单马达驱动多关节机械臂的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统机械臂的每个关节均由一个关节电机驱动,由于关节电机占机械臂关节比重较大,多个关节电机占据了机械臂悬臂部分的大部分重量,因此在伺服电机设计未有明显突破的情况下,采用新的机器人设计理论,对现有关节的冗余部分的功能进行重组,对机械臂关节结构进行重新设计,减少机械臂悬臂部分重量,是获得更紧凑结构、高负载自重比的一种方法。本文围绕轻型多关节机械臂的设计方法、新型传动结构、运动误差以及控制系统建模展开研究,主要内容如下:
     针对多关节机械臂的结构特点,总结前人的结构设计经验,研究了针对轻型机械臂的设计三个基本方法:单马达驱动技术、基于动态设计的功能置换方法,以及模块化广义锥形结构设计。研究了离合器耦合传动结构特点,设计了两种基于离合器耦合传动的关节结构。并采用离合器耦合传动关节设计了用于多关节机械臂的两自由度运动模块,给出了一种多关节机械臂的结构方案。
     建立了相邻关节正交的刚性机械臂运动学模型,分析了刚性机械臂末端运动轨迹;根据谐波减速器刚度随负载变化情况,建立了弹性关节机械臂的运动误差模型,分析了弹性机械臂末端运动轨迹误差;对关节处含偏心质量的弹性机械臂,建立了运动误差模型,分析了偏心质量对弹性机械臂末端运动轨迹误差的影响。
     根据机械臂关节结构特点,分析了影响机械臂运动性能的几个因素:关节主速、频率特性、工作空间等。仿真研究了机械臂末端在可达空间内的运动性能,并得到了用于控制系统参数选频的结构固有频率带。
     通过对离合器接合释放动作过程分析,建立了用于精确控制的离合器动力学模型。根据机械臂的负载和应用情况,建立了近似的离合器调速模型,研究了影响离合器输出速度的两个控制参数。采用离合器调速模型,建立了关节控制系统,并仿真分析了单关节控制系统和双关节控制系统位置控制过程。
     本文最后介绍了单马达驱动六自由度机械臂实验系统的结构和控制系统。通过两个连续轨迹控制(直线轨迹和半圆圆弧轨迹)实验和仿真,验证了机械臂各个关节结构的可行性、控制系统的有效性以及整个系统完成复杂轨迹的能力,并对实验结果进行了分析,讨论了误差补偿方法。
The design of conventional manipulator is based on the style of one-joint-one-motor and every joint is driven by a motor. Compared to the mass of joint, the mass of the sevor motor is very big and the actuators often contribute a significant portion of the weight of manipulator outspreading. And it is a big challenge to design the little sevor motor now. As for the light manipulator design with big ratio between load and mass of joint, it is interesting to investigate the solution of compressing the components and using lesser motors to actuate more joints which can be used to decrease the mass of outspreading manipulator. This dissertation does some in-depth investigations on development of 6DOFs manipulator based on the methods of lighter manipulator design, the new mechanism of transforming, motion error model and clutch control system.
     Firstly, based on the structural features of the lighter manipulator and with reference to the conventional design, three methods of lighter manipulator design are proposed which are the techique of single-motor-driven, the principle of functions replacement based on dynamics, and modular design based on general bevel structrue. According to the three methods, the structural features of clutch coupling transforming mechanism are studied for joint design based on clutch working. Two joints designs based on clutch coupling transforming is introduced which axes are perpendicular to each other. The two joints are the component of a robot module with 2DoFs. A multi-joint manipulator is designed based on the robot module.
     Secondly, a motion model for rigid manipulator is built which joints axes are perpendicular to each other. The trajectory of the end of manipulator is studied by the kinematics of robot. The error model is built for flexible manipulator with flexible joint, and the motion error of flexible manipulator is studied under the same rules of joint motion with rigid manipulator. And the error model is built for the flexible manipulator with eccentric mass and the motion error for eccentric mass mounted in the joint is studied through comparison with the flexible manipulator with no eccentric mass in the joint.
