内蒙古大青山地区早前寒武纪基底组成与演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古大青山地区是华北克拉通早前寒武纪基底的重要组成部分,也是华北克拉通基底岩石保留较好的区域之一。最新的区域地质调查成果表明,该区域早前寒武纪岩石地层发育齐全,主要由太古代花岗-绿岩地体、太古代麻粒岩-紫苏花岗岩地体以及早元古代孔兹岩组成。除此之外,在孔兹岩系中还发现了大量的早元古代变质火山岩及侵入岩。
     花岗-绿岩地体主要分布在大青山北麓的固阳-武川一带。红山子地区出露的花岗-绿岩岩石组合是其中的典型代表。红山子地区出露的太古代侵入岩主要由片麻状石英闪长岩、片麻状花岗闪长岩、片麻状斜长花岗岩以及片麻装花岗岩组成。地球化学特征表明,该区域的太古代侵入岩组合不仅包括典型的TTG岩石,还包括与俯冲作用有关的高镁闪长岩、赞岐岩类。另外,研究区还发现了可能代表同(后)碰撞阶段的高铝花岗岩。绿岩地体的岩石组成较为复杂,根据其组成,推测其是由太古代蛇绿岩残片及当时的岛弧火山岩共同变质而成。根据锆石年代学研究,红山子一带花岗-绿岩地体可能是一套2.55-2.4Ga期间板块俯冲-碰撞-后碰撞演化阶段的综合产物。
     太古代麻粒岩-紫苏花岗岩地体主要分布于大山北麓的西乌兰不浪地区。该区域岩石以穹窿构造形式产出,穹窿构造的核部岩石为紫苏花岗质片麻岩,麻粒岩系展布于穹形构造四周。岩石地球化学特征表明,紫苏花岗岩是麻粒岩深熔作用的产物。变质作用研究表明,该区域的麻粒岩-紫苏花岗岩不仅保留着代表逆时针等压降温P-T轨迹的矿物共生组合,还发现了代表顺时针恒温减压P-T轨迹的“白眼圈”结构。根据年代学研究,这些麻粒岩-紫苏花岗岩地体形成于~2.7-2.5Ga,变质作用为一连续的年代学记录,分布于~2.5-2.4Ga之间。根据年代学及变质作用特征分析,麻粒岩-紫苏花岗岩地体反映研究区在~2.55-2.4Ga是一个连续的演化过程,并且在演化过程中经历了岛弧模式的俯冲向弧陆碰撞或陆陆碰撞的转变。
     早元古代岩石单元主要产出在研究区南部的孔兹岩相带中,它们彼此之间关系密切。早元古代变质火山岩主要由斜长角闪岩、角闪斜长片麻岩、黑云角闪片麻岩、黑云片麻岩和长英片麻岩组成。地球化学特征显示其成因与大陆裂谷活动有关。年代学证据表明他们形成时间为~1980-1950Ma。
     早元古代侵入岩由一套具A-型花岗岩性质的侵入体及一套黑云角闪花岗岩组成。A型侵入体的形成与伸展作用有关,年代学证据表明他们的形成时间与早元古代变质火山岩基本同期。黑云角闪花岗岩形成于后期的一次陆内造山事件。
     早元古代孔兹岩为一套中高级变质地层,主要由榴云片麻岩、透辉片麻岩、大理岩三个岩石系列组成。地球化学特征表明孔兹岩系一套变质沉积地层。年代学研究表明孔兹岩系的碎屑物源主要由~2.0Ga和~2.55~2.4Ga两个时间段的岩石组成;而变质时代记录多在~1.95-~1.80Ga之间,并且发育~1.92Ga的超高温变质作用。超高温变质作用与孔兹岩系顺时针型“P-T”轨迹不同,表现为逆时针的变质作用演化。超高温变质作用多与基性辉长岩岩脉侵位相伴生,并被认为是区域伸展作用导致的软流圈地幔大规模上涌铁镁质岩浆板底垫拖作用的结果。
     超高温变质作用、裂谷性质的变质火山岩及A-型花岗岩性质的侵入体共同限定研究区在1.98-1.90Ga期间处于伸展的构造背景下,可能是一次大陆裂谷事件,根据孔兹岩中碎屑锆石的分布规律,裂谷事件可能在2.0Ga就已经开始。然而,孔兹岩最终却显示出与碰撞有关的顺时针P-T轨迹,并普遍发育近东西向的陡倾叶理。这些特征都暗示出孔兹岩系经历了南北向的挤压变形。因此我们判断在裂谷作用结束后有一期陆内造山作用,该期造山作用的时限应该大致与华北克拉通中部碰撞带的碰撞时间相同(1.85-1.8Ga)。
     上述研究表明,大青山地区从新太古代末期-早元古代末期应该经历了从“弧陆俯冲-陆陆碰撞-稳定克拉通-大陆裂谷-陆内造山”的连续演化历史。
Daqingshan Mountain, Inner Mongolia region is an important part of the EarlyPrecambrian basement of North China Craton, and one of the basement rocks to retainbetter areas. The regional geological survey results indicate that the region earlyPrecambrian rock is complete, mainly composed of Archaean granite-greenstoneterrane, Archean granulite-charnockite terrane and Early Proterozoic khondalite. Inaddition, the Department of khondalite also found a large number of early Proterozoicmetavolcanic rocks and intrusive rocks.
