. Meth. 1985b, 9:7-9.
    [23] Borenfreund E, Bendich A. In vitro demonstration of Mallory body formation in liver cells from rats fed diethylnitrosamine. Lab Invest. 1978 Mar, 38(3) :295-303
    [24] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-age binding. Anal. Biochem. 1976, 72: 248-254.
    [25] Bieberstein U., Braunbech T. Light and scanning election microscopic cytopathology of 3,5-dichlorophenol in the permanent fish cell line RTG-2. Ecotoxicol Environ Saf, 1998, 41: 298-306.
    [26] Briischweiler B.J., Friedrich E. Wiirgler et al. Cytotoxicity in vitro of organotin compounds to fish hepatoma cells PLHC-1 (Poeciliopsis lucida) .Aquatic Toxicology. 1995,32:143-160.
    [27] Bury NR, Jie L, Flik G, Lock RAC, Bonga SEEW. Cortisol protectes against copper induced nedcrosis and promotes apoptosis in fish gill cholride cells in vitro. Aquat. Toxicol., 1998, 40: 193–202.
    [28] Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, Casida JE. Rotenone, deguelin, their metabolites, and the rat model of Parkinson's disease. Chem Res Toxicol. 2004 Nov, 17(11): 1540-8
    [29] Castano, A., Vega, M.M., Tarazona, J.V. Acute toxicity of selected metals and phenols on RTG-2 and CHSE-214 fish cell line. Bulletin of Environmental Contamination and Toxicology . 1995, 55: 222–229.
    [30] Castano, A., Cantarino, M.J., Castillo, P., Tarazona, J.V. Correlations between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere . 1996.32: 2141–2157.
    [31] Cristina Foss M. i, Letizia Marsili, Claudio Leonzio, Giuseppe Notarbartolo Di Sciara, Margherita Zanardelli and Silvano Focardi. The use of non-destructive biomarker in Mediterranean cetaceans: Preliminary data on MFO activity in skin biopsy Mar Pollut Bull, 1992, 24(9) : 459-461.
    [32] Dayeh VR, Grominsky S, DeWitte-Orr SJ, Sotornik D, Yeung CR, Lee LEJ, Lynn DH, Bols NC. Comparing a ciliate and a fish cell line for their sensitivity to several classes of toxicants by the novel application of multiwell filter plates to Tetrahymena. Research in Microbiology, 2005, 156: 93–103.
    [33] Depledge M. H. Aagaard A. and Gy?rk?s P. Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers Mar Pollut Bull, 1995,31 (123) : 19-27.
    [34] Dierickx, P.J. Comparison between fish lethality data and the in vitro cytotoxicity of lipophilic solvents to cultured fish cells in a two-compartment model. Chemosphere. 1993a, 27: 1511–1518.
    [35] Dierickx, P.J. Correlation between the reduction of protein content in cultured FHM fish cells and fish lethality data. Toxicology in Vitro. 1993b, 7, 527–530.
    [36] Dierickx, P.J., van de Vyer, I. Correlation of the neutral red uptake inhibition assay ofcultured fathead minnow fish cells with fish lethality test. Bulletin of Environmental Contamination and Toxicology. 1991, 46, 649–653.
    [37] Dierickx, P.J., Bredael-Rozen, E. Correlation between the in vitro cytotoxicity of inorganic metal compounds to cultured fathead minnow fish cells and the toxicity to Daphnia magna. Bulletin of Environmental Contamination and Toxicology. 1996, 57: 107–110.
    [38] Fernández-Alba A, Guil L H, López G D, Chisti Y. Toxicity of pesticides in wastewater: a comparative assessment of rapid bioassay. Analytica Chimica Acta, 2001, 426: 289–301.
    [39] Ferreira M, Antunes P, Gil O, Vale C, Reis-Henriques MA. Organochlorine contaminants in flounder (Platichthys flesus) and mullet (Mugil cephalus) from Douro estuary, and their use as sentinel species for environmental monitoring. Aquat Toxicol. 2004 Sep 20, 69(4): 347-57
    [40] Fent K, Hunn J. Cytotoxicity of organic environmental chemicals to fish liver cells (PLHC-1). Mar. Environ. Res. 1996, 41: 377–382
    [41] Fowle, J R 3rd and K Sexton. EPA priorities for biologic markers research in environmental health.Environ Health Perspect, 1992, 98: 235-241.