     Thirdly, as for the joint structural features, manipulator performance for dynamic and kinematic is studied in the perspectives of main speed of joint, frequency characteristic and work space. The end of manipulator is simulated in the work space by software, and the frequencies of structure are obtained for control system.
     Forthly, with the analysis of clutch working process, a dynamic model is established for accurate control. According to the load of joint, the model of cluch with low speed and heavy load is established for the velocity modulated control system. Two parameters of control clutch system are studied. And a model for joint control is studied based on the simple clutch system. The single joint and double joints control system are simulated for position control in theory.
     Finally, it presents that the implementation of a new manipulator with six joints is driven by a DC motor. Two experiments and simulations which are line tracking and arc tracking are shown to verify the experimental system. And the methods for error compenstation are proposed in the structure and control system design.
引文
[1]蒋新松.未来机器人技术的发展方向[J].机器人技术与应用,1997,2:2-5.
    [2]王田苗,唐粲,魏军等.基于PLC的神经外科机器人控制系统研究[J].机器人,2006,28(5):495-498.
    [3]M.Oda,K.Kibe,F.Yamagata. ETS-Ⅶ, Space Robot In-Orbit Experiment Satellite. Proceedings of the IEEE International Conference on Robotics and Automation Minneapolis,1996:739-744.
    [4]Mitsushige.Oda. Space robot experiments on NASDA's ETS-Ⅶ satellite-Preliminary overview of the experiment results. Proceedings of the IEEE International conference on Robotics and Automation,1999:1390-1395.
    [5]http://vesuvius.jsc.nasa.robotnaut.html\Robonaut.htm.
    [6]G.Hirzinger,K.Landzettel,D.Reintsema,C.Preusche,etc. Rokviss-robotics Component Verification On Iss[C]. Proc. of The 8th International Symposium on Artifical Intelligence,Robotics and Automation in Space-Isairas. Munich, Germany,2005:3879-3885.
    [7]Van Swieten, A.C.M.,Schoonejans.P., Verification and performance of the ERA simulation facility. Proceedings of 3rd Workshop on simulator for European Space Programmes,1994:453-462.
    [8]原魁.工业机器人发展现状与趋势[J].现代零部件,2007,(01):34-38.
    [9]于殿勇,李瑞峰,孙立宁等.120kg负载工业机器人的开发[J].高技术通讯,2002(06):79-82.
    [10]刘其峰.钱江一号弧焊机器人动力学分析与结构设计[D].[硕士学位论文],杭州,浙江大学,2007.
    [11]Karbasi, H., Huissoon, J., P. and Khajepour, A. Uni-drive modular robots:theory, design,and experiments [J]. Mechanism and Machine Theory.2004,39:183-200.
    [12]R. Cabas. Design and development of a light weight embodied robotic hand activated with only one actuator. Intelligent Robots and Systems,2005. (IROS 2005).2005 IEEE/RSJ International Conference on 2005 pp.2369-2374.
    [13]Zhu, H., H., Xie, M., Lim, M., K.:Modular Robot Manipulator Apparatus,
    PCT/SG00/0002, (2000)
    [14]Xie Ming. Fundamentals of Robotics:Linking Perception to Action, World Scientific,1st Ed. Singapore (2003).
    [15]马培荪,王建滨,朱海鸿等.一种蛇形柔性臂的系统及结构.上海交通大学学报,2001,35(1):72-75.
    [16]Shammas, E., A., Choset, H.. Orientation Preserving Angular Swivel Joint,US Patent Number 6,871,563, (2005)
    [17]Shammas, E., A., Wolf, A., Brown, H., and Choset, H.:New Joint Design for Three-dimensional Hyper Redundant Robots. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3594-3599(2003)
    [18]E.A. Shammas, A. Wolf, and H. Choset. Three Degrees-of-freedom joint for spatial hyper-redundant robots. Journal of Mechanism and Machine Theory, April, 2005, pp.170-190.
    [19]H. Choset, E. shammas.:Orientation Preserving Angular Swivel Joint, US2005/6871563B2.
