微小型光纤传感器理论建模与设计实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感器以其抗电磁干扰、耐恶劣环境、远程测量、体积小等先天优势从众多传感器中脱颖而出,成为现代传感技术的主攻方向。作为光纤传感领域中的重要一族,光强反射式光纤传感器更具有结构紧凑、成本低廉、性能可靠、设计灵活等独特优点。本文以非接触式高精度微位移和氢气测量为突破口,在微小型光纤传感器的理论建模、光强补偿技术、微弱信号处理技术以及传感器样机研制和试验等方面进行了系统深入的研究。
     首先,根据位移和氢气的不同传感机理,建立了反射式光纤位移传感器和微镜式光纤氢气传感器的理论模型,仿真研究了传感器的理论特性,分析了各相关参量对传感器特性的影响规律,实验验证了理论模型的有效性。
     为改善光纤传感器在微位移和氢气测量中的精度、稳定性、线性范围、探头尺寸等,在分析了影响传感器性能的各种因素和典型光强补偿方法的基础上,提出了一种组合式光纤束位移传感器探头和一种耦合器分光型光纤氢气传感器探头,给出了基于理论模型的探头优化设计方法,实验验证了探头的补偿效果。
     为进一步提高光纤传感器的测量精度和线性范围,本文还研究了光强补偿算法。将神经网络应用于光纤传感器的光强补偿,提出了一种基于径向基函数神经网络的光强补偿方法。针对研发的新型探头,进行了神经网络补偿实验,结果表明,该方法同时实现了光纤传感器的高精度光强补偿和非线性校正。
     微弱光电信号处理是光纤传感器的重要组成部分。研究了相关检测理论和锁定放大技术,开发了光纤传感器的模拟信号处理系统和嵌入式数字信号处理系统,实现了性能稳定的光源调制驱动和接收信号的实时高精度解调。数字信号处理系统还具有可置换的光纤探头接口和网络接口,并实现了自诊断、自校正等智能功能。
     最后,基于上述研究结果,研制了光纤位移传感器和光纤氢气传感器样机,给出了相关制作工艺,进行了传感器的试验研究。试验结果表明,这两种样机均达到了设计要求的性能指标。
Due to the advantages of immunity to electromagnetic interference, resistance to harsh environment, remote measurement, and small size, an optical fiber sensor outstands from others and becomes the main direction of advanced sensing technologies. As important one of optical fiber sensors, the intensity reflecting optical fiber sensor has more unique advantages of compact structure, low cost, good reliability and flexibility.
     In respect of non-contact high-precision micro-displacement measurement and hydrogen gas detection, several key problems of micro optical fiber sensors are studied systematically in this dissertation, which include theoretical modeling, intensity compensation, weak signal processing, as well as developing and testing of prototypes.
     Firstly, according to different sensing mechanisms in displacement and hydrogen measurement, the theoretical models of reflective optical fiber displacement sensor and micro-mirror optical fiber hydrogen sensor are built, respectively. Their theoretical characteristics are simulated, the influence rules of related parameters on which are analyzed and the validity of the built models are verified by experiment.
     After analyzing various factors influencing on performance of optical fiber sensors and typical intensity compensation methods, in order to improve their precision, stability, linear range and probe size, a combined optical fiber bundle displacement sensor probe and an optical fiber coupler hydrogen sensor probe are proposed. Their optimizing design methods based on theoretical models are presented. To illustrate compensation performance of the proposed probes, experiments are carried out.
     An intensity compensation algorithm is studied to increase the precision and linear range of optical fiber sensors further. Applying neural network to intensity compensation of optical fiber sensors, a method based on radial basis function network is proposed. Experiments using the proposed method show that intensity compensation and nonlinearity correction of optical fiber sensors are fulfilled simultaneously.
