马尼拉海沟中北段俯冲带特征对比及区域构造动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多波束全覆盖高分辨率海底地形地貌数据与高清晰地震剖面的联合解释,结合其他地球物理资料,可极大地提高海底构造分析的分辨率和立体解析能力,在研究海底区域构造上具有独特的优势,尤其对年轻海底构造和活动构造,近年来已经成为研究洋中脊、俯冲带、边缘海盆地构造和形成机制的重要手段。马尼拉海沟俯冲带作为正在活动的年轻构造带,是南海海盆重要的东部俯冲边界,对其构造及演化的研究是对南海构造演化研究中极为关键的部分。而南海作为西太平洋最大的边缘海盆之一,对其研究的深化与细化,又是了解整个东亚大陆边缘构造乃至整个西太边缘海成盆机制的关键。
     本论文基于对马尼拉海沟中段与北段多次调查所获取高精度精细多波束海底地形地貌资料与多条地震剖面资料,结合台西南海域已知数据的钻井资料及其它所搜集到的地球物理数据,对海沟中段及北段的俯冲带构造特点进行了深入的分析与对比。论文对马尼拉俯冲带的平面构造特征及深部三维构造特点进行了重点剖析,结合南海东部海盆张裂演化史、西菲律宾海盆运动史、台湾弧陆碰撞造山历史等,最终对马尼拉俯冲带中段及北段的地貌形态、构造成因及其形成、演化历史等进行了广泛的讨论,并获得了多项有益的研究成果,主要有以下几个方面:
     1.对马尼拉海沟俯冲带中段及北段的增生楔地形地貌进行了精细构造特征分析与对比,揭示了两处俯冲带的平面分带特征与深部分层特点,发现在俯冲带增生楔下构造带中普遍发育有圈闭盆地。通过对圈闭盆地的外在形态、所处位置、形成过程的构造地貌分析,确定了圈闭盆地的形成、发展、与消亡对应了增生楔的前端褶皱变形、中部逆冲断裂以及顶端推覆隆升这一构造动力学过程,同时也反映了增生楔从变形前缘到海脊构造区横向压应力不断增强的特征,代表了一种新型的增生楔发育模式。而这种圈闭盆地在俯冲带中、北两段均有发现,说明它是俯冲带区域增生楔发育的一种较为普遍的模式;
     2.构造地貌图上发现的俯冲带北段增生楔构造地貌中的NE至NNE向压性断裂带、向北逐渐加宽的增生楔构造带、增生楔顶部超厚沉积及大范围隆起等,均证明21°N附近的台湾南部海域是马尼拉俯冲活动与台湾造山运动共同作用区,同时具有洋壳俯冲与弧陆碰撞的特点。由于北段俯冲带受到台湾造山作用的影响,俯冲活动在地表的界限发生了很大的改变,变形前锋在马尼拉海沟消失后顺澎湖峡谷NW向延伸,在陆架区折向NE,并最终在台南附近上陆并与台湾西部山麓带相连。弧前盆地顺北吕宋海槽向北延伸,穿越台东海槽后与台湾陆上的台东纵谷相接。而作为俯冲带增生楔一部分的恒春海脊,同时也是台湾造山带的南延,同时具有俯冲带的逆冲推覆构造特点与造山带的碰撞隆升特点;
     3.马尼拉海沟中段及北段的地表形态及其延伸方向具有很大的不同:海沟在北段台西南海域沟底呈“V”字形下切,且蜿蜒状延伸直至隐没消失,而在吕宋岛西侧的中段则呈现出平坦顺直的地表形态。经分析,海沟中段地表形态主要受深部俯冲构造活动控制,而北段海沟受到台湾弧陆碰撞及中国大陆边缘超厚沉积影响,海沟深部俯冲控制作用相对减小,而受陆坡附近富含陆缘沉积物的海底浊流影响较大,在形态上显示出和中段完全不同的地貌特征;
     4.经地震、钻井等多种资料推断,马尼拉俯冲带形成于16Ma左右的中中新世初期。覆盖马尼拉海沟北段的多道地震剖面在南海北部陆缘区经过了台湾石油公司已知数据的钻井A-1B井,而相邻的几口钻井更是为地震剖面层序的标定提供了可供对比的资料。将陆缘区的地震层序向台西南海域进行延伸后,发现俯冲拆离面为中中新统/下中新统交界面,证明俯冲活动开始最早不会超过在中中新世初期。而地质构造资料证明,作为俯冲增生楔的恒春海脊形成年代在中中新世左右,由此对俯冲带的形成时间进行约束,推断出马尼拉俯冲带形成于16Ma左右的中中新世初期; 5.联系周边地体的演化历史进行综合分析后,推断马尼拉海沟俯冲带形成动力来源于菲律宾海板块的北西向运动,而与南海东部海盆的扩张没有直接因果联系。
Associative interpretation by all-covered high-resolution multi-beam topographical & geomorphic maps and high-definition seismic profiles with other geophysical data can promote resolution and stereo analytical capacities of submarine tectonics extremely. This method has special predominance in regional submarine tectonic research especially to young submarine tectonics and active submarine tectonics, and has been an important method in studying tectonics and formation mechanism of mid-ocean ridges, subducting belts and marginal basins. As an active young subducting belt, eastern Manila Subducting Belt (MSB) is one of the most important margins of South China Sea (SCS). Tectonic and evolutionary study to it is the key point in study to SCS. While as one of the biggest marginal basins of west Pacific, deepening and refining to the study of SCS is the key to understand the tectonic of East Asia continental margin and the formation mechanism of whole west Pacific basins.
     Based on high-resolution multi-beam topographical & geomorphic maps and multiple seismic profiles at middle and northern part of Manila Trench acquired by multi-time investigations, combining with data-known boreholes and other collected geophysical data of southwest Taiwan area, we analyzed and contrast the diving tectonic features deeply to the middle and northern part of Manila Trench. We placed focus on planar tectonic characteristics and deep 3D-tectonic features of the subducting belt, integrating with evolutionary histories of surrounding terrains such as rifting history of eastern sub-basin of SCS, kinetic history of West Philippine Sea crust and orogenic history of Taiwan arc-continent collision, and discussed extensively to the geomorphic appearance, tectonic origin, the formation and evolutionary history of middle and northern part of MSB at last. Multiple dominant research products had been obtained as followed:
     1. We analyzed and contrasted the delicate tectonic features of accretionary wedges at middle & northern part of MSB, disclosed the planar zonal features and deep layered characteristics of two regions, and found that the trapped basins were developed extensively in Lower Tectonic Zone of accretionary wedge. After morphostructure analysis to the tectonic appearance, emerging place and formation process of the trapped basins, we confirmed that the formation, development and extinction of trapped basins are corresponding to the tectonic dynamic process of front fold and deformation, mid thrust and break, top nappe and uplift of accretionary wedge respectively. It also reflected the feature of strengthened horizontal compression stress of accretionary wedge from deformation front to Ridge Tectonic Zone, and represented a new developing pattern of accretionary wedge. The trapped basins could be found both at northern part and middle part of MSB which demonstrate that it represents a widespread developing method of accretionary wedge at subducting belt;
     2. The NE to NNE compressive fracture zone, accretionary wedge tectonic belt widening to north, super-thick and large extent uplift at top wedge area, which were found on morphostructure map of northern part of MSB proved that the sea area at South Taiwan near 21°N is the interaction area between Manila subducting activity and Taiwan orogenic movement where it has characteristics both of ocean crust subduction and arc-continent collision. Because of the influence of Taiwan Orogenic activity to the northern part of MSB, the surficial bound of subducting activity had changed greatly. The deformation front extend NW along Penghu Canyon after the disappearance of Manila Trench, turned NE on Chinese continental shelf area, and connected to the western piedmont belt of Taiwan after getting on land at south of Tainan city. The fore-arc basin extended along North Luzon Trough and connected to Taitung Longitudinal Valley after crossing the Taitung Trough. As a part of accretionary wedge of MSB, Hengchun Ridge is also the extended area of Taiwan Orogen. It is characterized by the features of both thrust and nappe of subducting belt and collision and uplift of Orogen;
     3. The surficial appearance and extended direction of northern and middle part of Manila Trench have great differences. The trench shows“V”-shape down-cut appearance in southwestern Taiwan sea area and extends meanderingly until its disappearance. But at the middle part of northwest Luzon Island, it shows flat and regular straight appearance. By analysis, we confirmed that the middle part of trench is controlled by deep subducting activity while northern part is influenced by Taiwan arc-continent collision and the sedimentation of Chinese continental margin. Therefore, northern part of the trench is influenced mostly by bottom turbidity current with abundant marginal sediments and less influenced by deep subducting activity. Thus it shows entirely different appearance against middle part.