     Granite-greenstone terrane is mainly distributed in the vicinity of theDaqingshan the northern foot of Guyang-Wuchuan. Hongshanzi area exposed granite-greenstone is a typical representative. Hongshanzi Archean intrusive rocks aremainly composed of gneissic quartz diorite, gneissic granodiorite, gneissicplagiogranite and gneissic installed granite. Geochemical features indicate that theregion of Archean intrusive rocks includes not only typical TTG rocks, including thesubduction-related high-Mg diorite, Sanuki rocks. In addition, to also found highalumina granite may represent the same (after) collision stage. The rocks of thegreenstone terrane composed of more complex, according to its composition,suggesting that its Archean ophiolite fragments and island arc volcanic metamorphism.Zircon geochronology show that hongshanzi Granite-greenstone terrane is acomprehensive product of subduction-collision–after collision in2.55-2.4Ga.
     Archean granulite-charnockite terrane is mainly distributed in Xi Ulanbulang area in the northern foothills of the Daqingshan Mountain. The output of the rocks isdome constructed in the formation, the core rocks of the dome is granitic gneiss,granulite rock series cloth around the dome. The geochemical characteristics ofcharnockite indicate it is the product of granulite anatexis. Metamorphism studieshave shown that the region granulite-charnockite not only retained counterclockwiseisobaric cooling P-T path mineral assemblages, also found that the clockwisethermostat decompression P-T path of the “white eye socket” structure. According tothe chronological study of granulite-charnockite terrane, the protolith formed in2.7-2.5Ga and metamorphism as a continuous chronology recorded, distributed in2.5-2.4Ga. According to the analysis of the chronology and metamorphism, granulite-charnockite terrane, reaction in the study area is a continuous process of evolution inthe2.55-2.4Ga, and experience the evolution of the subduction of the island arc modeland transform to the arc-continent collision or continent-continent collision.
     The main outputs of the Early Proterozoic rock units in the study area in southernkhondalite band, the close relationship between them. Early Proterozoic metavolcanicrocks mainly composed of plagioclase amphibolite, hornblende plagioclase gneiss,biotite-hornblende gneiss, biotite gneiss and felsic gneiss. The geochemicalcharacteristics show that the metavolcanic rocks related to continental rift activity.Chronology evidence indicate that they formed in the~1980-1950Ma.
     Early Proterozoic intrusions include a set of A-type granite and a set of biotiteamphibolite granite. A-type granites indicated that they formed in the extensionalSystem. Chronological evidence indicated that their formation time is the same as theEarly Proterozoic metavolcanic. Biotite amphibolite granite formed in intracontinentalorogenic events in the late.
     Early Proterozoic khondalite is a senior metamorphic Stratum, mainly composedof garnet gneiss, diopside gneiss and marble, three rock series. Geochemical featuresindicate that the khondalite a metamorphic sedimentary strata. Geochronologicalstudies have shown that the source of khondalite series is of~2.0Ga and~2.55-2.4Ga two periods of rock; metamorphic age record more than~1.95-~1.80Ga anddevelopment~1.92Ga UHT metamorphism. Ultra-high temperature metamorphism is different with khondalite series clockwise “P-T” track, showing the evolution ofmetamorphism of the counter-clockwise. Ultra-high temperature metamorphism andmafic gabbro veins accompanied, and that is considered to be the regional extensioncaused by asthenospheric mantle on a large scale.
     Ultra-high temperature metamorphism, rift-related metavolcanic rocks andA-type granites limit the study area in~1.98-1.90Ga during extensional tectonicsetting, and is a continental rift event. According to khondalitethe distribution ofdetrital zircons, Rift Valley events may~2.0Ga has already begun. Khondalite series,however, eventually showing the collision-related clockwise P-T path, and generallydeveloped a steep EW foliation. These characteristics imply that the hole is herebyrock series experienced a north-south compressional deformation. Therefore, wedetermine an intracontinental orogenesis after the end of the rifting, and the time limitshould be consistent with the collision time of the Trans-North China Orogen(1.85-1.8Ga).
     These studies have shown that Daqingshan area experience continuous evolutioncfrom the arc-continent subduction-continental collision-stable craton-continentalrift–orogeny in late Neoarchean–late Paleoproterozoic.