     Weak photoelectric signal processing is an important part of optical fiber sensor. Theories about correlation detection and lock-in amplifier are studied. An analog signal processing system and an embedded digital signal processing system for optical fiber sensors are developed, which modulate and drive the light source stably and realtime demodulate the receiving signals. The digital signal processing system has a replaceable optical fiber probe interface and a network interface, and some intelligent functions as self-diagnostics and self-correction.
     At last, based on the research above, the prototypes of an optical fiber displacement sensor and an optical fiber hydrogen sensor are developed. Corresponding fabricating technics are presented. Testing results show that they satisfied design requirements.
引文
[1]廖延彪.中国光纤传感技术发展的概况.激光与红外. 1996, 26(4): 244-252
    [2] Fujii Y. Recent development of fiber-optic technology. IEICE Transactions on Communications. 1997, E80-B(4): 504-507
    [3] Grattan K T V, Sun T. Fiber optic sensor technology: an overview. Sensors and Actuators A (Physical). 2000, 82(1): 40-61
    [4]何慧灵,赵春梅,陈丹,等.光纤传感器现状.激光与光电子学进展. 2004, 41(3): 39-41
    [5]张志鹏.光纤传感器原理.北京:中国计量出版社, 1991
    [6]孙圣和,王廷云,徐影.光纤测量与传感技术.哈尔滨:哈尔滨工业大学出版社, 2000
    [7]姜德生.中国光纤传感器的发展与产业化.自动化信息. 2002, 25(1): 16-19
    [8]皮广禄.国外传感器技术的现状与发展(II).传感器世界. 1999, (1): 7-14
    [9] Potapov V T, Sedykh D A, Sokolovskii A A. Fiber-optic interferometric displacement sensor. Measurement Techniques. 1988, 31(6): 561-563
    [10] Sasaki O, Suzuki T. Interferometric displacement sensors using sinusoidal phase-modulation and optical fibers. in: Proceedings of SPIE, vol. 5633, 2005. 120-127
    [11]江绍基,曾斌,梁有程,等.实现微位移测量的非本征法布里-珀罗干涉型光纤传感器.光学技术. 2005, 31(4): 595-597
    [12] Kissinger C D. Fiber optic proximity probe. US Patent 3327584, 1967
    [13] Kissinger C D. Fiber optic displacement measuring apparatus. US Patent 3940608, 1976
    [14] Cook R O, Hamm C W. Fiber optic lever displacement transducer. Applied Optics. 1979, 18(19): 3230-3241
    [15] MTI Instruments Inc. MTI-2000 fotonic sensor. http://www.mtiinstruments.com
    [16] Shimamoto A, Tanaka K. Optical fiber bundle displacement sensor using an ac-modulated light source with subnanometer resolution and low thermal drift. Applied Optics. 1995, 34(25): 5854-5860
    [17]李学金,张怀宇.反射式光纤位移传感器的线性补偿研究.深圳大学学报(理工版). 1998, 15(2-3): 54-59
    [18] Brenci M, Mencaglia A, Mignani A G, et al. Fiberoptic vibration sensor for high-power electric plants. in: Proceedings of SPIE, vol. 1230, 1990. 490-494
    [19] Conforti G, Brenci M, Mencaglia A, et al. Multimode fiber-optic vibrometer. in: Proceedings of the 6th International Conference on Optical Fiber Sensors (OFS '89), 1989. 194-200
    [20]李平,田大超,王锡杰.反射式光纤测振仪的研究.现代计量测试. 1997, (2): 26-30
    [21]江毅,高春清.多通道光纤振动传感器系统.传感器技术. 2002, 21(3): 8-10
    [22] Inasaki I. In-process measurement of surface roughness during cylindrical grinding process. Precision Engineering. 1985, 7(2): 73-76
    [23] Zou D, Lu H, Yang S. The fibre optic sensor in the in-process measurement of surface roughness. Measurement. 1991, 9(4): 172-175