     4. Deduced by seismic, borehole and other information, we are certain that Manila Subducting Belt formed at about 16Ma, that is, early stage of mid-Miocene. The multi-channel seismic profile crossing northern part of Manila trench passed by the“A-1B”borehole drilled by Taiwan Petroleum Corporation in slope area of northern SCS margin which the detailed strata information is known. Other adjacent boreholes can provide reference information for the strata determination to the seismic profile. Extending the stratigraphic sequence to the southwest area of Taiwan from continental margin, we found the detaching surface of the subducting belt is the interface between mid-Miocene and low-Miocene. This indicates that the subducting activity started not early than mid-Miocene. As the cretionary wedge of subducting belt, we know by geological tectonic information, the Hengchun ridge was formed at about mid-Miocene, so we deduced that the Manila subducting belt is formed at about early stage of mid-Miocene (16Ma) after constraint to its formation time by above information.
     5. The dynamic force of MSB formation is originated from NW movement of Philippine Sea Plate but has no straight causal relation with the spreading of eastern sub-basin of SCS.
引文
[1] 陈民本, 俞何兴, 郑伟力, 陈汝勤, 宋国士. 台湾四周海域之海底地形与沉积. 摘录自: 庆祝国立台湾大学海洋研究所成立三十周年学术研讨会手册及论文摘要, 2001: 60-70
    [2] 邓属予. 沧海桑田话台北, 台湾博物, 1999, 18(1): 4-17
    [3] 丁巍伟, 程晓敢, 陈汉林, 吴能友. 台湾增生楔的构造单元划分及其变形特征. 热带海洋学报, 2005, 12(5): 53-59
    [4] 丁巍伟, 王渝明, 陈汉林, 杨树锋, 吴能有. 台西南盆地构造特征与演化. 浙江大学学报(理学版), 2004, 3(2): 216-220
    [5] 丁巍伟, 杨树锋, 陈汉林等. 台湾岛以南海域新近纪的弧-陆碰撞造山作用. 地质科学, 2006, 41(2):195-201
    [6] 郭令智, 施央申, 马瑞士. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化.地质学报, 1983, (1): 11-21
    [7] 何春荪. 台湾地质概论-台湾地质图说明书(增订第二版). 经济部中央地质调查所, 1986, 64
    [8] 何春荪. 台湾地质概述, 海洋地质译丛, 1993, (4): 1-14
    [9] 黄福林. 论南海的地壳结构及深部过程. 海洋地质与第四纪地质, 1986, 6(1): 31-40