引文
[1] Agrawal S, Guevara M, Verma S. Tectonic discrimination of basic and ultrabasicvolcanic rocks through log-transformed ratios of immobile trace elements.International Geology Review,2008,50:1057–1079
    [2] Andrew Glikson, John Vickers. The3.26–3.24Ga Barberton asteroid impactcluster: Tests of tectonic and magmatic consequences, Pilbara Craton, WesternAustralia. Earth and Planetary Science Letters,2006,241:11-20
    [3] Ayer J, Amelin Y, Corfu F, et al. Evolution of the southern Abitibi greenstone beltbased on U–Pb geochronology: autochthonous volcanic construction followed byplutonism, regional deformation and sedimentation. Precambrian Research,2002,115:63-95
    [4] Bastow Ian D, Thompson David A. Wookey James, et al. Precambrian platetectonics: Seismic evidence from northern Hudson Bay. Canada, Geology,2011,39:91-94
    [5] Batchelor R. A., Bowden P., Petrogenetic interpretation of granitoid rock seriesusing multicationic parameters. Chemical Geology.1985,48:43–55
    [6] Campbell I H, Griffiths R W, Hill R I. Melting in an Archaean mantle plumes:Heads it’s basalts, tail its komatiites. Nature,1989,339:697-699
    [7] Cawood Peter A. Precambrian plate tectonics: Criteria and evidence. GSA Today,2006,16:4-11
    [8] Connors KA, Page RW. Victorian Institute of Earth and Planetary Sciences,Department of Earth Sciences, Monash University Relationships betweenmagmatism, metamorphism and deformation in the western Mount Isa Inlier,Australia. Precambrian Research,1995,71:131-153
    [9] Corfu F, Hanchar J M, Hoakin, et al. Atlas of zorcon textures. In: Hanchar J M.&Honskin P W O.(eds) Zircon. Mineralogical Society of America, Washington,2003,53:469-500.
    [10]De La Roche H., Leterrier J., Grandclaude P., et al., A classification of volcanicand plutonic rocks using R1R2-diagram and major element analyses–itsrelationships with current nomenclature. Chemical Geology,1980,29:183–210
    [11]Debon F, Le F P,. A chemical–mineralogical classification of common plutonicrocks and associations. Transactions of the Royal Society of Edinburgh, EarthSciences.1983,73,135-149
    [12]Faure Michel, Trap Pierre, Lin Wei, et al. Polyorogenic evolution of thePaleoproterozoic Trans-North China Belt. Episodes,2007,30:96-106
    [13]Frost, B. R., Barnes, C. G., Collins, et al., A geochemical classification forgranitic rocks. Journal of Petrology,2001,42:2033–2048
    [14]Geng Y S, Liu F L, Yang C H.. Magmatic event at the end of the Archean in theeastern Hebei Province and its geological implications. Acta Geol. Sin.,2006,80:819-833
    [15]Grant M L, Wilde S A, Wu F Y, et al. The application of zirconcathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpretingdiscrete magmatic and high-grade metamorphic events in the North China Cratonat the Archean/Proterozoic boundary. Chem Geol.,2009,261:155-171
    [16]Hamilton Warren B. Archean magmatism and deformation were not products ofplate tectonics. Precambrian Research,1998,91:143-179
    [17]Harris N B W, Pearce J A, Tindle A G, Geochemical characteristics of collision-zone magmatism. In: Coward M P, Ries A C (eds) Collision Tectonics.,Geological Society London Special Publication,1986,19:67-81
    [18]Hastie, A. R., Kerr, A. C., Pearce, J. A., et al.,. Classification of altered volcanicisland arc rocks using immobile trace elements: development of the Th Codiscrimination diagram. Journal of Petrology,2007,48:2341-2357
    [19]Hickman A H. Two contrasting granite greenstone terranes in the Pilbara Craton,Australia: evidence for vertical and horizontal tectonic regimes prior to2900Ma.Precambrian Research,2004,131:153-172
    [20]Hickman A H. Two contrasting granite greenstone terranes in the Pilbara Craton,Australia: evidence for vertical and horizontal tectonic regimes prior to2900Ma.Precambrian Research,2004,131:153-172
    [21]Irvine, T. N., Baragar, W. R. A., A guide to the chemical classification of thecommon volcanic rocks. Canadian Journal of Earth Sciences,1971,8:523-548
    [22]Isley A E, Abbott D H. Plume related mafic volcanism and the deposition ofbanded iron formation. J Geophy Res.,1999,104:15461-15477
    [23]Karen A.C; Rodney W P. Relationships between magmatism, metamorphism anddeformation in the western Mount Isa Inlier, Australia. Precambrian Research,1995,71:131-153