    [24] Zhang K, Butler C, Yang Q, et al. A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks. IEEE Transactions on Instrumentation and Measurement. 1997, 46(4): 899-902
    [25]王毅,陈荣,陈光辉,等.基于神经网络的反射式表面粗糙度光纤传感器.光子学报. 2000, 29(6): 545-548
    [26] Alayli Y, Topcu S, Wang D, et al. Applications of a high accuracy optical fiber displacement sensor to vibrometry and profilometry. Sensors and Actuators A (Physical). 2004, 116(1): 85-90
    [27] Jones B E, Spooncer R C. An optical fibre pressure sensor using a holographic shutter modulator with two-wavelength intensity referencing. in: Proceedings of SPIE, vol. 514, 1984. 223-226
    [28] Cuomo F W. Pressure and pressure gradient fiber-optic lever hydrophones. Journal of the Acoustical Society of America. 1983, 73(5): 1848-1857
    [29] He G, Cuomo F W, Zuckerwar A J. Diaphragm size and sensitivity for fiber optic pressure sensors. in: Proceedings of the SPIE, vol. 1584, 1991. 152-156
    [30] Lawson C M, Tekippe V J. Fiber-optic diaphragm-curvature pressure transducer. Optics Letters. 1983, 8(5): 286-288
    [31] Yuan L, Qiu A. Fiber-optic diaphragm pressure sensor with automatic intensity compensation. Sensors and Actuators A (Physical). 1991, 28(1): 29-33
    [32]李艳萍,张丽红,伦翠芬,等.反射式强度调制型光纤压力传感器的研究.传感技术学报. 2005, 18(1): 180-183
    [33] Liu R F, Jiang G, Jiang H Y, et al. Reflective fiber temperature sensor using a bimetallic transducer. in: Proceedings of SPIE, vol. 1572, 1991. 189-191
    [34] Berthold J W, Reed S E, Sarkis R G. Reflective fiber optic temperature sensor using silicon thin film. Optical Engineering. 1991, 30(5): 524-528
    [35] Arregui F J, Matias I R, Cooper K L, et al. Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating. IEEE Sensors Journal. 2002, 2(5): 482-487
    [36]王莉田,张玉艳,王玉田.基于位移传感的光纤温度传感器.传感器技术. 2001, 20(2): 12-16
    [37]赵勇,荣民,廖延彪.用于海洋井下温度检测的反射式光纤传感器及补偿技术.中国激光. 2003, 30(1): 75-78
    [38] Golnabi H. Mass measurement using an intensity-modulated optical fiber sensor. Optics and Lasers in Engineering. 2002, 38(6): 537-548
    [39]付敬奇,董新平.强度调制光纤加速度传感器.传感器技术. 2001, 20(11): 20-23
    [40]杨宝清,刘英明.光纤测振加速度传感器的研究.大连铁道学院学报. 2001, 22(4): 21-24
    [41]付江志,曹家年.一种RIM型低频振动光纤加速度传感器的设计.应用科技. 2006, 33(4): 18-20
    [42] Zhao Z, Lau W S, Choi A C, et al. Modulation functions of the reflective optical fiber sensor for specular and diffuse reflection. Optical Engineering. 1994, 33(9): 2986-2991
    [43] Beckmann P, Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon, 1963
    [44] Kissinger C D. Fiber optic lever displacement sensors and automated reflectance compensation improvements. in: FOC/LAN83, 1983. 300-304
    [45] Frank W E. Detection and measurement device having a small flexible fiber transmission line. US Patent 273447, 1966
    [46] Cook R O, Hamm C W, Akay A. Shock measurement with non-contacting fiber optic levers. Journal of Sound and Vibration. 1981, 76(3): 443-456
    [47] Davis C M. Fiber optic sensor: an overview. Optical Engineering. 1985, 24(2):347-351
