反射式光纤束氢气传感器的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在常温常压下,空气中泄漏的氢气浓度达到4%-74.5%时变得易燃易爆,所以安全、可靠且廉价的氢气测量传感技术是安全利用氢气的必要保障。迄今为止,基于不同工作原理的氢气传感器都曾报道过,在常温常压下能提供快速而有效的响应,但这些氢气传感器主要是电化学传感器,潜在的电磁干扰和电火花可能会引起灾难性的后果。而光纤氢气传感器却能同时满足安全、实时在线检测、不干扰被测环境、不产生电火花的要求。并且,还具有体积小、重量轻、柔韧性好,多点测量的特点;另外,光纤还能抗化学腐蚀、恶劣的环境温度和电磁干扰等,非常适合在这种环境中工作。本文主要对反射式光纤束氢气传感器的理论、设计和相关实验进行理论研究和实现。
     首先,研究了单光纤对的氢气传感器的理论特征,分析总结了各相关参数对于反射式光纤传感器的影响规律,建立了反射式光纤束氢气传感器的数学模型,为光纤在氢气传感器的应用提供了理论基础。进而给出了光纤束在反射式氢气传感器探头中的应用。与此同时,为了克服以往基于纯钯的氢气传感器发生“氢脆”现象的缺陷,大大延长了氢敏薄膜的寿命,本文研究了将银作为第二组份加入到纯钯中作为检测氢气的气敏材料,仿真分析了在氢气传感器探头中使用最佳的钯银合金的组份配比问题,建立了反射式光纤束氢气传感器的光学模型,研究了钯银合金膜厚度与氢气浓度的关系,从仿真和实验的角度找到了最佳的钯银合金反应薄膜厚度。
     为了能够提高反射式光纤束氢气传感器的精度和稳定性,在分析了传统典型光纤光路的优、缺点的基础上,提出一种不依赖于对光纤进行任何微细加工的光纤束的设计思路,以及反射式光纤束氢气传感器探头的设计方法,并对所设计的光纤束光路进行了研究和讨论,通过实验验证了该探头设计的合理性。
     提出了利用溅射方法制备钯银合金薄膜的理论模型,在模型中分析了得到理想溅射厚度和合金配比的溅射方法,讨论了在制备钯银合金膜过程中几个重要相关问题。之后利用相关检测仪器对制备的钯银合金薄膜进行了表征,得出了制备符合要求的钯银合金薄膜最佳的溅射条件。
     依据相关性检测的原理和反射式光纤束氢气传感器的信号特点,完成了反射式光纤束氢气传感器的微弱信号电路系统设计,设计了移相电路,相敏检波电路和除法电路等。
     为了进一步提高反射式光纤束氢气传感器的测量精度和抗干扰性,本文提出了基于虚拟仪器和神经网络相结合的补偿设计思路,并对反射式光纤束氢气传感器进行了补偿实验,实验结果表明:基于虚拟仪器和神经网络的补偿设计比单纯的线性拟合的输出精度高,同时尽可能地消除了由于内部和外部原因所带来的各种干扰因素,实现了反射式光纤束氢气传感器在线的非线性校正。
     最后,基于上述的研究,对反射式光纤束氢气传感器的样机进行了一系列实验测试,实验结果表明基于钯银合金的反射式光纤束氢气传感器具有良好的检测效果。
Under room temperature and standard pressure, the air becomes to be exploded when the leaked hydrogen concentration is 4%-74.5% in air; therefore, the safe, reliable and cheap hydrogen sensing and detective technology is necessary for usage of the hydrogen. So far, many hydrogen sensors that based on different operational principle, are disscuced, the sensors could provide quick and active responses in normal temperature and pressure, electro-chemical hydrogen sensor are ordinary during the mentioned hydrogen sensors, potential electromagnetic interference and electric spark could arouse the catastrophic consequence. Optical fiber hydrogen sensor could satisfy the demand of safety, online detection, undisturbed surrounding, and no spark. At one time, the optical fiber hydrogen sensors possess the some features, for example, small volume, low weight, better pliability, suitable for multipoint detection in narrow space. On the side, the optical fiber could resist the interferences of chemical corrosion, the temperature and electromagnetic in tempest. Reflective optical fiber bundle hydrogen sensors was studied systematically in this dissertation, which includes correlative sensing theoretical modeling, developing and testing of hydrogen prototypes.