    [10] 黄汲清. 中国主要地质构造单位. 北京: 地质出版社, 1954
    [11] 黄衍骝. 台湾西南部海域之地质构造分析. 国立台湾大学地质学研究所硕士论文, 1993: 1-58
    [12] 金庆焕, 李唐根. 南沙海域区域地质构造. 海洋地质与第四纪地质, 2000,20(1) : 1-8
    [13] 金庆焕. 南海石油地质与油气资源. 北京: 地质出版社, 1989
    [14] 李常珍, 李乃胜. 林美华菲律宾海的地势特征. 海洋科学, 2000, 24(6): 47-51
    [15] 李春昱. 中国板块构造.地球学报, 1980, 2(2): 11-22
    [16] 李家彪, 金翔龙, 高金耀. 南海东部海盆晚期扩张的构造地貌研究. 中国科学, 2002, 32(3): 239~248
    [17] 李家彪, 金翔龙, 阮爱国等. 马尼拉增生楔中段的挤入构造. 科学通报, 2004, 49(10): 1000-1008
    [18] 李家彪主编.多波束勘测原理技术与方法.北京:海洋出版, 1999, 1-257
    [19] 李家彪主编. 中国边缘海形成演化与资源效应. 北京: 海洋出版社, 2005, 1-517
    [20] 李录明等. 地震勘探原理、方法与解释. 北京: 地质出版社, 2007
    [21] 李乃胜主编. 中国边缘海地质地球物理特征及其演化. 北京:海洋出版社, 2004, 1-456
    [22] 李平鲁. 珠江口盆地新生代构造运动.中国海上油气(地质), 1993, 7(6): 11-l7
    [23] 李四光. 受了歪曲的亚洲大陆. 地质论评, 1951, 16(1): l-16
    [24] 李学伦, 庄振业, 李桂群, 等. 世界大洋构造演化史, 海洋地质学. 青岛:青岛海洋大学出版社, 1997: 188-189
    [25] 林美华, 李乃胜. 青岛海洋大学学报, 1998, 28(3): 497-501
    [26] 刘宝银, 杨晓梅. 环中国岛链—军事区位、信息系统. 北京: 出版社, 2003: 3-4
    [27] 刘光鼎, 等. 中国海区及邻域地质地球物理特征. 1992, 北京:科学出版社
    [28] 刘再峰, 詹文欢, 张志强. 台湾-吕宋岛双火山弧的构造意义. 大地构造与成矿学, 2007, 31(2): 45-150
    [29] 刘昭蜀, 黄滋流, 杨树康等. 南海地质构造与陆缘扩张. 北京: 科学出版社, 1988
    [30] 刘昭蜀. 南海地质构造与油气资源. 第四纪研究, 2000, 20(1): 69-77
    [31] 刘忠臣, 刘保华, 黄振宗等. 中国近海及邻近海域地形地貌. 北京: 海洋出版社, 2005: 205-208
    [32] 栾锡武, 赵克斌, 孙冬胜, 岳保静. 鄂霍次克海天然气水合物成藏条件分析. 海洋地质与第四纪地质, 2006, 26(6):91-100
    [33] 任建业, 李思田. 西太平洋边缘海盆地的扩张过程和动力学背景. 地学前缘, 2000, 7(3): 203-213
    [34] 宋海斌, 吴能友, 吴时国, 等.南海东北部 973 剖面地震资料处理及其 BSR 特征.In: 李家彪,高抒.中国边缘海盆演化与资源效应. 北京:海洋出版社, 2004.182~l85
    [35] 尚继宏, 李家彪. 南海东北部陆坡与恒春海脊天然气水合物分布的地震反射特征对比. 海洋学研究, 2006, 24(4):12-20
    [36] 王平, 夏戡原, 黄慈流. 南海东北部中生代海相地层的分布及其地质地球物理特征. 热带海洋, 2000a, 19(4): 28-35
    [37] 王平, 夏戡原, 黄慈流.台湾南部恒春海脊地质地球物理特征及其大地构造属性. 热带海洋, 2000b, 19(3): 33-39
    [38] 王仁, 梁海华. 用叠加法反演东亚地区现代应力场. 见: 国际交流地质学术论文集2——二十七届国际地质大会, 北京: 地质出版杜, 1985, 29-36
    [39] 王善书主编. 沿海大陆架与毗邻海域油气区(上册).中国石油地质志, 1990, (16), 438-453
    [40] 王颖, 马劲松. 南海海底特征,资源区位与疆界断续线. 南京大学学报(自然科学), 2003, 39(6): 797-805.