    [48] Krohn D A. Intensity modulated fiber optic sensors overview. in: Proceedings of SPIE, vol. 718, 1986. 2-11
    [49] Shimamoto A, Tanaka K. Geometrical analysis of an optical fiber bundle displacement sensor. Applied Optics. 1996, 35(34): 6767-6774
    [50]三好隆志,斋藤胜政.同心圆型光フアイバ束の解析.精密机械. 1981, 47(3): 74-79
    [51]三好隆志,斋藤胜政.同心圆型光フアイバ束の受光特性.精密机械. 1981, 47(5): 33-39
    [52] Zhao Z, Lau W S, Choi A C, et al. Modulation function of a reflective fiber sensor with random fiber arrangement based on a pair model. Optical Engineering. 1995, 34(10): 3055-3061
    [53] Hoogenboom L, Hull-Allen G, Wang S. Theoretical and experimental analysis of a fiber optic proximity probe. in: Proceedings of SPIE, vol. 478, 1984. 46-57
    [54] Zheng J, Albin S. Self-referenced reflective intensity modulated fiber optic displacement sensor. Optical Engineering. 1999, 38(2): 227-232
    [55] Faria J B. A theoretical analysis of the bifurcated fiber bundle displacement sensor. IEEE Transactions on Instrumentation and Measurement. 1998, 47(3): 742-747
    [56] Faria J A B. Modeling the Y-branched optical fiber bundle displacement sensor using a quasi-Gaussian beam approach. Microwave and Optical Technology Letters. 2000, 25(2): 138-141
    [57] Faria J B, Postolache O, Pereira J D, et al. Automated characterization of a bifurcated optical fiber bundle displacement sensor taking into account reflector tilting perturbation effects. Microwave and Optical Technology Letters. 2000, 26(4): 242-247
    [58] Yuan L, Pan J, Yang T, et al. Analysis of the compensation mechanism of a fiber-optic displacement sensor. Sensors and Actuators A (Physical). 1993, 36(3): 177-182
    [59]杨华勇,吕海宝,徐涛.基于单光纤对模型的光纤束调制函数的建模与仿真.光子学报. 2002, 31(6): 719-723
    [60]毛宗强.氢能——21世纪的绿色能源.北京:化学工业出版社, 2005
    [61]张国舟,童晓艳,梁国柱,等.液体火箭发动机气动谐振点火技术的研究.宇航学报. 2001, 22(4): 81-84
    [62]华清,严成忠.液氢在高超声速航空发动机上的应用.航空发动机. 2000, (2):10-13
    [63]庞志成,张静蓉.氢能燃料电池及半导体光解水制氢研究进展.贵州化工. 2005, 30(3): 1-4
    [64]宋文生,李磊,王宇新.燃料电池汽车研发现状及发展前景.天津汽车. 2003, (1): 5-7
    [65]蔡年生.舰船用燃料电池.船电技术. 2001, (6): 1-5
    [66]薛洪熙,杨波,陈海清.燃料电池技术及其在舰艇上的应用.军民两用技术与产品. 2005, (2): 38-40
    [67] Bevenot X, Trouillet A, Veillas C, et al. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators B (Chemical). 2000, 67(1): 57-67
    [68]高波,刘嵩,朱维东,等.一种实用可靠的氢气检测器.电子技术. 1995, (7): 21-22
    [69]肖定全,余萍,朱建国,等.新型高性能氢气传感器.功能材料. 1998, 29(3): 268-270
    [70] Pan H J, Lin K W, Yu K H, et al. Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor. Electronics Letters. 2002, 38(2): 92-94
    [71]韩弼,徐静平,李艳萍,等.新颖的氧化生长绝缘层的MISiC传感器特性研究.压电与声光. 2006, 28(2): 176-178
    [72]李毅,陈礼璠.燃料电池汽车用热导式氢安全传感器研究.上海汽车. 2003, (5): 16-18
    [73]王凯.热导式氢气纯度分析仪的设计.现代电子技术. 2005, (19): 82-84
    [74] Jones M G, Nevell T G. Detection of hydrogen using catalytic flammable gas sensors. Sensors and Actuators. 1989, 16(3): 215-224
    [75] Shin W, Matsumiya M, Izu N, et al. Hydrogen-selective thermoelectric gas sensor. Sensors and Actuators B (Chemical). 2003, 93(1-3): 304-308
    [76] Ponomareva V G, Lavrova G V, Hairetdinov E F. Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sensors and Actuators B (Chemical). 1997, 40(2-3): 95-98