     Firstly, theoretical characteristics of the single optical-fiber couple were studied, the influence rules of related parameters in optical fiber couple were analysed, the model of reflective optical fiber bundle hydrogen sensor was established, and the results provide the theoretical principle for the optic-fiber bundle in hydrogen sensor. At the same time, for the sake of avoiding hydrogen embrittlement in previous hydrogen sensors, which were based on pure palladium, gas-sensing scheme which the sliver was added to the palladium was studied, and optimal proportioning in palladium-sliver was simulated, the reflective hydrogen sensor optical model was built up. The relationships between the palladium-sliver thickness and hydrogen concentration are studied; the optimum Pd-Ag thickness was validated through simulations and experiments.
     In order to improve sensor's precision and stability, and the analyzing the virtues and shortcomings of typical optical fiber path, a new design of optical fiber bundle sensing probe which was independent of any microprocessing in optical fiber was bring forward, and optical path was discussed in detail, the experiments validated the justification of sensing probe.
     For fabricated for Pd-Ag alloy, sputtering theoretical model was put forward, and the sputtering parameters were analysed for the ideal palladium-sliver optimal proportioning and thickness of membrane. Subsequently, the relevant details in sputtering model were discussed in detail; finally, we got the optimal supptering parameters for the palladium-sliver membrane.
     According to the principles of weak signal detection and signal characterics of reflective optical fieber bundle hydrogen sensor, the system of weak signal detection is designed. At the same time, phase-shift circuit, phase-sensitive circuit and dividing circuit were designed.
     The method, which based on virtual instrument and neural network, is studied to enhance the measuring precision and anti-interference. Compared to he hydrogen sensor, experiments using the proposed method show that the higher linear precision, the method could eliminate the inside and outside interferences as possible in sensor and realize the non-linear adjustment online.
     Finally, the prototypes of reflective optical fiber bundle hydrogen sensor were tested; experimental results show that reflective optical fiber bundle hydrogen sensor based on palladium-sliver alloy has good detection effects.
引文
[1]赵振彬.光纤气体检测技术在潜艇中的应用展望.舰船科学技术,2002,24(S1):35-37
    [2]Bevenot X, Trouillet A, Veillas C, et al. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators B (Chemical).2000, 67(1):57-67
    [3]马戎,周王民,陈明.气体传感器的研究及发展方向.航空计测技术.2004,24(4):1-4
    [4]刘义祥.气体传感器在气体泄漏事故处置中的应用.消防技术与产品信息,2002,2(10):36-38
    [5]潘小青,刘庆成.气体传感器及其发展.东华理工学院学报.2004,27(1):89-93
    [6]郭凤珍,于长泰.光纤传感技术与应用[M].浙江大学出版社,1992
    [7]张志鹏,W. A. Gambling.光纤传感器原理[M].中国计量出版社,1991
    [8]魏永广,刘存.现代传感技术[M].东北大学出版社,2001
    [9]李少慧,宁雅农等译.光纤传感器[M].华中理工大学出版社,1997
    [10]Cui lujun, Chen youping, Zhang gang. A Novel Optical Fiber Bundle Displacement Sensor Based on Artificial Neural Networks. J. Comput. Theor. Nanosci.2007,4,: 1375-1379