    [42] Fukami, H. & Nakajima, M. in Naturally Occurring Insecticides, eds. Jacobson, M. & Crosby, D. G. (Dekker, New York). 1971, 71–97.
    [43] Galicia, H. & Wyss-Benz, M. 14C-fenpyroximate (NNI-850) [pyrazole labeled]: Plant metabolism study in field grown apple. RCC Umweltchemie AG, Switzerland. Rep. No. RCC-274961, 1992.Unpublished.
    [44] Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat Disord. 2003 Aug, 9 Suppl 2:S59-64.
    [45] Greenamyre JT, Sherer TB, Betarbet R, Panov AV. Complex I and Parkinson's disease. 2001 Sep-Nov, 52(3-5):135-41.
    [46] Grinwis GC, Vethaak AD, Wester PW, Vos JG. Toxicology of environmental chemicals in the flounder (Platichthys flesus) with emphasis on the immune system: field, semi-field (mesocosm) and laboratory studies. Toxicol Lett. 2000 Mar 15, 112-113:289-301.
    [47] Grinwis GC, van den Brandhof EJ, Engelsma MY, Kuiper RV, Vaal MA, Vethaak AD, Wester PW, Vos JG. Toxicity of PCB-126 in European flounder (Platichthys flesus) with emphasis on histopathology and cytochrome P4501A induction in several organ systems. Arch Toxicol. 2001 Apr, 75(2):80-7.
    [48] Gülden, M,Hasso Seibert. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Aquatic Toxicology. 2005, 72: 327–337.
    [49] Gülden, M., M?rchel, S., Seibert, H. Factors influencing nominal effective concentrations ofchemical compounds in vitro: cell concentration. Toxicol. In Vitro. 2001, 15: 233–243.
    [50] Gülden, M., M?rchel, S., Tahan, S., Seibert, H.. Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro. Toxicology. 2002, 175: 201–213.
    [51] Hamza Chaffai A. et al. The potential use of metallothionein in the clam Ruditapes decussates as a biomarker of in situ metal exposure. Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol. 2000, 127(2):185-197.
    [52] Hawkes JW. The effects of xenobiotics on fish tissues: morphological studies. Fed Proc. 1980 Dec, 39(14):3230-6.
    [53] Heringa MB, Schreurs RHMM, Busser F, Van Der Saag PT,Van Der Burg B, Hermens JLM. Toward more useful in vitro toxicity data with measured free concentrations. Environ. Sci. Technol., 2004, 38: 6263–6270
    [54] H?glinger GU, Carrard G, Michel PP, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch EC. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. J Neurochem. 2003 Sep, 86(5):1297-307.
    [55] Isomaa B, Lilius H, Rabergh C. Aquatic toxicology in vitro: a brief review. ATLA, 1994, 22: 243–253
    [56] Izawa, Y., Hirano, A., Funayama. S. and Uchida, M. Metabolism of fenpyroximate (NNI-850) in citrus. Nihon Nohyaku, Japan. Rep. No.ILSR-M-90060A. 1990. Unpublished.
    [57] Kazuhiko Motoba, Hideo Nishizawa, Takashi Suzuki, Hiroshi Hamaguchi, Matazaemon Uchida, and Shunji Funayama, Species-Specific Detoxification Metabolism of Fenpyroximate, a Potent Acaricide. Pesticide Biochemistry and Physiology. 2000, 67: 73–84.