    [20]熊有伦.机器人技术基础.武汉:华中理工大学出版社,1996.
    [21]朱海鸿.铰杆式同步万向联轴器。专利号:94112143.7上海.
    [22]吴伟国.冗余度机器人运动学基本理论与七自由度仿人手臂的研究.哈尔滨工业大学博士学位论文,1995.
    [23]刘辛军,汪劲松等.并联机器人机构新构型设计的探讨.中国机械工程,2001,12(12),1339-1342.
    [24]刘辛军,汪劲松等.一种串并联结构拟人七自由度冗余手臂的设计.中国机械工程,2002,13(2):101-104..
    [25]Bojinov H, Casal A, Hogg T. Emergent structures in modular self-reconfigurable robots [C]. Proceedings of the 2000 IEEE International Conference on Robotics &Automation. San Francisco,2000,1734-1741.
    [26]Zhang Liang, Zhao Jie, Cai Hegao. Research on mechanism design and motion planning of a modular self-reconfigurable robot [C]. Proceedings of the 5th World C ongress on Intelligent Control and Automation. Hangzhou,2004,4821-4825.
    [27]王田苗,邹丹,陈殿生.可重构履带机器人的机构设计与控制方法实现[J].北京航空航天大学学报,2005,31(7):705-708.
    [28]刘金国等.链式模块化可重构机器人变形机理研究[J].农业机械学报,2005,36(9):101-105.
    [29]王靖,李斌,马书根等.模块化可变形机器人控制系统设计与变形方法研究[J].机器人,2006,28(5):457-462.
    [30]陈丽,王越超,马书根等.一种可重构蛇形机器人的研究[J].中国机械工程,2003,14(16):1351-1354.
    [31]Yim M, Duff D G, Roufas K D. PloyBot:a modular reconfigurable robot[A]. Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE,2000,514-520.
    [32]Satoshi M, Eiichi Y, Akiya K, etal. M-TRAN:self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics.2000,7(4):431-441.
    [33]邵志宇,孙汉旭,贾庆轩.一种空间机械臂构造模块的研制[J].宇航学报,2007,28(1):147-151.
    [34]J. Butterfass, G. Hirzinger, S. Knoch, H. Liu. DLR'S Multisensory Articulated Hand. Part Ⅰ:Hard-and Software Architecture. Proceedings of the IEEE International Conference on Robotics and Automation. Leuven, Belgium.1998:2081-2086.
    [35]J. ButterfaSS, M. Grebenstein, H. Liu and G. Hirzinger. DLR-Hand Ⅱ: Next Generation of a Dextrous Robot Hand. Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, Korea.2001:21-26.
    [36]H. Liu, J. Butterfass, M. Grebenstein, G. Hirzinger. "DLR Multi-sensory Articulated Hand Ⅰ and Ⅱ". Proceedings of the 2001 International Workshop on Bio-Robotics & Teleoperation, Beijing, China. May 2001:76-83.
    [37]刑仁涛,超声电机驱动多关节机器人的设计与控制[D].[硕士学位论文],南京,南京航空航天大学,2007.
    [38]A.Kato, N.Kondo, H.Narita. Compliance control of direct drive manipulator using ultrasonic motor. Proceeding of IEEE International Conference on Robotics and Automation,1996(5):3056-3059.
    [39]H.Das, X.Bao, Y.Bar-Cohen. Robot manipulator technologies for planetary exploration. Proceeding of the 6th Annual International Symposium on Smart Structures and Materials, Newport Beach,CA.1999.
    [40]Karbasi, H.. Uni-drive modular robots. PhD Thesis, Department of Mechanical Engineering, University of Waterloo, Waterloo, Canada,2003.
    [41]Xie Ming, Purnawali Hendra. Design of Single-Motor-Driven Robot Arms Having Independent Degrees of Freedom. School of Mechanical & Production Engineering Nanyang Technological University.
    [42]Li Mingjian. Toward single motor driven biped robot[D]. PhD thesis. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore,2005.