    [11]陈幼平,曹汇敏,张冈,艾武,周祖德.反射式光纤束位移传感器的建模与仿真,光电子激光,2005,16(6):653-658
    [12]何俊男,采振祥,李学金,刘进,黄焕彬.单光纤压力传感器的研究,传感技术学报,2007,20(6):1290-1293
    [13]杨淑连,一种新型光纤压力传感器的设计,光子学报.2007,36(5):838-841
    [14]Wang Haitong, Yuan Junfei Liu Jiaojiao. Design and implementation of optical fiber temperature sensor. Electronic Measurement Technology,2007,30(2):68-71
    [15]周广丽, 鄂书林, 邓文渊.光纤温度传感器的研究和应用.光通信技术.2007,6:54-57
    [16]张伟刚,许兆文,开桂云,杨翔鹏,袁树忠,赵启大,董孝义.强度型光纤浓度传感器的设计与实现.仪器仪表学报。2003,24(3):272-274
    [17]Zhou Yufang, Zhou Zuoping, Guan Weiwen. Study on the Density Sensing Mechanism
    of Optical Fiber with Spectrum Method. Instrument Technique and Sensor.2000,2:7-9
    [18]崔陆军,陈幼平,张冈.基于ATmega16L单片机的钢丝绳直径智能检测仪表.仪表技术与传感器。2006,11:18-20
    [19]刘惊惊,殷宗敏,郭晓金.一种新型光纤振动传感器.光子学报,2003,32(3):304-306
    [20]江毅,高春清.多通道光纤振动传感器系统.传感器技术,2002,21(3):8-10
    [21]孙雨男,王茜蒨,伍剑,杨爱英.光纤技术—理论基础与应用[M].北京:北京理工大学出版社,2006
    [22]Christofides C, MandelisA. J. App 1. Phys, vol 68,1990:R1
    [23]Butler M A. Optical fiber hydrogen sensor. Applied Physics Letters.1984,45(10):45-51
    [24]BearzottiA et al. Integrated optic sensor for the detection of H2 concentrations. Sensors and Actuators B:Chemical,1992, B7(123):685-688
    [25]Wolfbesis O S. Hydrogen Sensors fiber optic chemical sensors& biosensors-CRC-vol Ⅱ:57-58
    [26]郑曙东,李少慧,张志鹏.变压器油中氢气浓度检测.华中理工大学学报[J],1997,25(2):49-51
    [27]Butler M A, Ginley D S. New Technique for Measurement of Electrode Strain during Electrochemical Reactions. J. Electro-chemical. Society,1988,135:45-51
    [28]Yan Qi-fa, Liu Yong-zhi, Zhao Yu, Study of Evanescent-field hydrogen gas sensor based on palladium-coated fiber. Instrument Technique and sensor,2008,4:5-7
    [29]Massood Tabib-Azar, et al Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interations, Proceedings of SPIE-The Inernational Society for Optical Engineering,1998,3513:80-88
    [30]Sutapun B, Tabib-Azar M, Karmi A, Pd-coated elastooptic fiber optic Bragg grating sensor for multiplexed hydrogen sensing. Sensors and Actuators B(Chemical).1999, B60(l):27-34
    [31]Xiaotong Wei, Tao Wei, Hai Xiao, Y.S.Lin, Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection. Sensors and actuators B (Chemical),2008,134:687-693
    [32]Peng Y T. The Characterization of Hydrogen Sensors Based on Palladium Electroplated Fiber Bragg Gratings (FBG). Proceedings of SPIE-The International Society for Optical
    Engineering,1999,3670:42-53
    [33]Butler M A. Micro-mirror optical-fiber hydrogen sensor. Sensors and Actuators B vol 22,1994:155-163
    [34]AlexA et al. Fiber Optic Hydrogen Detect ion System. Proceedings of SPIE-The International Society for Optical Engineering Proceedings of the 1999 Fiber Optics Sensors Techno logy and Applications, vol 3860,1999:5072515
    [35]Michael A et al. Kinetics of the micro-mirror chemical sensor. Sensors and Actuators B: Chemical, vol B11 n123,1993:161-166
    [36]Butler M A. Fiber Optic Sensor for Hydrogen Concentrations near The Explosive Limit. J. Electrochem. Soc, vol.138,1991:L 46-47
    [37]E.Maciak, Z.Opilski, Transition metal oxides covered Pd film for optical H2 gas detection, Thin Solid Films,2007, doi:10.1016/j.tsf.2007.03.022
