云南德钦县鲁春铜多金属矿床地质地球化学特征与成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从基础地质资料着手,通过作者和本课题科研团队扎实的野外和室内工作,同时收集了大量的地质地球化学资料,综合分析了鲁春铜多金属矿床地质、地球化学特征,初步探讨了矿床研究中非常重要的几个问题:成矿物质来源、成矿环境和矿床的成因模式。
     金沙江古特提斯造山带是中国重要的金属成矿带,鲁春铜多金属矿区即位于金沙江造山带的构造收紧部位。金沙江造山带为古特提斯金沙江洋盆向西俯冲消减和弧陆碰撞所形成,是由二叠纪的洋内弧和陆缘火山弧于早、中三叠世碰撞拼接而成的复合造山带。其东与中咱-香格里拉微陆块相接,其西邻接昌都-兰坪-思茅微陆块。其演化历史经历了泥盆纪-石炭纪的裂离、晚石炭世-早二叠世金沙江洋盆扩张形成、二叠纪金沙江洋壳向西的俯冲消减、早三叠世的弧后拉张和中、晚三叠世的弧-陆碰撞造山作用五个阶段。鲁春-红坡弧后裂谷盆地处于江达-德钦-维西陆缘火山弧中段,形成于金沙江洋俯冲消减后的弧后拉张环境,呈一近南北向展布的狭长状沉积盆地。
     由于区域上大规模的逆冲推覆-伸展滑脱构造发育,导致矿区地层发生倒转。矿区出露地层从老到新(从上到下)依次为下三叠统攀天阁组(T1p)、崔依比组(T1c)和中三叠统上兰组(T2s),地层总体走向南北,倾向东。
     绿泥石岩、硅质岩和条带状灰岩的常量元素、微量元素、稀土元素地球化学特征表明其形成与双峰式火山活动密切相关,绿泥石岩的原岩为流纹质的火山凝灰岩,纹层状硅质岩和条带状灰岩是与海底喷流热液(热水)沉积作用有关的热水沉积岩。
     锆石U-Pb同位素年代学研究表明,矿区出露的火山岩为一套发育于早三叠世的玄武岩-流纹岩双峰式火山岩组合。玄武岩主要为拉斑系列和钙碱性系列,流纹岩主要为钙碱性系列,是矿区的主要赋矿岩系。地质地球化学特征表明,矿区双峰式火山岩为金沙江洋盆经俯冲消减后弧后扩张环境下的产物。
     成矿元素和稀土元素特征表明,矿床的成矿物质来源于下伏双峰式火山岩,尤其是长英质岩系的热液萃取。
     研究结果表明,鲁春铜多金属矿床是在弧后拉张背景下形成于双峰式-长英质岩系中的Zn-Pb-Cu多金属型火山成因块状硫化物(VMS)矿床。
The geological and geochemical characteristics of the Luchun copper-polymetallic deposit are discussed in the paper based on the basic geological data and a large amount of collected geological and geochemical data through the well-knit field and indoor work of the and the team researching the subject.Several problems of great importance to deposit research,including the source for metallogenic substance, metallogenic environment and the original pattern of deposit are primarily explored.
     Jinshajiang Paleo-Tethyan Orogenic belt is an important metallogenic belt of china. Luchun copper-polymetallic deposit is just located in the taking-up position of this belt. Jinshajiang Orogenic belt is formed by Palea-Tethys Jinshajiang ocean crust and arc rushing westward to subduction and collision. This composite orogenic belt collided and jointed by intra-oceanic arc and continental margin colcanic arc in early or middle Trissic period. To the East the belt is abutted with Zhongza-shangri-la micro-landmass and to the west it is adjacent to Changdu-Lanping-Simao micro-landmass. The belt was evolved by the breaking up during Devonian and Carboniferous, expanding and formation of oceanic basin during Late Carboniferous and Early Permian, westward subduction of Jinshajiang ocean crust, during Permian, extending at back-arc in times of Early Triassic and arc land colliding in the Late Triassic. Luchun-Hongpo back-arc rift basin is located in the middle section of Jiangda-Deqin-Weixi volcanic arc, and formed in the back-arc extension environment after the subduction of Jinshajiang ocean and is a strip-like sedimentary basin with a nearly N-S directed alignment.