    [77]张麦红,孙鲲鹏,陈霭璠,等.室温全固态氢传感器研究.北京化工大学学报. 2000, 27(2): 49-51
    [78] Siebert E, Rosini S, Bouchet R, et al. Mixed potential type hydrogen sensor. Ionics. 2003, 9(3-4): 168-175
    [79] Martin L P, Pham A Q, Glass R S. Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics. 2004, 175(1-4): 527-530
    [80]杜善义,张晓晶,陈吉安,等.光纤氢传感技术的研究现状及其应用前景.宇航学报. 2004, 25(4): 466-472
    [81] Butler M A. Optical fiber hydrogen sensor. Applied Physics Letters. 1984, 45(10): 1007-1009
    [82] Farahi F, Akhavan Leilabady P, Jones J D C, et al. Interferometric fibre-optic hydrogen sensor. Journal of Physics E (Scientific Instruments). 1987, 20(4): 432-434
    [83] Butler M A, Ginley D S. Hydrogen sensing with palladium-coated optical fibers. Journal of Applied Physics. 1988, 64(7): 3706-3712
    [84] Bearzotti A, Caliendo C, Verona E, et al. Integrated optic sensor for the detection of H2 concentrations. Sensors and Actuators B (Chemical). 1992, B7(1-3): 685-688
    [85] Zeakes J S, Elshabini-Riad A, Murphy K A. Extrinsic Fabry-Perot interferometric hydrogen gas sensor. International Journal of Microcircuits and Electronic Packaging. 1995, 18(3): 304-310
    [86]郑曙东,李少慧,张志鹏.变压器油中氢气浓度检测.华中理工大学学报. 1997, 25(2): 49-51
    [87] Lin H, Gao T, Fantini J, et al. A porous silicon-palladium composite film for optical interferometric sensing of hydrogen. Langmuir. 2004, 20(12): 5104-5108
    [88] Tabib-Azar M, Sutapun B, Petrick R, et al. Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sensors and Actuators B (Chemical). 1999, 56(1): 158-163
    [89] Villatoro J, Diez A, Cruz J L, et al. Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre. Electronics Letters. 2001, 37(16): 1011-1012
    [90] Villatoro J, Petrick R M, Tabib-Azar M, et al. Pd-coated fiber optic evanescent field hydrogen sensors. in: Proceedings of SPIE, vol. 6004, 2005.
    [91] Sekimoto S, Nakagawa H, Okazaki S, et al. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors and Actuators B (Chemical). 2000, 66(1): 142-145
    [92] Nakagawa H, Asakura S, Tomiuchi Y, et al. Sensing characteristics of an optical fiber sensor for hydrogen leak. Sensors and Actuators B (Chemical). 2003, 93(1-3): 142-147
    [93] Sumida S, Okazaki S, Asakura S, et al. Distributed hydrogen determination with fiber-optic sensor. Sensors and Actuators B (Chemical). 2005, 108(1-2): 508-514
    [94] Sutapun B, Tabib-Azar M, Kazemi A. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sensors and Actuators B (Chemical). 1999, B60(1): 27-34
    [95] Peng Y T, Tang Y, Sirkis J S. Characterization of hydrogen sensors based on palladium electroplated fiber bragg gratings (FBG). in: Proceedings of SPIE, vol. 3670, 1999. 42-53
    [96] Aleixandre M, Corredera P, Hernanz M L, et al. Development of fiber optic hydrogen sensors for testing nuclear waste repositories. Sensors and Actuators B (Chemical). 2005, 107(1): 113-120
    [97]陈吉安,张晓晶,武湛君,等.探测氢气泄漏的布拉格光栅型传感器.光学技术. 2005, 31(5): 688-690
    [98]彭伟斌,吴德隆.布喇格光栅光纤氢浓度传感器的研究.压电与声光. 2005, 27(2): 95-97