    [41] 吴时国, 刘文灿. 东亚大陆边缘的俯冲带构造. 地学前缘, 2004, 11(3): 16-22
    [42] 萧宝宗, 胡锦城, 林国安, 等. 澎湖盆地油气潜能评估, 台湾石油地质, 1991b, 26, 215-229
    [43] 萧宝宗, 林国安, 罗仕荣, 等. 东引岛盆地油气潜能评估. 台湾石油地质, 1991a, (26): 83-213
    [44] 许浚远, 张凌云. 西北太平洋边缘新生代盆地成因(下)-后裂谷期构造演化. 石油与天然气地质, 2000, 21(4): 287-292
    [45] 许忠淮, 吴少武. 南黄海和东海地区现代构造应力场特征研究.地球物理学报, 1997, 40(6): 773-781
    [46] 杨森楠, 杨巍然. 中国区域大地构造学. 北京: 地质出版社, 1985
    [47] 姚伯初. 南海北部陆缘天然气水合物初探. 海洋地质与第四纪地质, 1998b, 18(4): 11-18
    [48] 姚伯初. 南海北部陆缘新生代构造运动初探, 南海地质研究. 武汉: 中国地质大学出版社, 1993, 1-12
    [49] 姚伯初. 南海的地质构造及矿产资源, 中国地质. 1998a, 251(4): 27-30
    [50] 姚伯初. 南海西北海盆的构造特征及南海新生代的海底扩张. 热带海洋, 1999, 18(1): 7-15
    [51] 姚华建, 徐果明, 肖翔, 陈敏. 俯冲带几何特征的研究. 地震地质, 2003, 25(2): 220-226
    [52] 迎南. 中国面临“岛屿锁链”军事威胁. http://www.people.com.cn, 2001.3.21
    [53] 臧绍先, 宁杰远. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响. 地球物理学报, 2002, 45(2):188-197
    [54] 张训华, 徐世浙. 南海海盆形成演化模式初探. 海洋地质与第四纪地质. 1997, 17(2):1-7
    [55] 郑彦鹏, 韩国忠, 王勇, 张政民. 台湾岛及其领域地层和构造特征. 海洋科学进展, 2003, 21(3): 272-280
    [56] 周蒂, 俞何兴等. 南海的右行陆缘裂解成因. 地质学报, 2002, 76(2): 180-190
    [57] 朱俊江, 丘学林, 詹文欢, 徐辉龙, 孙龙涛. 南海东部海沟的震源机制解及其构造意义. 地震学报, 2005. 27(3): 260-268
    [58] Babonneau N., Savoye B., Cremer M., Klein B. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Marine and Petroleum Geology. 2002(19): 445-467.
    [59] Bachman, S.B., Lewis, S.D. and Schweller, W.J. Evolution of a forearc basin, Luzon Central Valley, Philippines. Amer. Assoc. Petrol. Geol., 1983(67): 1143-1162.
    [60] Bautista B. C., Bautista M. L. P., Oike Kazuo, Wu F T. and Punongbayan R. S. A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 2001, 339(3-4):279-310.
    [61] Ben Avraham Z, Uyeda S. The evolution of the China basin and the Mesozoic paleogeography of Borneo. Earth planet. Sci. Lett., 1973(18):365-376.
    [62] Bowin C., Lu R.S., Lee C.S. and Schouten H. Plate convergence and accretion in Taiwan-Luzon region. Amer. Assoc. Petrol. Geol. Bull., 1978(62): 1645 - 1672
    [63] Briais A., Tapponnier P. and Pautot G.. Constraints of Sea Beam data on crustal fabrics and seafloor spreading in the South China Sea. Earth and Planetary Science Letters, 1989(95): 307-320
    [64] Brias A. and Pautot G.. Reconstructions of the South China Sea from structural data andmagnetic anomalies. in: Jin X., Kudrass H. R. and Pautot G. eds. Marine Geology and Geophysics of the South China Sea. Proc. Symp. on Recent Contributions to the Geological History of the South China Sea. Beijing: China Ocean Press .2000, 60-70.
    [65] Cade J. P., Kobayashi K., Aubouin J., et al. The Japan Trench and its juncture with the Kuril Trench: Cruise results of the Kaiko project, Leg 3. Earth Planet Sci. Lett., 1987(83): 267~284 .
    [66] Chang, C.P., Angelier, J. and Huang, C.Y. Origin and evolution of a mélange:the active plate boundary and suture zone of the longitudinal valley, Taiwan. Tectonophysics, 2000, 325, 43-62
    [67] Chemenda A. I., Yang R. K. and Stephan J. F. New results from physical modeling of arc-continent collision in Taiwan: evolutionary model. Tectonophysics, 2001(333): 159-178.
    [68] Chi W. C., Reed D. L., Moore G., et al. Tectonic wedging along the rear of the offshore Taiwan accretionary prism. Tectonophysics, 2003(374): 199-217.
    [69] Chow J., Chen H.M., Chang T.Y., Kuo C.L. and Tsai S.F. Preliminary study on the hydrocarbon plays around Nanjihtao Basin, Taiwan Strait. Petrol. Geol. Taiwan, 1991(26): 45-56.