    [24]Kerrich Robert, Polat Ali. Archean greenstone-tonalite duality: Thermochemicalmantle convection models or plate tectonics in the early Earth global dynamics?Tectonophysics,2006,415:141-165
    [25]Kerrich Robert, Polat Ali. Archean greenstone-tonalite duality: Thermochemicalmantle convection models or plate tectonics in the early Earth global dynamics?Tectonophysics,2006,415:141-165
    [26]Kerrich Robert, Polat Ali. Erratum to “Archean greenstone–tonalite duality:Thermochemical mantle convection models or plate tectonics?” Tectonophysics,2006,425:207-208
    [27]King Scott D. Archean cratons and mantle dynamics. Earth and Planetary ScienceLetters2005,234:1-14
    [28]Kr ner A, Cui W Y, Wang W Y, et al. Single zircon ages from high-grade rocks ofthe Jianping Complex, Liaoning Province, NE China. J. Asian Earth Sci.,1998,16:519-532
    [29]Kr ner A, Wilde S A, Li J H, et al. Age and evolution of a late Archean toPaleoproterozoic upper to lower crustal section in theWutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian EarthSciences,2005,24:577-595
    [30]Kusky Timothy M, Polat A. Growth of granite–greenstone terranes at convergentmargins, and stabilization of Archean cratons. Tectonophysics,1999,305:43-73
    [31]Kusky Timothy M, Polat Ali. Growth of granite–greenstone terranes atconvergent margins, and stabilization of Archean cratons. Tectonophysics,1999,305:43-73
    [32]Kusky Timothy M. Geophysical and geological tests of tectonic models of theNorth China Craton. Gondwana Research,2011,20:26–35
    [33]Kusky Timothy, Li Jianghai, Santosh M. The Paleoproterozoic North HebeiOrogen: North China craton's collisional suture with the Columbia supercontinent.Gondwana Research,2007,12:4–28
    [34]Kuskya Timothy M, Li Jianghai. Paleoproterozoic tectonic evolution of the NorthChina Craton. Journal of Asian Earth Sciences,2003,22:383-397
    [35]Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., A chemical classificationof volcanic rocks based on the total alkali–silica diagram. Journal of Petrology,1986,27:745–750
    [36]Le Maitre, R. W.. A Classification of Igneous Rocks and Glossary of Terms.Recommendations of the IUGS Commission on the Systematics of IgneousRocks. Oxford: Blackwell,1989
    [37]Liu X S, Jin W, Li S X, et al. Two types of Precambrian high-grademetamorphism, Inner Mongolia. China J. Metamorph. Geol.,1993,11:499-510
    [38]Lu L Z and Jin SQ. P-T-t paths and tectonic history of an Early Precambriangranulite facies terrane, Jining district, southeastern Inner Mongolia. China J.Metamorph. Geol.,1993,11:483-498
    [39]Ma M Z, Wan Y S, Santosh M, et al. Decoding multiple tectonothermal events inzircons from single rock samples: SHRIMP U-Pb data from the late NeoarcheanSanggan “Group” and related rocks of Daqingshan, North China Craton.Gondwana Research,2012
    [40]Ma X D, Guo J H, Chen L, et al. Re-Os isotopic constraint to the age of inkomatiites in the Neoarchean Guyang greenstone belt, North China Craton.Chinese Sci. Bull,2010,55:3197-3204
    [41]Maniar, P. D., Piccoli, P. M. Tectonic discriminations of granitoids. GeologicalSociety of America Bulletin,1989,101:635–643
    [42]Martin H, Moyen J F. Secular changes in TTG composit ion as markers of theprogressive cooling of the earth. Geology,2002,30:319-322
    [43]Martin H, Smithies R H, Rapp R, et al. An overview of adakite,tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships andsome implications for crustal evolution. Lithos,2005,79:1-24
    [44]Martin H. Adakitic magmas: Modern analogues of Archean granitoids. Lithos,1999,46:411-429
    [45]Martin J. Preface Archaean Tectonics2004: A review. Precambrian Research,2004,131:143-151
    [46]Meschede, M. A method of discriminating between different types of mid-oceanridge basalts and continental tholeiites with the Nb–Zr–Y diagram. ChemicalGeology,1986,56:207-218
    [47]Michael Sandiford, Roger Powell. Deep crustal metamorphism during continentalextension: modern and ancient examples. Earth and Planetary Science Letters,1986,79:151-158
    [48]Middlemost, E. A. K. Magmas and Magmatic Rocks. London: Longman.1985
    [49]Middlemost, E. A. K. Naming materials in the magma/igneous rock system.Earth-Sciences Reviews,1985,37:215–224.
    [50]Miyashiro A. Volcanic rock series in island arcs and active continental margins.American Journal of Science,1974,274:321–355.