    [99] Trouillet A, Marin E, Veillas C. Fibre gratings for hydrogen sensing. Measurement Science and Technology. 2006, 17(5): 1124-1128
    [100] Butler M A. Fiber optic sensor for hydrogen concentrations near the explosive limit. Journal of the Electrochemical Society. 1991, 138(9): L46-47
    [101] Butler M A. Micromirror optical-fiber hydrogen sensor. Sensors and Actuators B (Chemical). 1994, 22(2): 155-163
    [102] Jung C, Saaski E, McCrae D. Fiber optic hydrogen sensor. in: Proceedings of SPIE, vol. 3489, 1998. 9-15
    [103] Kazemi A A, Larson D B, Wuestling M D. Fiber optic hydrogen detection system. in: Proceedings of SPIE, vol. 3860, 1999. 507-515
    [104]王其生,陈建元.稳定幅值型光纤传感器光源的一种新方法.仪器仪表学报. 1987, 8(3): 287-289
    [105] Spillman W B J, McMahon D H. Multimode fiber optic sensors. in: Proceedings of the 1st International Conference on Optical Fiber Sensors (OFS'83), 1983. 160-163
    [106] Spillman W B, Jr., Lord J R, Fuhr P L, et al. Self-referencing reflective multiplexing technique for fiber optic sensors and switches. in: Proceedings of SPIE, vol. 987, 1989. 9-19
    [107] Lin C-S, Chang R-S. Fiber optic displacement sensors for the measurement of a vibrating object. Precision Engineering. 1994, 16(4): 302-306
    [108]吕海宝,冯勤群,周卫红,等.激光偏振方向和强度变化对分光光强的影响.光学技术. 1999, (5): 13-15
    [109]吕海宝,冯勤群,周卫红,等.强度型光纤传感检测中的强度补偿技术.激光技术. 1999, 23(2): 91-94
    [110] Yang H, Lu H, Xu T, et al. Theoretical and experimental research on intensity compensation in RIM-FOS. in: Proceedings of the International Symposium on Test and Measurement, vol. 2, 2001. 1579-1582
    [111] Wu C. Fiber optic angular displacement sensor. Review of Scientific Instruments. 1995, 66(6): 3672-3675
    [112] Zheng B, Chen Z. X-shape optical fiber pressure sensor constituted by a single-mode optical fiber directional coupler with a reflecting end face. in: Proceedings of SPIE, vol. 2895, 1996. 421-425
    [113]杨华勇,吕海宝,徐涛,等.几种带补偿功能的三光纤传感器的分析.国防科技大学学报. 2002, 24(1): 105-108
    [114]肖韶荣,李剑白.双通道光纤位移传感器实时测量系统.半导体光电. 2000, 12(6): 414-417
    [115] Cuomo F W. The analysis of a three-fiber lever transducer. in: Proceedings of the SPIE, vol. 478, 1984. 28-32
    [116]肖平,卢文全,肖学智.阶梯反射式光纤传感探头.传感器世界. 1997, (2): 11-13
    [117]付松年,苏立国,游佰强,等.新型反射式光纤位移传感器的分析与设计.传感器技术. 2001, 20(3): 15-17
    [118] Hull-Allen G. Reflectivity compensation and linearization of fiber optic proximity probe response. in: Proceedings of SPIE, vol. 518, 1985. 81-90
    [119]徐涛,吕海宝,杨华勇,等.一种强度补偿反射式光纤传感器的研究.国防科技大学学报. 2000, 22(6): 109-112
    [120] Spooncer R C, Butler C, Jones B. Optical fiber displacement sensors for process and manufacturing applications. Optical Engineering. 1992, 31(8): 1632-1637
    [121]靳伟,廖延彪,张志鹏.导波光学传感器原理与技术.北京:科学出版社, 1998
    [122]廖延彪.光纤光学.北京:清华大学出版社, 2000
    [123] Culshaw B, Foley J, Giles I P. A balancing technique for optical fibre intensity modulated transducers. in: Proceedings of SPIE, vol. 514, 1984. 117-120
    [124] Jin X D, Fang X J, Wang A B, et al. A fiber-optical pressure sensor with an optical bridge compensating technique. Laser und Optoelektronik. 1991, 23(5): 70-73