    [70] Deschamps Anne E., Lallemand Serge E. & Collot Jean-Yves. A detailed study of the Gagua Ridge: A fracture zone uplifted during a plate reorganisation in the Mid-Eocene,Marine Geophysical Researches, 1998(20): 403-423.
    [71] Deschamps A., Monié P., Lallemand S.E., Hsu S.-K., Yeh K.Y. Evidence for early Cretaceous oceanic crust trapped in the Philippine Sea plate, Earth and Planetary Science Letters , 2000(179): 503–516.
    [72] Dominguez S., Lallemand S. E., Malavieille J., et al. Upper plate deformation associated with seamount subduction. Tectonophysics, 1998(293): 207-224.
    [73] Enkin R., Yang Z., Chen Y. and Constillot V. Palemagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. J. Geophys. Res., 1992(97): 13953-13989.
    [74] Gradstein F. M., Ogg J. G., Smith A. G., et al. A new geologic time scale with special reference to Precambrian and Neogene. Episodes, 2004, 27(2):83-100.
    [75] Grindlay S., MacDonald K., East Pacific rise 8°~10°30′N: Evolution of ridge segments and discontinuities from SeaBeam and magnetic data. J. G.. R., 1992(97): 6983-7010.
    [76] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 2002(20): 353-431.
    [77] Hall R. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In: Hall R., Holloway J.D., eds. Biogeography and Geological Evolution of SE Asia . Leiden: Backhuys Publisher, 1998: 99-132.
    [78] Hall R., Ali J.R., Anderson C.D. and Baker S.J. Origin and motion history of the PhilippineSea plate. Tectonophysics. 1995(251): 1229-1250.
    [79] Hekinian P., Bonte G., Pautot D., et al., Volcanics of the South China Sea ridge system, Oceanol. Acta , 1989,12(2):101-116.
    [80] Hilde T.W.C. and Lee C.S. Origin and evolution of the West Philippine Basin, Tectonophysics, 1984(102): 85-104.
    [81] Hilde T.W.C., Uyeda S., Kroenke L. Evolution of the western Pacific and its margin. CCOP Technical Bulletin, 1976(10): United Natioris EVCAFE.
    [82] Honza E., Fujioka K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the late Cretaceous. Tectonophysics, 2004(384): 23– 53
    [83] Hsu S.-K. and Sibuet J.C. Is Taiwan the result of arc-continent or arc-arc collision? Earth Planet. Sci. Lett., 1995(136): 315-324.
    [84] Hsu S.K., Liu C.S., Shyu C.T., Liu S.Y., Sibuet J.C., Lallemand S., Wang C. and Reed D. New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation. Terr. Atmos. Oceanic Sci., 1998(9): 509-532.
    [85] Huang, C.Y., Yuan P.B., Song, S.R., Lin, C.W., Wang, C., Chen, M.T., Shyu, C.T. and Karp, B.. Tectonics of short lived intra-arc basins in the arc-continent collision terrane of the Coastal Range, eastern Taiwan. Tectonics, 1995,14, 19-38.
    [86] Huang C. H., Wu W. Y. and Chang .C P. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 1997(281): 31-51.
    [87] Huang Chi-Yue, Xia Kanyuan, Yuan Peter B. and Chen Pu-Gang. Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology. Journal of Asian Earth Sciences, 2001, 19(5): 619-639
    [88] Huang, C.Y., Yuan, P.B., Lin C.W., Wang, T.K. an Chang, C.P. Geodynamic processes of Taiwan arc-continental collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 2000, 325, 1-21.
    [89] Huchon P. Comment on “Kinematics of the Philippine Sea plate” by Ranken B., Cardwell R.K. and Karig D.E. Tectonics, 1986(5): 165-168
    [90] Huene R. von, Weinrebe W., Heeren F. Subduction erosion along the North Chile margin, Geodynamics ,1999(27): 345-358.
    [91] Jolivet L. American-Eurasia plate boundary in eastern Asia and the opening of marginal basins. Earth Planet. Sci. Lett., 1986(81): 282-288.