    [51]Mullen, E. D. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocksof oceanic environments and its implications for petrogenesis. Earth andPlanetary Science Letters,1983,62:53–62
    [52]Parman S, Grove T, Dann J. A subduction origin for komatiites and cratonlithospheric mantle. South African J Earth Sci,2004,107:107-118
    [53]Pearce, J. A., Cann, J. R. Tectonic setting of basic volcanic rocks determinedusing trace element analyses. Earth and Planetary Science Letters,1973,19:290-300
    [54]Pearce, J. A., Harris, N. W., Tindle, A. G. Trace element discrimination diagramsfor the tectonic interpretation of granitic rocks. Journal of Petrology,1984,25:956–983
    [55]Pearce, J. A., Norry, M. J. Petrogenetic implications of Ti, Zr, Y, and Nbvariations in volcanic rocks. Contributions to Mineralogy and Petrology,1979,69:33-47
    [56]Pearce, T. H., Gorman, B. E., Birkett, T. C. The relationship between majorelement geochemistry and tectonic environment of basic and intermediatevolcanic rocks. Earth and Planetary Science Letters,1977,36:121-132
    [57]Peng P, GuoJH, Windley BF, et al. Halaqin volcano-sedimentary succession in thecentral-northern margin of the North China Craton: Products of LatePaleoproterozoic ridge subduction. Precambrian Research,2011,187:165-180
    [58]Peucat J J, Jahn B M. A precise zircon U-Pb age of tonalite from the Archaeangranite-greenstone belt in Qingyuan area, Northeast China. Paper Collection ofInternational Conference of Precambrian Crustal Evolution, Beijing.1986,3:222-229
    [59]Polat A, Robert K. Geodynamic processes, continental growth, and mantleevolution recorded in late Archean greenstone belts of the southern SuperiorProvince, Canada. Precambrian Research,2001,112:5-25
    [60]Polat Ali, Frei Robert. The origin of early Archean banded iron formations and ofcontinental crust, Isua, southern West Greenland. Precambrian Research,2005,138:151-175
    [61]Puchtel I S, Hofmann A W. Combined mantle plume-island arc model forformation of the2.9Ga Sumozero-Kenozero greenstone belt,SE Baltic Sheild:Isotope and trace element constraints. Geochimica et Cosmochimica Acta,1999,21:3579-3595
    [62]Santosh M, Assembling North China Craton within the Columbia supercontinent:The role of double-sided subduction, Precambrian Research,2010,178:149–167
    [63]Santosh M, Kusky T. Origin of paired high pressure–ultrahigh-temperatureorogens: a ridge subduction and slab window model. Terra Nova,2009,22:35-42
    [64]Santosh M, Liu D Y, Shi Y R, et al. Paleoproterozoic accretionary orogenesis inthe North China Craton: A SHRIMP zircon study,2011
    [65]Santosh M, Liu S J, Tsunogae T. Paleoproterozoic ultrahigh-temperaturegranulites in the North China Craton: Implications for tectonic models on extremecrustal metamorphism. Precambrian Research. in press
    [66]Santosh M, Liu S J, Tsunogaec T et al. Paleoproterozoic ultrahigh-temperaturegranulites in the North China Craton: Implications for tectonic models on extremecrustal metamorphism. Precambrian Research,2011
    [67]Santosh M, Sajeev K, Li J H. Extreme crustal metamorphism during Columbiasupercontinent assembly: Evidence from North China Craton, GondwanaResearch,2006,10:256-266
    [68]Santosh M, Tsunogae T, Li J H, et al. Discovery of sapphirine–bearing Mg–Algranulites in the North China Craton: implications for Palaeoproterozoic ultrahightemperature metamorphism. Gondwana Res,2007,11:263-285
    [69]Santosh M, Wan Y S, Liu D Y, et al. Anatomy of zircons from an ultra-hot orogen:The amalgamation of North China Craton within Columbia supercontinent.Journal of Geology,2009,117:429-443
    [70]Santosh M, Wilde S A, Li J H. Timing of Palaeoproterozoicultrahigh–temperature metamorphism in the North China Craton: Evidence fromSHRIMP U-Pb zircon geochronology. Precambrian Res.2007,159:178-196
    [71]Santosh M. Assembling North China Craton within the Columbia supercontinent:The role of double-sided subduction. Precambrian Research,2010,178:149-167
    [72]Santosh M. Sajeev K. Li JH. Extreme crustal metamorphism during Columbiasupercontinent assembly: Evidence from North China Craton. GondwanaResearch,2006,10:256-266
    [73]Santosha M, Zhao Dapeng, Kusky Timothy. Mantle dynamics of thePaleoproterozoic North China Craton: A perspective based on seismictomography. Journal of Geodynamics,2010,49:39-53
    [74]Santosha M, Zhao Dapeng, Kusky Timothy. Mantle dynamics of thePaleoproterozoic North China Craton: A perspective based on seismictomography. Journal of Geodynamics,2010,49:39-53