     Revers of strata occurred through the area since the growth of large-scale over-thrust and nappe-extensional detachment structure. The strata in chronological order are Early Triassic Pantiange Formation (Tip), Cuiyibi Formation(T1c), Middle Triassic Shanlan Formation (T2S) and Hongpo Formation (T3h) from top to bottom. The strike direction of the strata are overall N-S and east-dipping.
     The geochemical characteristics of major elements, trace elements, and rare earth elements of Chlorite rocks, cherts and landed limestones show that their formations are closely related to the bimodal volcanic activities. Chlorite derived from rhyolitic volcanic tuff, laminated cherts and banded limestones are hydrothermal sedimentary rocks related to deposition of submarine exhalative hydrothermal (hot water).
     The research result of the zircon U-Pb geochronology shows that the volcanic rocks is a combination of bimodal volcanic rock developing in the Early Triassic. Typically the basalts are composed of tholeiite and calc-alkaline series, the rhyolites are mainly composed of calc-alkaline series, which are the main ore-hosting rocks. Geological and geochemical characteristics of the mineral area that indicate the bimodal volcanic rocks are the product of back-arc expanding environment formed by Jinshajiang ocean crust colliding with Changdu-Lanping block.
     The evidence from ore-forming elements and REE indicates that the ore-forming material of the deposit derived from the underlying bimodal volcanic rocks, especially the felsic rocks by the means of the hydrothermal leaching.
     The result shows that Luchun copper-polymetallic deposit is a the Zn-Pb-Cu polymatallic type of volcanogenic massive sulfide (VMS) depositformed in bimodal-felsic rocks under the environment of initial arc.
引文
[1]Lydon J W. Some OBSERVATIONS on the mineralogical and chemical zonation patterns of volcanogenic sulphide deposits of Cyprus[J]. Paper eological Survey of Canada. 1984,84-1A:611-616.
    [2]Sawkins F J, Metal deposits in relation to plate tectonics.2nd ed.Springer, Berlin,1990, 1-461.
    [3]Herzig P M, Hanningtong M D. Polymetallic massive sulfides at the modern seafloor-A Re view[J]. Ore Geologica Review,1995,10:95-115.
    [4]Hutchinson R W. Volcanogenic sulfide deposits and their metallogenic signify cance[J]. Econ. Geol.,1973,68:1223-1246.
    [5]Franklin J M, Lydon J W, Sangster D F. Volcanic-associated massive sulfide deposits[J]. Economic Geology,1981, (75TH Anniv):485-627.
    [6]Franklin J M, Gibson H L, Jonasson I R, and Galley A G, Volcanogenic massive sulfide deposit, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Economic Geology 100th Anniversary Volume:the Economic Geology Publishing Company,2005,523-560
    [7]Large R R. Australian volcanic-hosted massive sulfide deposits:features, styles, and genetic models[J].1992,87:471-510.
    [8]Solomon M. "Volcanic" massive sulphide deposits and their host rocks-a review and an explanation, In:Wolf, K. A., ed., Handbook of strata-bound and stratiform ore deposits, II, Regional studies and specific deposits:Amsterdam, Elsevier,1976, p.21-50.
    [9]Sangster D F, Scott S D. Precambrian stratabound, massive cu-zn-pb sulfide ores of north america.In:Wolf K H. ed. Handbook of strata-bound and stratiform ore deposits. Amsterdam, Elsevier.1976,6:129-222.
    [10]Lydon J W. Ore deposit model 14, volcanogenic massive sulfide deposits part I:A descriptive model [J]. Geoscinece canada,1984,11:195-202.
    [11]Sawkins F J. Massive sulfhide deposits in relation to geotectonics [J]. In:Strong K F. ed. Metallogeny and plate tectonics. Geol. Assoc.Canada Spec.,1976,14:221-242.
    [12]Sillitoe R H, Hanningtong M H. Thompton J F H. High sulfidation deposits in the volcanogenic massive sulfide environment[J]. Econ. Geol.,1996,91:204-212.
    [13]侯增谦,韩发,夏林圻,等.现代和古代海底热水成矿作用[M].北京:地质出版社,2003:1-394.
    [14]Mosier D L, Berger V L, Singer D A. Volcanogenic massive sulfide deposits of the word-database and grade and tonnage models.2009.
    [15]Morton R L, Franklin J M. Two-fold classification of Archean volcanic-associated massive sulfide deposits. ECON. GEOL,1987,82:1057-1063.