    [92] Kao H., Huang G.C. and Liu C.S. Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region:constraints from bathymetry and seismic observation, Jour. Geophys. Res., 2000(105): 3059-3079.
    [93] Kao H., Shen S.J. and Ma K.F. Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. J. Geophys. Res., 1998(103): 7211-7229.
    [94] Karig D. E. Origin and development of marginal basin in the Western Pacific. J. Geophys. R., 1971, 75(11): 2543-2561
    [95] Karig D.E. Basin genesis in the Philippine Sea. Initial Rep. Deep Sea Drill. Proj., 1975(31): 857-879
    [96] Karp B.Y., Kulinich R., Shyu C.T. and Wang C. Some features of arc-continent collision zone in the Ryukyu subduction system, Taiwan Junction area. The Island Arc, 1997(6): 303-315
    [97] Kinoshita H. Details of magnetic polarity transition recorded in sediment core from Deep Sea Drilling Project, site 445, Philippine Sea. In: Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, Washington, D.C., 1980(58):769-775
    [98] Klein G. de V. and Kobayashi. Geological summary of the North Philippine Sea, based on the Deep Sea Drilling Project Leg 58 results. In: Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, Washington, D.C., 1980(58): 951-952
    [99] Lallemand S. E., Schnurle P., Malavieille J. Coulomb theory applied to accretionary and non-accretionary wedges: Possible causes for Tectonic erosion and or frontal accretion. J Geophys Res, 1994, 99(B6): 12033-12055.
    [100] Letouzey J. and Sage L. Geological and structural map of eastern Asia. Bull. Inst. Earth Sci., Academia Sinica, 1988(1):51-82
    [101] Li J.B. The rifting and collision of the South China Sea Terrain system, Ed. Wang and Berggren, Proceedings of the 30th International Geological Congress, 1997(13): 33-46, VSP.
    [102] Liu C.S., Huang I.L. and Teng L.S. Structural features off southwestern Taiwan. Mar. Geol., 1997(137): 305-319.
    [103] Liu C.S., Liu S.Y., Lallemand S., Lundberg N., Reed D.L. Digital elevation model offshore Taiwan and its Tectonic implications. TAO, 1998(9): 705-738.
    [104] Lu C.Y. and Hsu K.J. Tectonic evolution of the Taiwan mountain belt. Petrol. Geol. Taiwan, 1992(27): 21-46.
    [105] Lüdmann T., Wong H. K., Wang P. X. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 2001(172):33l-358.
    [106] Ludwig W. J. Profile-sonobuoy measurement in the South China Sea basin. J. Geophys. Res., 1979(84): 3305-3518.
    [107] Lundberg N., Reed D.L., Liu C.S. and J. Lieske Jr. Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan. Tectonophysics, 1997(274): 5-24.
    [108] Minster J.B. and Jordan T.H. Rotation vectors for the Philippine and Rivera plates. Eos. Trans. AGU, 1979(60): 958.
    [109] Pautot G., et al. Spreading direction in the central South China Sea. Nature, 1986(321):150-154
    [110] PopescuI. Analyse des processus sedimentaries recents dans l’ eventail profound du Danube (mer Noire). Phd thesis, Universite de Bretagne Occidentale, 2002.:283.
    [111] Ranalli G.. Westward drift of the lithosphere: not a result of rotational drags. Geophys Jour Int, 2000(141): 535-537.
    [112] Ranero C. R., Huene R. Subduction erosion along the Middle America convergent margin. Nature, 2000(404): 748~752
    [113] Ranken B., Cardwell R.K. and Karig D.E. Kinematics of the Philippine Sea plate, Tectonics, 1984(3):555-575.
    [114] Schnurle P., Liu C. S., Lallemand S. E., et al. Structural insight into the south Ryukyu margin: Effects of the subducting Gagua Ridge. Tectonophysics, 1998(288): 237~250
    [115] Seno T. The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasian plate. Tectonophysics, 1977(42): 209-226.
    [116] Seno, T., Sterin, S. and Gripp, A.E. (1993), A model for the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941-17948.
    [117] Shiki T. Geology of the northern Philippine Sea, 1985, Tokyo: Tokai University Press.