    [75]Santosha M. Assembling North China Craton within the Columbia supercontinent:The role of double-sided subduction, Precambrian Research,2010,178:149-167
    [76]Shervais, J. W. Ti–V plots and the petrogenesis of modern and ophiolitic lavas.Earth and Planetary Science Letters,1982,59:101–118
    [77]Smithies R H, Champion D C, Van Kranendonk M J. Modern-style subductionprocesses in the Mesoarchaean: geochemical evidence from the3.12Ga Whundointra-oceanic arc. Earth and Planetary Science Letters,2005,231:221-237
    [78]Smithies R H, Champion D C. The Archaean high-Mg diorite suite: Links toTonalite-Trondhjemite-granodiorite magmatism and implications for earlyArchaean crustal growth. J Petrol,2000,41:1653-1671
    [79]Smithies R H, Championb D C, Cassidy K F, Formation of Earth’s earlyArchaean continental crust. Precambrian Research,2003,127:89-101
    [80]Smithies R H, Van Kranendonk M J, Champion D C. It started with a plume–early Archaean basaltic proto-continental crust. Earth and Planetary ScienceLetters,2005,238:284-297
    [81]Smithies R H, Van Kranendonk M J, Champion D C. The Mesoarcheanemergence of modern-style subduction. Gondwana Research,2007,11:50-68
    [82]Smithiesa R H, Champion D C. Van Kranendonk M J. Modern-style subductionprocesses in the Mesoarchaean: geochemical evidence from the3.12Ga Whundointra-oceanic arc. Earth and Planetary Science Letters,2005,231:221-237
    [83]Stein M, Goldstein S L. From plume head to continental lithosphere in theArabian-Nubianshied. Nature,1996,382:773-778
    [84]Stephen F Foley, Stephan Buhre, Dorrit E. Jacob. Evolution of the Archaean crustby delamination and shallow subduction. Nature,2003,421:249-252
    [85]Stern Robert J. Evidence from ophiolites, blueschists, and ultrahigh-pressuremetamorphic terranes that the modern episode of subduction tectonics began inNeoproterozoic time. Geology,2005,33:557-560
    [86]Streckeisen, A. Classification and nomenclature of plutonic rocks. GeologischeRundschau,1974,63:773–786
    [87]Streckeisen, A. IUGS Subcommission on the Systematics of Igneous Rocks:Classification and nomenclature of volcanic rocks, lamprophyres, carbonatitesand melilitic rocks; recommendation and suggestions. Neues Jahrbuch fürMineralogie, Abhandlungen,1978,134:1–14
    [88]Streckeisen, A., Le M. R. W. A chemical approximation to the modal QAPFclassification of the igneous rocks. Neues Jahrbuch für Mineralogie,Abhandlungen,1979,136:169–206.
    [89]Sylvester P J. Post-collisional alkaline granites. Journal of Geology,1989,97:261–280
    [90]Tackley Paul J. Dynamics and evolution of the deep mantle resulting fromthermal, chemical, phase and melting effects. Earth Science Reviews, in press,Available online10October2011
    [91]Tsunogae T, Liu S J, Santosh M, et al. Ultrahigh-temperature metamorphism inDaqingshan, Inner Mongolia Suture Zone, North China Craton. GondwanaResearch,2011,20:36-47
    [92]Tsunogae T, Liu SJ. Santosh M. Ultrahigh-temperature metamorphism inDaqingshan, Inner Mongolia Suture Zone, North China Craton. GondwanaResearch,2011:36-47
    [93]Van Kranendonk Martin J, Collins W J, Hickmana Arthur. Critical tests of verticalvs. horizontal tectonic models for the Archaean East Pilbara Granite–GreenstoneTerrane, Pilbara Craton, Western Australia. Precambrian Research,2004,131:173–211
    [94]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pbmicroanalysis of amphibole to granulite facies zircon: geo-chronology of theIvren Zone (Southern Alps). Contrib Mineral Petrol,1999,134:380-404
    [95]Verma S P, Guevara M, Agrawal S. Discriminating four tectonic settings: Fivenew geochemical diagrams for basic and ultrabasic volcanic rocks based onlog-ratio transformation of major-element data. Journal of Earth System Science2006,115:485-528
    [96]Villaseca, C., Barbero, L. Herreros, V. A re-examination of the typology ofperaluminous granite types in intracontinental orogenic belts. Transactions of theRoyal Society of Edinburgh, Earth Sciences,1998,89:113-119
    [97]Warren B. Hamilton. An Alternative EARTH. GSA today,2003,11:4-8
    [98]Whalen J, B., Currie K. L. Chappell B. W. A-type granites: geochemicalcharacteristics, discrimination and petrogenesis. Contributions to Mineralogy andPetrology,1987,95:407-419
    [99]Wilde Simon A. Valley John W, Peck William H, et al. Evidence from detritalzircons for the existence of continental crust and oceans on the Earth4.4Gyr ago.Nature,2001,409:174-178