    [58] Kocan R.M., Landolt M.L., Sabo K.M. In vitro toxicity of eight mutagens/carcinogens for three fish cell lines. Bull Environ Contain Toxico. 1979, 23: 269-274
    [59] Kocan RM, Landolt ML, Bond J, Benditt EP. In vitro effect of some mutagens/carcinogens on cultured fish cells. Arch. Environ. Contam. Toxicol., 1981, 10: 663–671
    [60] Kocan R.M., Sabo K.M., Landolt M.L. Cytotoxicity/Genotoxicity: The application of cell culture techniques to the measurement of marine sediment pollution. Aquat Toxico1. 1985, 6: 165-177
    [61] Li, H.Y., Zhang, S.C.. In vitro cytotoxicity of the organophosphorus pesticide parathion to FG-9307 cells. Toxicol. In Vitro. 2001, 15(6): 643-647
    [62] Li H.Y and Zhang S.C. In Vitro Cytotoxicity of the Organophorus Insecticide Methylparathion to FG-9307, the Gill Cell Line of Flounder (Paralichtys Olivaceus). CellBiol Toxicol. 2002, 18:235-241
    [63] Li HY, Zhang SC. In vitro cytotoxicity of the organophosphorus insecticide methylparathion to FG-9307, the gill cell line of flounder (Paralichthys olivaceus). Cell Biol. Toxicol., 2003, 18:235–241
    [64] Lilius H, Isomaa B, Holmstr?m T. Acomparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and Daphnia magna. Aquat. Toxicol., 1994, 30: 47–60
    [65] Lyons BP, Stentiford GD, Green M, Bignell J, Bateman K, Feist SW, Goodsir F, Reynolds WJ, Thain JE. DNA adduct analysis and histopathological biomarkers in European flounder (Platichthys flesus) sampled from UK estuaries. Mutat Res. 2004 Aug 18, 552(1-2):177-86
    [66] Marion M, Denizeau F. Rainbow trout and human cells in culture for the evaluation of the toxicity of aquatic pollutants: a study with lead. Aquat. Toxicol. 1983, 3: 47–60
    [67] Minsik Kim, Cheolho Sim, Dongyoung Shin, Eunho Suh, Kijong Cho. Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Protection. 2006, 25: 542–548
    [68] Muňoz M, Cedeňo R , Rodr?ìguez J, Van der Knaap WPW, Mialhe E, Bachère E. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture. 2000, 191: 89–107
    [69] Napierska D, Podolska M. Biomarkers of contaminant exposure: results of a field study with flounder (Platichthys flesus) from the southern Baltic Sea.Mar Pollut Bull. 2005 Jul, 50(7):758-67.
    [70] Negherbohn, W. O. Handbook of Toxicology (Saunders, Philadelphia). 1959, Vol. III: 661–673.
    [71] Nishizawa, H., Nakayama, M., Nakano, A., Susuki, T. and Uchida, M. Hydrolysis of fenpyroximate in water. Nihon Nohyaku, Japan. Rep. No. ILSR-E-90056. 1990a. Unpublished.
    [72] Nishizawa, H., Hirano, A., Hasegawa, T., Susuki, T. and Uchida, M. Photodegradation of fenpyroximate in water. Nihon Nohyaku, Japan. Rep. No.ILSR-E-90-057A. 1990b. Unpublished.
    [73] Okumura Y, Yamashita Y, Isagawa S. Concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans, non-ortho polychlorinated biphenyls, and mono-ortho polychlorinated biphenyls in Japanese flounder, with reference to the relationship between body length and concentration. J Environ Monit. 2004 Mar, 6(3):201-8.
    [74] OECD. Fish, short-term toxicity test on embry and sac-fry stages. OECD Guideline forTesting of Chemical. OECD TG212, Paris, 1998
    [75] OECD. OECD Guideline for Testing of Chemicals: Fish, Embryo Toxicity Test with the Zebrafish (B. Rerio ). Paris: OECD TG212, 1996, 62–76
    [76] Pesticide residues in food 1995 evaluations Part II Toxicological & Environmental. IPCS, 1995
    [77] Qin Xiao; Shicui Zhang; Huarong Guo; Feng Su; Yuyan Xu .Nonylphenol Causes Decrease in Antioxidant Enzyme Activities, Increase in O2- Content, and Alteration in Ultrastructures of FG Cells, a Flounder (Paralichthys olivaceus) Gill Cell Line. Toxicology Mechanisms and Methods,. 2007,17, (3): 127– 134.