    [43]Ramirez, H. S., Zribi, M., Ahmad, S. Pulse width modulated control of robotic manipulators[C]. Proceeding of the 29th IEEE Conference on Decision and Control,1990,1:366-367.
    [44]Chen, W.J., Xie, M.. On the Design of a Novel Dexterous Hand[C]. Proc. 9thInternational Conference on Advanced Robotics,1999,61-65.
    [45]邵家壤,时丽华.调速器弹性驱动元件性能及其对系统的影响.内燃机车,1984,10:16-21.
    [46]庞向阳,王聪瑜,汤更秀.神光Ⅱ装置中驱动式弹性联轴器的研制.机械设计与制造,2003,3:89-90.
    [47]Dieter Vischer, Oussama Khatib. Design and Development of High-Performance Torque-Controlled Joints [C]. IEEE Transactions on Robotics and Automation, 1995,11(4):537-544.
    [48]Yamaguchi J, Takanishi A.. Development of a Biped Walking Robot Having Antagonistic Driven Joints Using Nonlinear Spring Mechanism[C]. IEEE International Conference on Robotics and Automation,1997,1:185-192.
    [49]贾庆轩,杨磊,孙汉旭机器人模块化关节的设计与实现[J].机电产品开发与创新,2005,(18)6:1-3.
    [50]白恩元,王俊元,孙爱国.现代数控机床伺服及检测技术.北京:国防工业出版社2002.1-5.
    [51]诸静.机器人与遥控技术.浙江:浙江大学出版社,1991.126-141.
    [52]潘小炬.水下机器人新型关节伺服系统研究[硕士学位论文],武汉,华中科技大学,2005.
    [53]李磊.六自由度机械臂控制系统设计[D].[硕士学位论文],哈尔滨,哈尔滨工程 大学,2007.
    [54]胡企贤.电磁离合器[M].上海:上海科学技术出版社.1981.
    [55]雷雨龙,葛安林,李凯.液压电控离合器接合速度控制[J].汽车技术,2005,12:24-26.
    [56]杨庆,吴光强,吴小清.双离合器式自动变速器选换档控制系统的设计[J].机电工程技术,2007,36(1):86-88.
    [57]计策.剑杆织机送经驱动控制系统研究[D].西北工业大学,2005.
    [58]卫冬生,艾钢,郑长江.基于虚拟样机技术的新型大功率离合器建模与仿真[J].柴油机,2008,30(2):18-21.
    [59]田颖,孙聿峰,卢青春.基于Matlab的自动同步离合器建模与仿真[J].清华大学学报(自然科学版),2004,44(2):255-257.
    [60]苏文斗.自动同步离合器的啮合动力学问题[J].热能动力工程,1989,4(6)40-46.
    [61]刘成,方玉昌.中继式自动同步离合器啮合过程及设计中的几个问题[J].热能动力工程,1991,6(2):86-91.
    [62]田颖,牛中毅,张正一等.柴-燃联合动力装置中自动同步离合器动态特性实验研究[J].热能动力工程,2002,17(1):37-40.
    [63]魏君波.船用大功率自动同步离合器试验[J].热能动力工程,1997,12(5):351-353.
    [64]H. Sira-Ramirez, M. Zribi, and S. Ahmad. Pulse width modulated control of robotic manipulator [J]. International Journal of Systems Science, 1993,24(8):1423-1437.
    [65]Denavit, Hartenberg J R S. A kinematic notation for low-pair mechanisms based on matrices[J].ASME Journal of Applied Mechanics,1955(6):215-221.
    [66]Paul.R.P, Robot Manipulator:Mathematics, Programming and Control, Cambridge:MITPress,1981.
    [67]K.S.Fu, R.C.Gonzalez, andC.S.G.lee, Robotics.Control, sensing, vision and Intellience. McGraw-Hill,1987.
    [68]C.S.G.Lee. Robot arm kinematics, dynamics and control, IEEE Computer, 1982,15:62-80.
    [69]J.J.Craig, Introduction to Robotics. Addison Wesley,second ed.,1989.