    [125] Beheim G. Loss-compensation technique for fiber-optic sensors and its application to displacement measurements. Applied Optics. 1987, 26(3): 452-455
    [126]张鸿海,陈志祥,陈日曜.光散射法测量表面粗糙度的研究.华中工学院学报. 1987, 15(3): 97-102
    [127] Momo F, Ranieri G A, Sotgiu A, et al. Microcomputer based phase sensitive detector. Journal of Physics E (Scientific Instruments). 1981, 14(11): 1253-1256
    [128] Rice D W, Wu K H. Quadrature sampling with high dynamic range. IEEE Transactions on Aerospace and Electronic Systems. 1982, 18(6): 736-739
    [129] Liu Y, Wang Y, Yan D, et al. DPSD algorithm for AC magnetic tracking system. in: 2004 IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems (VECIMS), 2004. 101-106
    [130] Qian L, Cheng D, Zhang J, et al. Design and analysis of digital lock-in sine-wave amplitude detector based on TMS320C6xEVM. in: Proceedings of 7th International Conference on Signal Processing (ICSP'04), vol. 3, 2004. 2545-2548
    [131] Machel G, von Ortenberg M. A digital lock-in-technique for pulsed magnetic field experiments. Physica B. 1995, 211: 355-359
    [132] Pellon L E. A double Nyquist digital product detector for quadrature sampling. IEEE Transactions on Signal Processing. 1992, 40(7): 1670-1681
    [133] Wang H. Effects of fibre geometry on the modulation function of a reflective intensity modulation sensor. Journal of Modern Optics. 1996, 43(11): 2355-2366
    [134]李亚非.一种反射式光纤传感器的研究.仪器仪表学报. 2005, 26(10): 1097-1100
    [135]苑立波.光源与纤端光场.光通信技术. 1994, 18(1): 54-64
    [136] Lewis F A. The Palladium Hydrogen System. New York: Academic Press, 1967
    [137] Fukai Y. The Metal-Hydrogen System. Berlin: Springer-Verlag, 1993
    [138] Lewis F A. Hydrogen in palladium and palladium alloys. International Journal of Hydrogen Energy. 1996, 21(6): 461-464
    [139] Alefeld G, Volkl J. Hydrogen in Metals II: Application-Oriented Properties. New York: Springer-Verlag, 1978
    [140] Worsham J E, Wilkinson M K, Shull C G. Neutron-diffraction observations on the palladium-hydrogen and palladium-deuterium systems. Journal of Physics and Chemistry of Solids. 1957, 3: 303-310
    [141] Brodowsky H. System palladium-hydrogen. Z. Physik. Chem. 1965, 44: 129-142
    [142] Lasser R, Klatt K H. Solubility of hydrogen isotopes in palladium. Physical Review B (Condensed Matter). 1983, 28(2): 748-758
    [143]肖衍繁,李文斌.物理化学.天津:天津大学出版社, 2004
    [144] Flanagan T B, Park C N, Oates W A. Hysteresis in solid state reactions. Progress in Solid State Chemistry. 1995, 23(4): 291-363
    [145] Frazier G A, Glosser R. Characterization of thin films of the palladium-hydrogen system. Journal of the Less-Common Metals. 1980, 74: 89-96
    [146] Feenstra R, de Groot D G, Rector J H, et al. Gravimetrical determination of pressure-composition isotherms of thin PdHc films. Journal of Physics F (Metal Physics). 1986, 16(12): 1953-1963
    [147] Kishimoto S, Inoue M, Yoshida N, et al. Solution of hydrogen in thin palladium films. Journal of the Chemical Society, Faraday Transactions I: Physical Chemistry in Condensed Phases. 1986, 82(7): 2175-2184