    [78] Rachlin J.W., and Perlmutter A. Fish cells in culture for study of aquatic toxicants. Water Res. 1968, 2: 409-414
    [79] Repetto G, Jos A, Hazen MJ, Molero ML, del Peso A, Salguero M, del Castillo P, Rodriguez-Vicente MC, Repetto M. A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicology in Vitro, 2001, 15: 503–509.
    [80] Pichardo S, Jos A, Zurita J, Salguero M, Camean AM, Repetto G. Toxic Effects Produced by Microcystins from a Natural Cyanobacterial Bloom and a Microcystis aeruginosa Isolated Strain on the Fish Cell Lines RTG-2 and PLHC-1. Archives of Environmental Contamination and Toxicology, 2006, 51:86-96
    [81] R?mbke, J. and M?llerfeld, J. Determination of degradation and metabolism in soil of pyrazole-14Cfenpyroximate. Battelle, Germany. Rep. No.BE-ME-107- 90-01-SAB1. 1992a. Unpublished.
    [82] Saito, H., Shigeoka, T. Comparative cytotoxicity of chlorophenols to cultured fish cells. Environmental Toxicology and Chemistry. 1994, 13: 1649–1650.
    [83] Saito, H., Iwami, S., Shigeoka, T. In vitro cytotoxicity of 45 pesticides to goldfish GF-Scale (GFS) cells. Chemosphere. 1991, 23: 525–537.
    [84] Saito, H., Koyasu, J., Shigeoka, T. Cytotoxicity of anilines and aldehydes to goldfish GFS cells and relationships with 1-octanol/ water partition coefficients. Chemosphere . 1993a, 27: 1553–1560.
    [85] Saito, H., Koyasu, J., Yoshida, K., Shigeoka, T., Koike, S. Cytotoxicity of 109 chemicals to goldfish GFS cells and relationships with 1-octanol/water partition coefficients. Chemosphere.1993b, 26: 1015–1028.
    [86] Saito, H., Koyasu, J., Shigeoka, T., Tomita, I.. Cytotoxicity of chlorophenols to goldfish GFS cells with the MTT and LDH assays. Toxicology in Vitro. 1994, 8: 1107–1112.
    [87] Saito, H., Shigeoka, T. Comparative cytotoxicity of chlorophenols to cultured fish cells.Environmental Toxicology and Chemistry . 1994, 13: 1649–1650.
    [88] Saxena, A. & McCann, D. Hydrolysis of pyrazole- 14C-fenpyroximate in buffered aqueous solutions. Batelle, USA. Rep. No.SC900192. 1992. Unpublished.
    [89] Schirmer K., Dixon D.G., Greenberg B.M., et al. Ability of 16 priority PAHs to be directively cytotoxic to a cell line from the rainbow trout gill. Toxicology, 1998, 127(1-3): 129-141
    [90] Schlacher TA, Mondon JA, Connolly RM. Estuarine fish health assessment: evidence of wastewater impacts based on nitrogen isotopes and histopathology. Mar Pollut Bull. 2007, Nov, 54(11):1762-76.
    [91] Segner, H. Cytotoxicity assay with fish cells as an alternative to the acute lethality assay with fish. ATLA. 2004, 32: 375–382.
    [92] Segner H. Fish cell lines as a tool in aquatic toxicology. In: Braunbeck, T., Hinton, D.E., Streit, B. (Eds.), Fish Ecotoxicology. Birkhǎuser Verlag, Basel, 1998:. 1–38
    [93] Segner H, Lenz D. Cytotoxicity assays with the rainbow trout R1 cell line. Toxicol In Vitro. 1993, 7: 537–540
    [94] Seibert H, M?rchel S, Gülden M. Factors influencing nominal effective concentrations of chemical compounds in vitro: serum albumin concentration. Toxicol. in Vitro. 2002, 16: 289–297
    [95] Sharp, D. E. Metabolism and disposition of [pyrazole-14C] NNI-850 in rats. Hazleton Laboratories America, Inc., USA. Rep. No. HLA 6283-102. 1991a. Unpublished.