    [118] Sibuet J.C., Deffontaines B., Hsu S. K., Thereau N., Le Formal J.P., Liu C.S. and ACT party. Okinawa Through backarc basin: Early tectonic and magmatic evolution. J. Geophys. Res., 1998(103): 30245-30267.
    [119] Sibuet J.C., Hsu S.K., Le Pichon X., Le Formal J.P., Reed D., Moore G., Liu C.S. East Asia plate tectonics since15Ma: constraints from the Taiwan region. Tectonophysics, 2002(344): 103–134.
    [120] Sibuet J.-C., Hsu S.-K.Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 1997(274): 221–251.
    [121] Soh W., Tokuyama H. Rejuvenation of submarine canyon associated with ridge subduction, Tenryu Canyon, off Tokai, central Japan. Mar Geol, 2002(187): 203-220.
    [122] Sun Tianxi. Forecast of Shallow Strong Earthquake in the Central Japan Sea. In: International Symposium on Tectonic Evolution and Dynamics of Continental Lithosphere(Abstracts II), 1987, Beijing: 50
    [123] Tang J. C. and Chemenda A. I. Numerical modeling of arc–continent collision: application to Taiwan. Tectonophysics, 2000(325):23–42.
    [124] Tang L.S. Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan. Tectonophysics, 1990(183): 67-76.
    [125] Tapponnier P., Peltzer G., Le Dain A. Y., Armijo R. and Cobbold P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 1982, 10(12):611-616.
    [126] Taylor B. and Hayes D. E. The tectonic evolution of the South China Basin, In: The tectonic and geologic evolution of Southeast Asian Seas and islands. Geophys. Monog. Hayes D. E. (Eds). AGU, 1980, 27:89-104.
    [127] Taylor B. and Hayes D.E. Origin and history of the South China Sea Basin. In: The Tectonic and Geologic Evolution of Southeast Asia Seas and Islands. Geophys. Monog, HayesD.E.(Eds). AGU,1983: 23-56.
    [128] Teng, L.S. Stratigraphic records of the late Cenozoic Penglai Orogency of Taiwan. Acta Geologica Taiwanica, (1987), 25: 205-224.
    [129] Teng L.S. Geotectonic evolution of Tertiary continental margin basins of Taiwan, Petrol. Geol. Taiwan, 1992(27): 1-19.
    [130] Teng, L.S. Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan. Tectonophysics, 1990(183): 67-76.
    [131] Teng, L.S., and Wang Y. Island arc system of the Coastal Range, Eastern Taiwan. Proc. Geol. Soc. China, 1981, 39, 125-142.
    [132] Tokuyama H., Ashi J., Soh W., et a1. Active Submarine Faults off Tokai.Tokyo:University of Tokyo Press,l998.151
    [133] Tsai Y.B. Seismotectonics of Taiwan, Tectonophysics, 1986(125): 17-35.
    [134] Tsanyao, F. Yang. Fission-track dating of volcanic in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination. Journal of Southeast Asian Earth Sciences. 1995, 11(2): 81-93.
    [135] Uyeda. S. and Ben A.Z. Origin and development of the Philippine Sea, NATURE, 1972, 240(104):176-178
    [136] Wang K., Hu Y. Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J. Geophys. Res., 111(B6):B06410
    [137] Wang S. C., Geller R. J., Stein S., et al. An intraplate thrust earthquake in the South China Sea. J Geophys Res, 1979(84): 5627-5631
    [138] Wang Su-Yun, Xu Zhong-Huai, Yu Yan-Xiang, et al. Inversion for the plate driving forces acting at the boundaries of China and its surroundings. Chinese J Geophysics, 1997, 40(1): 17-25.
    [139] Yang T. F.,Lee T.,Chen C. H., et al. A double island arc between Taiwan and Luzon:consequence of ridge subduction.Tectonophysics, 1996(258): 85 -101.
    [140] Yang Tsanyao F., Lee Typhoon, Chen Cheng-Hong, et al., A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics, 1996(258): 85- 101.
    [141] Yu S.B., Chen H.Y., and Kuo L.C. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 1997(274): 41-59.
    [142] Yu S.B., Kuo L.C., Punongbayan R.S. and Ramos E.G. GPS observation of crustal deformation in the Taiwan-Luzon region, Geophys. Res. Lett, 1999(26): 923-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700