    [16]Gemmell J B, Large R R, Stringer system and alteration zones underlying the Hellyer volcaogenic assive sulfide deposit, Tasmania. Econ. Geol,1992,87:620-649.
    [17]Large R R, Both R A, The volcanogenic ores at Mount Chalmers, eastern Quennsland[J]. ECON. GEOL.,1980,75:992-1009.
    [18]Green G R, Solomon M, Walshe J L, The formation of the volcanic-hosted massive sulfide deposit at Rosebery, Tasmania[J]. Econ. Geol,1981,76:304-338.
    [19]Gregory P W, Hartley J S, Wills J A, Thalanga zinc-lead-copper-silver deposit: Australisian Inst. Miningmetallurgy Mon.1990,14:1527-1537.
    [20]Ashley P M, Dudley R J, Lesh, R H, et al, The Scuddles Cu-Zn prospect, an Archean volcanogenic massive sulfide deposit, golden grove district, Western Australia[J]. ECON GEOL,1988,83,918-951.
    [21]Petersen M D, Lambert I B, Mineralogical and chemical zonation around the Woodlawn Cu-Pb-Zn ore deposit, southeastern New South Wales[J]:Geol. Soc. Australia Jour.1979,26:169-186.
    [22]Greig D D, Geology of the Teutonic Bore massive sulphide deposit, Western Australia[J]. Australiasian Inst. Mining Metallurgy Proc.,1984,289:147-156.
    [23]Russell R D, Farquhar R M. Dating galenas by means of their isotopic constitutions-Ⅱ:Geochim[J]. Et Cosmochim. Acta,1967,19:41-52.
    [24]Krauskopf K B, Source rocks for metal-bearing fluids, in barnes, H L., ed., geochemistry of hydrothermal ore deposits. New York, Holt, Rinehart, and Winston, Inc., 1967,1-33.
    [25]Spooner E T C, Fyfe W S, Sub-sea floor metamorphism, heat and mass transfer[J]. Contr. Mineralogy perology,1973,42:287-304.
    [26]Ohmoto H, Rye R P, Hydrogen and oxygen isotopic compositions of fluid inclusions in the kuroko deposits, Japan[J]. Econ. Geol.,1974,69:947-953.
    [27]Solomon M. "Volcanic" massive sulphide deposits and their host rocks-a review and an explanation, In:Wolf, K.A., ed., Handbook of strata-bound and stratiform ore deposits, Ⅱ, Regional studies and specific deposits:Amsterdam, Elsevier,1976, p.21-50.
    [28]Large R R, Chemical evolution and zonation of massive sulfide deposits in volcanic terrains[J]. Econ. Geol.,1977,72:549-572.
    [29]Solomon M, An introduction to the geology and metallic mineral resources of tasmania[J]. Econ. Geol.,1981,76:194-208.
    [30]Stoltz A J, Large R R. Evalution of the source control on precious metal grades in volcanic-hosted massive sulfide deposits from western tasmania [J]. Economic geology, 1992,87:720-738.
    [31]Urabe T, Sato t. Kuroko deposits of the kosaka mine, northeast hon shu, japan-products of submarine hot springs on the miocene sea floor[J]. Econ. Geol.,1978,73:161-179.
    [32]Sawkins F J, Kowalik J, The source of ore metals at buchans:magmatic versus leaching models[J]. Geol. Assoc. Canada Spec.,1981,22:255-267.
    [33]Stanton R L. Stratiform ores and geological processes. Royal Soc. New South Wales[J]. 1985,118:77-100.
    [34]Stanton R L. Magmatic evolution and the ore type-lava type affiliations of volcanic exhalative ores[J]. Australasian Institule of mining & metallurgy proceeding,1990,15: 101-107.
    [35]Urabe T, Marumo K. A new model for kuroko-type deposits of japan [J]. Epidodes, 1991,14(3):246-251.
    [36]Yang K H, Scott S D. Possible contibution of metal-rich magmatic fluid to a seafloor hydrothermal system[J]. Nature,1996,383:420-423.
    [37]Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Review of minerology, 1983,16:491-560.
    [38]Huston D L, Taylor T, Fabray J, et al, A comparison of the geilogy and mineralization of the Balcooma and DRY River south volcanogenic massive sulfide deposits, northern Queensland[J]. Econ. Geol.,1992,87:542-563.