    [38]曹汇敏,微小型光纤传感器理论建模与设计实现.武汉:华中科技大学机械学院,2006
    [39]许琰玮,刘永智.光纤氢气传感技术的研究进展,激光与光电子学进展,2006,43(7)
    [40]S.Sekimoto, H. Nakagawa, S. Okazaki, K.Fukuda, S. Asakura, T Shigemori S. Takahash, A fiber-optic evanescent-wave hydrogen gas sensor using palladium-suppoted tungsten oxide, Sensor and Actuators,2000,66:142-145
    [41]John P. Wolfe, Jens Ahman, Joseph P. Sadighi, Robert A. Singer, Stephen L.Buchwald. An Ammonis Equivalent for the Palladium-catalyzed amination of Aryl Halides and Triflates. Tetrahedron Letters,1997,38(36):6359-6362
    [42]王红娟,张帅.多晶硅薄膜材料与器件研究进展,南洋师范学院学报,2009,8(3):42-46
    [43]Li Z, Maeda H, Kusakabe K, et al. Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method. J Membrane Sci,1993,78:247
    [44]Yan S, Maeda H, Kusakabe K, et al. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Ind Eng Chem Res,1994,33:616
    [45]George Xomeritakis, Y. S. Lin. Fabrication of thin metallic membranes by MOCVD and sputtering, Journal of Membrane Science,1997,133(2):217-230
    [46]David Monzon-Hernandez, Donato Luna-Moreno, Dalia Martinez-Escobar, Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sensors and actuators B,2009,136:562-566
    [47]Libo Yuan, et al, The output optical field intensity distribution formed by an optical fiber end. Optical Communication Technology [J],1995,19(2):159-161
    [48]Y. Yang, K. Yamazaki, H. Aoyama, S. Matsumiya, Fiber optical surface topography measurement sensor and its design study. Precision Engineering [J],2000,24:32-40
    [49]J. B. Faria, Modeling the Y-branched optical fiber bundle displacement sensor using a quasi-gaussian beam approach, Microwave and Optical Technology Letters [J],2000, 25(2):138-141
    [50]Thomas Graham. Additional Observations on Hydrogenium. Proceedings of the Royal Society of London.1869,17:500-506
    [51]V.M. Gryaznov, M.M. Ermilova, N.V. Orekhova. Metal containing membranes for the production of ultrapure hydrogen and the recovery of hydrogen isotopes. Sep. Purif. Methods 2000,29171-187
    [52]Cook R O, Hamm C W. Fiber optic lever displacement transducer. Applied Optics. 1979,18(19):3230-3241
    [53]Faria J B. A theoretical analysis of the bifurcated fiber bundle displacement sensor. IEEE Transactions on Instrumentation and Measurement.1998,47(3):742-747
    [54]Faria J A B. Modeling the Y-branched optical fiber bundle displacement sensor using a quasi-Gaussian beam approach. Microwave and Optical Technology Letters.2000, 25(2):138-141
    [55]Faria J B, Postolache O, Pereira J D, et al. Automated characterization of a bifurcated optical fiber bundle displacement sensor taking into account reflector tilting perturbation effects. Microwave and Optical Technology Letters.2000,26(4):242-247
    [56]Zheng J, Albin S. Self-referenced reflective intensity modulated fiber optic displacement sensor. Optical Engineering.1999,38(2):227-232
    [57]Lawson C M, Tekippe V J. Fiber-optic diaphragm-curvature pressure transducer. Optics Letters.1983,8(5):286-288
    [58]李亚非.一种反射式光纤传感器的研究.仪器仪表学报.2005,26(10):1097-1100
    [59]Hoogenboom L, Hull-Allen G, Wang S. Theoretical and experimental analysis of a fiber optic proximity probe. in:Proceedings of SPIE, vol.478,1984.46-57