    [100] Williams I S. U-Th-Pb geochronology by ion microprobe. In:Mickibben MA,Shanks Ⅲ WC and Ridley WI(eds.).Applications of Mirco AnalyticalTechniques to Understanding Mineraling Process. Reviews Econ. Geol.,1998,7:1-35
    [101] Wilson A H, Shirey S B, Carlson R W. Archaean ultra-depleted komatiitesformed by hydrou melting of cratonic mantle. Nature,2003,423:858-861
    [102] Winchester, J. A., Floyd, P. A. Geochemical discrimination of differentmagma series and their differentiation products using immobile elements.Chemical Geology,1977,20:325-343
    [103] Wood, D. A. The application of a Th–Hf–Ta diagram to problems oftectonomagmatic classification and to establishing the nature of crustalcontamination of basaltic lavas of the British Tertiary volcanic province. Earthand Planetary Science Letters,1980,50:11-30
    [104] Xia Xiaoping, Sun Min, Zhao Guochun, et al. LA-ICP-MS U–Pbgeochronology of detrital zircons from the Jining Complex, North China Cratonand its tectonic significance. Precambrian Research,2006,144:199-212
    [105] Yang J H, Wu I T, Wilde S A, et al. Petrogenesis and geodynamics of LateArchean magmatism in the eastern North China Craton: Geochronological,geochemical and Nd-Hf isotopic evidence. Precambrian Res.,2008,167:125-149
    [106] Zhai M G, Bian A G, Zhao T P, The amalgamation of the supercontinent ofNorth China Craton at the end of Neo-Archaean and its breakup during latePalaeoproterozoic and Meso-Proterozoic. Science in China (Series D).2000,43:219-231
    [107] Zhai M G, Santonsh M, The early Precambrian odyssey of the North ChinaCraton: A synoptic overview. Gondwana Research,2011,20:6-25
    [108] Zhai Mingguo, Guo Jinghui, Li Yonggang, et al. Two linear granite belts inthe central-western North China Craton and their implication for LateNeoarchaean-Palaeoproterozoic continental evolution. Precambrian Research,2003,127:267-283
    [109] Zhai Mingguo, Guo Jinghui, Liu Wenjun. Neoarchean to Paleoproterozoiccontinental evolution and tectonic history of the North China Craton: a review.Journal of Asian Earth Sciences,2005,24:547-561
    [110] Zhai Mingguo, Liu Wenjun. Palaeoproterozoic tectonic history of the NorthChina craton: a review. Precambrian Research,2003,122:183-199
    [111] Zhao G C, Wilde S A, Cawood P A, et al. Tectonothermal history of thebasement rocks in the western zone of the North China Craton and its tectonicimplications. Tectonophysics,1999,310:37-53
    [112] Zhao G C. When did plate tectonics begin on the north china craton? insightsfrom metamorphism (in Chinese). Earth Sci Front,2007,14:19-32
    [113] Zhao Guochun, Wilde S A, Cawood P A, Archean blocks and theirboundaries in the North China Craton: lithological, geochemical, structural andP–T path constraints and tectonic evolution. Precambrian Research,2001,107:45-73
    [114] Zhao Guochun, Wilde Simon A, Zhang Jian. New evidence from seismicimaging for subduction during assembly of the North China craton: comment.Geology,2010,38: e206
    [115] Zheng J P, Griffin W L, O'Reilly S Y, et al. U-Pb and Hf-isotope analysis ofzircons in mafic xenoliths from Fuxian kimberlites: Evolution of the lower cmstbeneath the North China craton. Contrib. Mineral. Petrol.,2004,148:79-103
    [116] Zheng Tianyu, Zhao Liang, Zhu Rixiang. New evidence from seismicimaging for subduction during assembly of the North China craton. Geology,2009,37:395-398
    [117] Zheng Tianyu, Zhao Liang, Zhu Rixiang. New evidence from seismicimaging for subduction during assembly of the North China craton: reply.Geology,2010,38: e207
    [118] Zhu R X, Zheng T Y. Destruction geodynamics of the North China Cratonand its Paleoproterozoic plate tectonics. Chinese Sci Bull,2009,54:1950-1961
    [119]陈亮.固阳绿岩地体的地球化学和年代学.博士后出站报告,北京:中国科学院地质与地球物理研究所,2007
    [120]邓晋福,莫宣学,肖庆辉,等.地质事件序列与造山过程的pTt轨迹.岩石矿物学杂志,2002,21:336-342
    [121]董春燕.内蒙古大青山地区孔兹岩系及地壳演化—锆石SHRIMP年代学和地球化学制约.博士后出站报告,北京:中国地质科学院,2009
    [122]郭敬辉,翟明国,李永刚,等.华北太古宙高压基性麻粒岩的两类PT轨迹及其构造意义:矿物化学和变质作用研究.岩石学报,1998,14:430-447
    [123]贺高品,叶慧文.辽东吉南地区早元古代两种类型变质作用及其构造意义.岩石学报,1998,14:152-162
    [124]简平,张旗,刘敦一.内蒙古固阳晚太古代赞岐岩(sanukite)—角闪花岗岩的SHRIMP定年及其意义.岩石学报,2005,21:151-157
    [125]金巍,李树勋,刘喜山.内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学.岩石学报,1991,7:27-35
    [126]金巍,李树勋,刘喜山.内蒙大青山早前寒武纪变质岩和早期陆壳的演化.长春地质学院学报,1992,22:281-189
    [127]金巍,李树勋.华北晚太古代—早元古代高级变质区的变质PTt轨迹及其地壳热动力学演化模式.岩石学报,1996,12:209-221
    [128]李江海,侯贵廷,黄雄南,等.华北克拉通对前寒武纪超大陆旋回的基本制约.岩石学报,2001,17:177-186
    [129]李江海,牛向龙,程素华,等.大陆克拉通早期构造演化历史探讨:以华北为例.地球科学-中国地质大学学报,2006,31:285-293
    [130]刘守偈,李江海, Santosh M.内蒙古土贵乌拉孔兹岩带超高温变质作用:变质反应结构及PT指示.岩石学报,2008,24:1185-1192
    [131]刘树文, TTG片麻岩与地壳早期动力学.地学前缘,1994,1:151-157.