    [96] Sharp, D. E.. Metabolism and disposition of [benzyl-14C] NNI-850 in rats. Hazleton Laboratories America, Inc., USA. Rep. No. HLA 6283-101. 1991b Unpublished.
    [97] Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. J Neurochem. 2007 Mar, 100(6):1469-79.
    [98] Sherer TB, Greenamyre JT. Oxidative damage in Parkinson's disease. Antioxid Redox Signal. 2005 May-Jun, 7(5-6):627-9.
    [99] Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci. 2003 Nov 26, 23(34):10756-64.
    [100] Sherer TB, Betarbet R, Greenamyre JT Environment, mitochondria, and Parkinson's disease. Neuroscientist. 2002 Jun, 8(3):192-7.
    [101] Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 2002 Aug 15,22(16):7006-15.
    [102] Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007 May 1, 82(2):94-109.
    [103] Solari, P., Dierickx, P.J. Correlation between fish lethality data and the cytotoxicity to cultured fish cells of lipophilic solvents emulsified by ultrasonication. Chemosphere. 1994, 28:1495–1501.
    [104] Shopsis C, Eng B. Rapid cytotoxicity testing using a semi-automated protein determination on cultured cells. Toxicol Lett. 1985 Jul, 26(1):1-8.
    [105] Todd B. Sherer, Ranjita Betarbet, Claudia M. Testa, Byoung Boo Seo,5 Jason R. Richardson, Jin Ho Kim, Gary W. Miller, Takao Yagi, Akemi Matsuno-Yagi, and J. Timothy Greenamyre. Mechanism of Toxicity in Rotenone Models of Parkinson's Disease . J Neurosci. 2003 Nov 26, 23(34):10756-64.
    [106] Todd B. Sherer, Jason R. Richardson, Claudia M. Testa, Byoung Boo Seo, Alexander V. Panov, Takao Yagi, Akemi Matsuno-Yagi, Gary W. Miller and J. Timothy. GreenamyreMechanism of toxicity of pesticides acting at complex I: relevanceto environmental etiologies of Parkinson’s disease. Journal of Neurochemistry. 2007, 100: 1469–1479
    [107] Tong, S.L., Li, H. and Miao, H.Z. The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture . 1997, 156: 327-333
    [108] Varanasi U, Stein JE, Nishimoto M, Reichert WL, Collier TK. Chemical carcinogenesis in feral fish: uptake, activation, and detoxication of organic xenobiotics. Environ Health Perspect. 1987 Apr, 71:155-70.
    [109] Vaes WHJ, Urrestarazu Ramos E, Hamwijk C, Van Holsteijn I, Blaauboer BJ, Seinen W, Verhaar, HJM, Hermens JLM. Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem. Res. Toxicol. 1997, 10: 1067–1072
    [110] William F., et al.Basic concept in the occupational health management of pesticide workers. Toxicology. 1994,91: 15-27.
    [111] Wolf K, Quimby MC. Established eurythermic line of fish cells in vitro. Science, 1962, 135: 1065–1066.
    [112] XU Yuyan,GUO Huarong ,XIAO Qin,su Feng,and YIN Licheng. In vitro Acute Cytotoxicity ofAbamectin to the Gill Cell Line ofFlounder Paralichthy olivaceus. Journal ofOcean University of China(Oceanic and Coastal Sea Research..2007, 6 (4): 369-372.
    [113] Zurita JL, Repetto G, Jos A, Del Peso A, Salguero M, López-Artíguez M, Olano D, Cameán A. Ecotoxicological evaluation of diethanolamine using a battery of microbiotests. Toxicology in Vitro, 2005, 19: 879–886.
    [114]范峰,王岩丽,杨微,李忠.农用杀虫剂综述(下). 2006.
    [115]张宗炳,樊德方,钱传范,施国涵.杀虫剂的环境毒理学.农业出版社,1989.240-265.
    [116]刘维屏.农药环境化学.化学工业出版社.2006.1-11
    [117]刘彦,李健,王群,刘淇.达氟沙星在健康和鳗弧菌感染牙鲆体内的药物代谢动力学比较.水产学报.2006,30(4):509-514.