    [39]Mcgoldrick P J, Large, R R, Geologic and geochemical controls on gold-rich stringer mineralization in the Que River deposit, Tasmania[J]. Econ. Geol,1992,87:667-685.
    [40]燕长海,徐勇航,彭翼等,东秦岭二郎坪群中火山成因块状硫化物矿床地质地球化学特征及其成因讨论[J],矿床地质,2008,27(1):14-27.
    [41]Von Damm K L, Bischoff J L, Rosenbauer R J. Chemistry of submarine hydrothermal solutions at 21°N East Pacific Rise[J]. Geochim. Cosmochim. Acta.,1985,49:2197-2220.
    [42]Von Damm K L, Bischoff J L, chemistry of hydrothermal solutions from the southern Juan De Fuca Ridge[J]. Jour. Geophys. Res.,1987,92:11334-11346.
    [43]Campbell A C, Palmer M R, Klinkhammer G P. Chemistry of hot springs on the mid-atlantic ridge[J]. Nature,1988,335:514-519.
    [44]Cathles L M. A capless 350℃ flow zone model to explain megaplumes, salinity various, and high-temperature veins in Ridge Axial hydrothermal system[J]. Economic Geology,1993,88:1977-1988.
    [45]曾志刚,秦蕴珊,翟世奎.现代海底热液多金属硫化物的成矿物源:同位素证据[J].矿物岩石地球化学通报,2000,19(4):428-430.
    [46]Hou, Z Q, Zhang Q L.CO2 and hydrocarbon-rich fluids in submarine active hydrothermal system in the Okinawa Trough:evidence from fluid inclusions [J]. Sciences in china,1998,18:142-148.
    [47]Hou, Z Q, Li Y H, Ai Y D, et al. Helium isotopic compositions of the active hydrothermal system in the Okinawa Trough:evidence for the mantle-derived helium[J]. Science in China,1999,29:155-162.
    [48]叶庆同,石桂华,叶锦华等.三江地区铅锌矿床地质特征和成矿系列.北京:北京科学技术出版社,1992,1-125.
    [49]徐明基,傅德明,尹裕民等.四川呷村银多金属矿床.成都:科学技术出版社,1993,1-164.
    [50]Ishibashi J, Urabe, T. Hydrothermal activity related to arc-back-arc magmatism in the Western Pacific. In:Taylor, B eds. Backarc Basin:Tectonics and Magmatism[J]. New York: Plenum Press,1995,452-495.
    [51]Detrick R S P, Buhle E, Vera J, et al. Multichannel seismic imaging of a crustal magama chamber along the East Pacific Rise[J]. Nature,1987,326:35-41.
    [52]Collier J, Sinha M. Seismic images of a magma chamber beneath the Lau Basin back-arc spreading centre[J]. Nature,1990,346:646-648.
    [53]Roscoe S M. Geochemical and isotopic studies, Noranda and Matagarmi areas. Canadian Isnt. Mining Metallurgy Trans.,1965,68:279-285.
    [54]侯增谦,浦边徹.古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究[J].地球化学,1996,25(3):228-241.
    [55]Herzig P M, Hanningtong M D. Polymetallic massive sulfides at the modern seafloor-A Re view[J]. Ore Geologica Review,1995,10:95-115.
    [56]Ohmoto H. Formation of volcanic-associated massive sulfide deposits:the Kuroko perspective [J]. Ore Geologica Review,1996,10:135-177.
    [57]Hekinian R, Fouquet Y. Vocanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N[J]. ECON.GEOL.,1985,80:221-249.
    [58]Lydon J W, Ore deposits model 14, volcanogenic massive ssulphide deposits Part2: Genetic models. Geosci. Canada,1988,15:43-65.
    [59]Scott S D. Submarine hydrothermal systems and deposits. In H.L. Barnes(ed), Geochemistry of Hydrothemal Ore Deposits,3rd edn John Wiley,1997,797-875.
    [60]Eldridge C S, Barton P B, et al, Mineral textures and their bearing on formation of the Kuroko orebodies[J]. ECON. GEOL.,1983,5:241-281.
    [61]Campbell I H, McDougall T J, and Turner J S, A note on fluid dynamic processes which can influence the deposition of massive sulfides. ECON. GEOL.,1984,79: 1905-1913.
    [62]莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版社,1993,7-236.
    [63]李文昌,潘桂堂等.西南“三江”多岛湖盆—碰撞造山成矿理论与勘查技术[M].北京:地质出版社,2010.