    [132]刘喜山,内蒙古中部太古代麻粒岩递增变质成因.岩石学报,1996,12(2):287-298
    [133]刘喜山.大青山造山带中基底再造杂岩的特征及其指示意义.岩石学报,1994,10(4):413-426
    [134]卢良兆.内蒙集宁地区太古宙麻粒岩相变质作用的P-T-t迹及其大地构造意义.岩石学报,1991,7:1-12
    [135]秦朝建,裘愉卓.岩浆(型)碳酸岩研究进展,地球科学进展,2001,16:501-507
    [136]沈其韩,钱祥麟.中国太古宙地质体组成、阶段划分和演化.地球学报,1995,2:113-120
    [137]沈其韩,徐惠芬,张宗清,等.中国早前寒武纪麻粒岩.1992,北京:地质出版社
    [138]沈其韩,赵子然,宋彪.山东沂水新太古代马山和雪山岩体的地质、岩石化学特征和SHRIMP锆石年代研究.地质论评,2007,53:180-186
    [139]陶继雄,许立权.内蒙古中部召河庙北部片麻岩的锆石U-Pb年龄.内蒙古地质,2002,3:5-9
    [140]万渝生,耿元生,刘福来,等.华北克拉通及邻区孔兹岩系的时代及对太古宙基底组成的制约.前寒武纪研究进展,2000,23:221-237
    [141]万渝生,刘敦一,董春燕,等.中国最古老的岩石和锆石.岩石学报,2009,25:1793-1807
    [142]王惠初,袁桂邦,辛后田.内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示.前寒武纪研究进展,2001,24:28-34
    [143]吴昌华,孙敏,李惠民,等.乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄—孔兹岩沉积时限的年代学研究.岩石学报,2006,22:2639-2654
    [144]徐仲元,刘正宏,杨振升.内蒙古大青山-乌拉山地区孔兹岩系的早期变质地层结构下地壳近水平顺层滑脱变形的产物.地层学杂志,2005,29:423-432
    [145]杨振升,徐仲元,刘正宏,等.内蒙古中部大青山-乌拉山地区早前寒武系研究的重要进展及对高级变质区开展地层工作的几点建议.地质通报,2006,25:427-433
    [146]翟明国,彭澎.华北克拉通古元古代构造事件.岩石学报,2007,23:2665-2682
    [147]翟明国.华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨.岩石学报,2004,20:1343-1354
    [148]张臣,韩宝福,刘树文,等.内蒙大青山地区黑云母花岗岩SHRIMP U-Pb定年及其构造意义.岩石学报,2009,25:561-567
    [149]张旗,王焰,钱青,等. Sanukite (赞岐岩)的地球化学特征、成因及其地球动力学意义.岩石矿物学杂志,2005,2:117-125
    [150]张旗,王焰,钱青,等.晚太古代Sanukite(赞岐岩)与地球早期演化.岩石学报,2004,20:1355-1362
    [151]张维杰,李龙,耿明山.内蒙古固阳地区新太古代侵入岩的岩石特征及时代.地球科学,2000,25:221-226
    [152]张玉清,王弢,贾和义,等.内蒙古中部大青山北西乌兰不浪紫苏斜长麻粒岩锆石U-Pb年龄.中国地质,2003,30:394-399
    [153]赵国春.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报,2009,25:1772-1792
    [154]钟长汀,邓晋福,武永平,等.华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构造意义.地质通报,2006,25(3):389–397
    [155]钟长汀,邓晋福,万渝生,等.华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄.地球化学,2007,36(6):585–600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700