    [118]吕庆,郑容梁。干旱及活性氧引起小麦膜脂过氧化及脱脂化。中国科学(C辑),1996,26(1):26-30.
    [119]单正军,陈祖义.农药对水生生物的污染影响及污染控制技术.2007.1-17.
    [120]林玉锁,农药环境污染调查与诊断技术。化学工业出版社,2002.
    [121]农药污染.资源与人居环境.2007,3,44-51.
    [122]张青,周国强.农药对我国农产品污染的现状及控制对策洛阳大学学报.2007,(2),46-49
    [123]黄剑,吴文君.新型杀虫剂的作用机制和选择毒性.贵州大学学报(自然科学版) 2004,V01.21(2),163-171.
    [124]苟中坤.。有机磷农药的匈曼反应。分析化学,1994,22(1):41-43.
    [125]潘元海,魏爱雪,赵国栋等。水中痕量有机磷农药的高效液相色谱/质谱分析。环境科学进展,1999,7(1):32-40.
    [126]曲克明,陈民山,马绍赛,辛福言.几种工业废水对牙鲆仔稚鱼的急性毒性及联合毒性作用.海洋水产研究.2002,23(4):40-45.
    [127]宋稳成,杨仁斌.现代生物技术与环境保护:现状与展望.云南环境科学, 2002, 21 (4) : 19– 221.
    [128]李国基,刘明星,张首临,包万友,顾宏堪.金属离子对牙鲆仔鱼的毒性影响.海洋学报.1996,18(6):34-39.
    [129]徐炜。高效液相色谱法测定环境水体中8种农药残留量。环境与健康杂志,2000,20(6):362-363.
    [130]王凡,赵元风,刘长发.铜对牙鲆鳃组织抗氧化酶的影响.江苏农业科学.2007,1:227-229.
    [131]王丹.环境生物技术与环境保护.安徽农学通报.2007, 13 (3) : 46– 48.
    [132]张曙明,田金改,高大兵等。中药中有机磷农药残留量的毛细管气相色谱测定方法.分析测试学报。1999,18(5):15-17.
    [133]张崇理. 1959.比目鱼2牙鲆P aralich thy s olivaceus的早期史发育.海洋与湖沼, 1 (4) : 71~89.
    [134]张仁斋,等. 1983.中国近海鱼卵与仔鱼.上海:上海科学技术出版社.
    [135]张孝威,何桂芬,沙学绅. 1965.牙鲆和条鳎卵子及仔、稚鱼的形态观察.海洋与湖沼, 7 (2) : 158~174.
    [136]宿烽.有机锡化合物和烟碱类杀虫剂对牙鲆鱼鳃细胞株(系)的毒性效应与作用机理研究。中国海洋大学博士论文,2005.6
    [137]许玉燕.阿维菌素类药物对玫瑰无须鲃及牙鲆鳃细胞系的毒性效应.中国海洋大学博士论文. 2006, 6.
    [138]肖勤。壬基酚对玫瑰无须鲃和牙鲆赛细胞系的毒性效应.中国海洋大学博士论文.2006,6
    [139]殷立成.丁草胺对牙鲆及其鳃细胞系毒性作用研究.中国海洋大学硕士论文. 2007,6.
    [140]万斌.生态毒理学中生物标志物研究进展.国外医学卫生学分册. 2000,27(2):110-113.
    [141]丁竹红,谢标,王晓蓉.生物标志物及其在环境中的应用农业环境保护.2002,21(5):465-470.
    [142]王海黎,陶澎.生物标志物在水环境研究中的应用.中国环境科学.1999,19(5):421-426.
    [143]周志俊,邬红梅.对氧磷酶及其多态性与意义的研究.劳动医学.1997, 14(3):180-182.
    [144]孔繁翔等环境生物学.高等教育出版社. 2000,70-72.
    [145]秦涛。环境致癌物风险评价和生物标记物研究.化学进展. 1997, 9(1):22-34.
    [146]吴志强.鱼类实验动物.生物学通报, 2003, 38: 20–22
    [147]马陶武,王子健.环境内分泌干扰物筛选和测试研究中的鱼类实验动物.环境科学学报, 2005, 25:135–140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700