    [64]王立全,潘桂堂,李定谋,等.金沙江弧-盆系时空结构及地史演化[J].地质学报,1999,73(8):206-218.
    [65]王立全,潘桂堂,李定谋,等.江达-维西陆缘火山弧的形成演化及成矿作用[J].沉积与特提斯地质,2000,20(2):1-17.
    [66]王保弟,王立全,王冬兵,等.三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定 年与地质意义[J].矿物岩石学杂志,2011,30(1):25-33.
    [67]Hugh R.Rollison岩石地球化学[M].合肥:中国科学技术大学出版社,2000.
    [68]王焰,钱青,刘良,等.不同构造环境中双峰式火山岩的主要特征[J].岩石学报,2000,16(2):169-173.
    [69]邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991.
    [70]王立全,李定谋,管士平,等.云南德钦鲁春锌铅铜矿评价[M].北京:中国地质大学出版社,2001,3-87.
    [71]牟传龙,王立全.云南鲁春晚三叠世硅质岩的地球化学特征及成因[J].沉积与特提斯地质,2001,21(1):1-10.
    [72]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.
    [73]P.亨德森.稀土元素地球化学[M].北京:地质出版社,1989.
    [74]Sun S-S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geol Soc Lond Spec Pub,1989,42: 313-345.
    [75]曾普胜,蒙义峰,杨竹森,等.安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩[J].矿床地质,2004,23(3):334-343.
    [76]曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区硅质岩成因及意义[J].地质论评,2004,50(2):153-161.
    [77]丁悌平.中国某些特大型矿床的同位素地球化学研究[J].地球学报,1997,18(4):373-381.
    [78]曹云龙,朱寿华,王俊文.白云鄂博铁-稀土矿床的物质来源和成因理论问题[J].北京:地质出版社,1993,179-183.
    [79]徐文艺,杨竹森,蒙义峰等.安徽铜陵矿集区块状硫化物矿床成因模型与成矿流体动力学迁移[J].矿床地质,2004,23(3):353-364.
    [80]Sangster D F. Sulphur and lead isotopes in strata-bound deposits[A]. In:wolf K H, ed. Handbook of strata-bound and stratiform ore deposits 2[C]. Amsterdam:Elsevier.1976, 219-266.
    [81]Ohmoto H, Rye R O. Isotopes of sulfur and carbon[A]. In:Barnes H L, ed. Geochemistry of hydrothermal ore deposits[C]. New York:John Wiley & Sons.1979, 509-567.
    [82]韩发,沈建忠.大厂锡矿床硅、氧同位素地球化学[J].矿物学报,1994,14(2):171-180.
    [83]吴世迎,白黎明,吴军瑞.马里亚纳海槽海底热液硫化物的同位素地球化学特征[J].质谱学报,2004,25(增刊):173-174.
    [84]刘家军,郑明华,刘建明等.西秦岭寒武系硅质岩建造喷流沉积作用与矿质聚集[J].高校地质学报,1998,4(1)20-33.
    [85]牟传龙,王立全.云南德钦及临区晚三叠世火山沉积盆地演化[J].矿物岩石,2000,20(3):23-28.
    [86]蒋敬业,李方林,王苹,等.1999.北祁连山火山成因块状硫化物矿床的金属来源研究[J].地质科技情报,18(2):57-61
    [87]Urade T. Kuroko deposit modeling based on magmatic hydrothermal theory[J]. Mining Geology,1987,37 (1):159-176.
    [88]侯增谦,侯立伟,叶庆同,等.三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床[M].北京:地震出版社,1995,133-152.
    [89]Yang K H. Magmatic fluids and mineralization-observations of subaerial volcanic-hydrothermal processes, black smokers on modern sea-floor and melt inclusion studies [J]. Earth Science Frontiers,1998,5 (3):7-30.
    [90]Yang K H, Scott S D. Magmatic fluids as a source of metals in seafloor hydrothermal systems [J]. Geophysical Monograph,2006,166:163-181.
    [91]Hannington M D. The geochemistry of gold in modern Sea-floor hydrothermal field, North Fiji back-arc basin, Southwest Pacific. Econ. Geol,1989,88:2237-2249.
    [92]Fouquet Y, Stackelberg U, Charlou J L, et al. Metallogenesis in back-arc environments: the low basin example[J]. Econ. Geol.,1993,88:2154-2181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700