    [148] Salomons E M, Feenstra R, De Groot D G, et al. Pressure-composition isotherms of thin PdHc films. Journal of the Less-Common Metals. 1987, 130: 415-420
    [149] Garcia J A, Mandelis A. Study of the thin-film palladium/hydrogen system by an optical transmittance method. Review of Scientific Instruments. 1996, 67(11): 3981-3983
    [150]方容川.固体光谱学.合肥:中国科学技术大学出版社, 2003
    [151] Khan M A, Riedinger R. Optical absorption in PdH. Journal de Physique. 1982, 43(2): 323-328
    [152] Wyrzykowski K, Rodzik A, Baranowski B. Optical transmission and reflection of PdHx thin films. Journal of Physics: Condensed Matter. 1989, 1(12): 2269-2277
    [153] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics. 1983, 22(7): 1099-1019
    [154] Wagner C. Kinetics of reaction H2(gas)?2H(dissolved in palladium). Z. physik. Chem. 1932, A159: 459-469
    [155] Auer W, Grabke H J. The kinetics of hydrogen absorption in palladium (α- andβ-phase) and palladium-silver-alloys. Ber. Bunsenges. Physik. Chem. 1974, 78: 58-67
    [156] Martens G, Kordts J, Weidinger G. Improvements of the data link dependencies of fiber optic sensor systems. Fiber and Integrated Optics. 1987, 6(4): 363-380
    [157] Wu S, Chow T W S. Induction machine fault detection using SOM-based RBF neural networks. IEEE Transactions on Industrial Electronics. 2004, 51(1): 183-194
    [158] Li Y, Qiang S, Zhuang X, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Transactions on Neural Networks. 2004, 15(3): 693-701
    [159] King D, Lyons W B, Flanagan C, et al. An optical-fiber sensor for use in water systems utilizing digital signal processing techniques and artificial neural network pattern recognition. IEEE Sensors Journal. 2004, 4(1): 21-27
    [160] Wang W. A radial basis function equalizer for optical fiber communications systems. in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'04), vol. 5, 2004. 689-692
    [161] Bianchini M, Frasconi P, Gori M. Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks. 1995, 6(3): 749-756
    [162] Poggio T, Girosi F, A theory of networks for approximation and learning, Technical Report AI Memo 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, 1989
    [163] Moody J, Darken C J. Fast learning in networks of locally-tuned processing units. Neural Computation. 1989, 1(2): 281-294
    [164] Platt J. A resource-allocating network for function interpolation. Neural Computation. 1991, 3(2): 213-225
    [165] Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks. 1991, 2(2): 302-309
    [166]朱明星,张德龙. RBF网络基函数中心选取算法的研究.安徽大学学报(自然科学版). 2000, 24(1): 72-78
    [167]王福昌,鲁昆生.锁相技术.武汉:华中科技大学出版社, 1997
    [168] Texas Instruments Inc. TMS320F2812 digital signal processor data manual. http://www.ti.com
    [169]苏奎峰,吕强,耿庆锋,等. TMS320F2812原理与开发.北京:电子工业出版社, 2005
    [170] Analog Devices Inc. A technical tutorial on direct digital synthesis. http://www.analog.com
    [171] Ifeachor E C, Jervis B W.数字信号处理实践方法. (第二版).罗鹏飞等译.北京:电子工业出版社, 2004
    [172] Philtec Inc. Philtec fiberoptic displacement sensors. http://www.philtec.com
    [173]藏雅茹.化学反应动力学.天津:南开大学出版社, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700