    [70]付京逊,R.C.冈萨雷斯,C.S.G.李等译,机器人学:控制传感技术视觉智能[M].北京:中国科学技术出版社,1989
    [71]Hayati S A. Robot arm geometric link parameter estimation[A]. Proceedings of the 22nd IEEE Conference on Decision and Control[C],1983:1477-1483.
    [72]Ziegert J, Datseris P. Basic Consideration for Robot Calibration. Proceedings of IEEE Robotic and Automation Conference[C],1988:932-938.
    [73]蔡鹤皋,张超群,吴伟国.机器人实际几何参数识别与仿真[J].中国机械工程,1998,9(10):11-14.
    [74]谭月胜,孙汉旭,贾庆轩等.旋量理论在机械臂末端执行器运动精度分析中的应用研究[J].机械科学与技术.2006.25(5):534-538.
    [75]Whitney, D.E.The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators. Trans.ASME J. Dynamic Systems Measurement and Control 1972,122:306-309.
    [76]闫华,刘桂雄,郑时雄.机器人位姿误差建模方法综述[J].机床与液压,2000,1:3-6.
    [77]黄宇中,胡宇方.机器人机构精度研究的进展[J].机器人,1989,3(6):53-57.
    [78]K.J.Waldron, Positioning accuracy of manipulators. Proc. NSF Workshop on the impact on the Academic Community of required Research Activity for Generalized Robotic Manipulators. Univesity of Florida,1978.
    [79]Kumar A, Prakash S. Analysis of mechanical errors in manipulators. In:Proc.6th World Cong on TMM,1983:960-964.
    [80]陈明哲,张启先.工业机器人误差分析[J]北京航空学院学报,1984,2:11-22.
    [81]Vukobrotovic M,Potkonjak V. Dynamic of manipulation robots theory and application[M],1982.
    [82]安永辰,王兴海.机器人的弹性动力分析[C]全国工业机器人学术年会,1985.
    [83]焦国太等.多因素影响下的机器人综合位姿误差分析方法[J].应用基础与工程科学学报,2004,12(4):435-442.
    [84]焦国太,阿·德·依科拉夫,余跃庆.工业机器人位姿误差的计算[J].机械科学与技术,2002,21(1):35-36.
    [85]焦国太,余跃庆,梁浩.机器人位姿误差的结构矩阵分析方法[J].应用基础与工程科学学报,2001,9(2-3):259-265.
    [86]许雪峰,董星涛,孙麟治.谐波齿轮传动误差分析[J].浙江工业大学学报,1996,24(1):53-60.
    [87]谭月胜,孙汉旭,肖爱平.模块化柔性臂空间机器人运动误差分析[J].机械设计,2004,21(9):14-16.
    [88]王卫青,师忠秀,胡艳营,吴焕芹.机械手精度的稳健性分析与误差补偿[J].青岛大学学报.2006.21(2):64-67.
    [89]王树新,员今天,石菊荣等.柔性机械臂建模理论与控制方法研究综述[J].机器人,2002,24(1):86-92.
    [90]崔玲丽,张建宇,高立新等.柔性机械臂系统动力学建模的研究[J].系统仿真学报,2007,19(6):1205-1208.
    [91]Readman M C. Flexible Joint Robobts [M]. CRC Press,1994.
    [92]Spong M W. Robot Dynamics and Control [M]. New York:John Wiley & Sons, 1989.
    [93]Ghorbel F, Hung J Y, Spong M W. Adaptive Control of Flexible Joint Manipulators [C], Proceedings on 1989 IEEE Conference on Robotics and Automation,1989,1188-1193.
    [94]Yu J S, Hu R, Mueller PC. An Approach to Adaptive Decentralized Control of Flexible Joint Robots [C]. Proceedings of the 1993 IEEE/RJS International Conference on Intelligent Robots and Systems,1993,26-30.
    [95]邱志成.基于特征模型的柔性关节机械臂的控制[J].系统仿真学报,2002,14(8):971-974.
    [96]Yue Shigang, Yu Yueqing, Bai Shixian. Flexible Rotor Beam Element for the Manipulators with Joint and Link Flexibility [J]. Mech. Mach Theory,1997,32 (2): 209-219.
    [97]张绪平,余跃庆.具有柔性关节和柔性杆的空间机器人频率特性[J].机器人,1998,20(5):342-346.
    [98]叶庆泰,朱正.谐波传动的动态特性及其减振措施[J].传动技术,1994,2:1-5.
    [99]邱志成,韩建达,谈大龙等.谐波驱动系统的特性及控制策略研究[J].机器人,1999,21(6):442-449.
    [100]刘延杰,孙立宁,蔡鹤皋等.谐波驱动并联机器人的加速度反馈抑振控制[J].哈尔滨工业大学学报,2004,36(3):281-285.
    [101]邱志成.谐波驱动柔性关节机械臂接触力的动态特性[J].测试技术学报,2006,20(5):377-382.
    [102]刘晓平,李景湧,员超等.120kg点焊机器人运动状态下的动态特性分析[J].中国机械工程,2002,13(13):1137-1140.
    [103]刘其峰.钱江一号弧焊机器人动力学分析与结构设计[D].[硕士学位论文],杭州,浙江大学,2007.
    [104]傅祥志.机械原理(第二版).武汉:华中理工大学出版社,2000.
    [105]熊根良,刘伊威,黄剑斌等.基于DSP/FPGA的反步法阻抗控制柔性关节机械臂[J],控制与决策,2009,24(8):1137-1142.
    [106]刘业超,金明河,刘宏.柔性关节机器人基于柔性补偿的奇异摄动控制[J],机器人,2008,30(5):460-466.
    [107]Amir Degani, Amir Shapiro, Howie Choset,etc. A dynamic single actuator vertical climbing robot[C].Proceedings of the international conference on intelligent robots and systems,2007,2901-2906.
    [108]Judd R P, Knasinski. A technique to calibrate industrial robots with experimental verfication [J]. IEEE Trans. On Robotics & Automation,1991,6 (1):20-30.
    [109]曹志奎,马培荪,卢长利.蛇形柔体机器人的创新特点及关节间隙对位姿误差的影响[J].传动技术,1999,04:29-33.
    [110]张志文,干方建.连杆受重力作用引起的机器人运动误差[J].机械研究与应用,2006,19(1):73-75.
    [111]金仁成,赵继,杨红梅.RV-M1型机器人的运动误差分析[J].汽车工艺与材料,1999,11:31-33.
    [112]沈龙骥,方明伦,朱传镳等。5R机器人关节刚度对动态特性的影响[J].上海大学学报(自然科学版),1996,2(6):622-626.
    [113]熊有伦.机器人学.机械工业出版社.1993.
    [114]石和平,陈文良.弹性多臂系统动力分析[J].振动工程学报,1993,6(4):370-375.
    [115]张绪平,余跃庆.集中质量对柔性空间机器人振动特性的影响[J].机械科学与技术1999,18(1):80-82.
    [116]沈龙骥,方明伦,朱传镳等。5R机器人关节刚度对动态特性的影响[J].上海大学学报(自然科学版),1996,2(6):622-626.
    [117]姜英,陈宗毅,顾玉娜.空间六自由度多关节机器人连续工作容积仿真的研究[J].组合机床与自动化加工技术,2007,6:26-30.
    [118]Khiar Nait-Chabane, Philippe Hoppenot, Etienne Colle. Mobile arm for disabled people assistance manipulability measure for redundancy solve [J]. J.Intell Robot Syst,2006,47:33-54.
    [119]钟勇,朱建新.一种新的机器人工作空间求解方法[J].机床与液压,2004,4:66-67.
    [120]蔡蒂,谢存禧,张铁等.基于蒙特卡洛法的喷涂机器人工作空间分析及仿真[J].机械设计与制造,2009,3:161-162.
    [121]M.H.伊万诺夫.谐波齿轮传动[M].国防工业出版社,1987,第一版.
    [122]王长明,阳培,张立勇.谐波齿轮传动概述[J].机械传动,2006,30(4):86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700