    [60]Sumida S, Okazaki S, Asakura S, et al. Distributed hydrogen determination with fiber-optic sensor. Sensors and Actuators B (Chemical).2005,108(1-2):508-514
    [61]苑立波,光源与纤端光场,光通信技术,1994,18(1):54-64
    [62]Mark Johnson. Fiber displacement sensors for metrology and control,Optical Engineering,1985,24(6):961-965
    [63]贺臣.光纤传感器在位移测量时的数学模型及设计计算.仪表技术与传感器[J],1991,1:16-21
    [64]朱建中等.非接触式微位移光纤传感器.传感技术学报,1990,(2)13-16
    [65]C. D. Kissinger. Fiber optic lever displacement transducers-Principle, Improvements and applications[J]. http://www.mtiinstrument.com/appnotes/optic.htm
    [66]周毅,孙尚祥,乐静.强度反射式光纤传感器的数学模型及参数选择,石油仪器,2001,15(5):1-4
    [67]马建军,张利民,汤伟中.反射式光纤位移传感器参考光路的分析和设计,激光杂志,1996,17(4):197-201
    [68]Y. Alayli, S. Topcu, D. Wang, R. Dib, L. Chassagne, Applications of a high accuracy optical fiber displacement sensor to vibrometry and profilometry. Sensor and Actuators A[J],2004,116:85-90
    [69]方容川.固体光谱学.合肥:中国科技技术大学出版社,2003
    [70]M.A.Khan. optical absorption in PdH. Journal of physique 43(1982)323-328
    [71]Chandrashekhar G, et al, Achieving optimum hydrogen permeability in PdAg and PdAu alloys, The journal of chemical physics,2006,125,184714
    [72]R. H. Fowler and C. J. Smithells, Proc. R. Soc. London, Ser. A 160900,900(1937); C. Wangner, Acta Metall.21,1297(1973)
    [73]Kamakoti, P.; Sholl, D. S. Science 2005,307,569
    [74]Gillan, M.J. J.phys. C:Solid State Phys.1986,19,6169
    [75]Fukai Y. The Metal-Hydrogen System. Berlin:springer-Verlag,1993
    [76]Chandrashekhar G.Sonwane, Jennifer Wilcox, and Yi Hua Ma. Achieving optimum hydrogen permeability in PdAg and PdAu alloys, the journal of chemical physics, vol125,184714(2006)
    [77]黄涛.Pd-Ag0.27-H系统中晶格气体的相变,南京师大学报(自然科学版),1985,pp:47-51
    [78]黄涛.钯银合金PdAg0.27的固态-固态相变,南京师院学报(自然科学版),1982,pP:33-38
    [79]American institute of physics handbook
    [80]Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics.
    1983,22(7):1099-1019
    [81]Zhang Xu, XUE Zengquang, Wu Quande.Optical proterties of very thin films of metal Ag, Acta Optical Sinca,1987,7(7):629-639
    [82]A. B. Wang, X. J. Fang, X. D. Jin et al. Optical fiber pressure sensor based on photo-elasticity and its application. J. Light-wave Technolog,1992,10(10):1464-1472
    [83]G. Murtaza, J. M. Senior. Referenceing strategies for intensity modulated optical fiber sensors:a review. Optics& laser technology,1993,25(4):235-245
    [84]刘洪祥.光纤传感器中光源不稳定性及光电器件零漂的处理方法,仪表技术与传感器,1996,(1):13-14
    [85]苑立波.补偿技术及其机理分析,光通信技术,1995,19(1):56-82
    [86]杨华勇,吕海宝等,RIM型光纤传感器光强补偿方法的分析与实验研究,仪表技术与传感器,2001(5):4-6
    [87]刘桂雄,钟先信,强度调制型光纤传感器信号补偿技术的现状与应用,压电与声光,1993,15(2):19-22
    [88]吕海宝,邹定海,漆新民.表面粗糙度光纤传感器检测装置的研究.仪器仪表学报,1990,11(04).441-445
    [89]Zou D H, Lu H B, Yang Sh H. Measurement.1991,9(4):172-175
    [90]Lu H B, Zou D H, Qi X M. Approach for a surface roughness measurement equipment with fiber optic sensor. Proceedings of The International Conference on Advaanced-Mechatronics, May 21-24, Tokyo Japan,1989:463-466
    [91]吕海宝等.激光偏振特性对光纤传感强度补偿的影响探因.光学仪器,1994,16(1):12-16.
    [92]吕海宝等.激光偏振方向和强度变化对分光光强的影响.光学技术,1999,(5):13-15.
    [93]邹定海,吕海宝,漆新民.光纤传感器系统中激光光强波动的特性及其补偿技术.光电工程,1991,(05):31-35
    [94]郑竖立,钱浚霞.传感器技术学报.1993,(3):24-26
    [95]Cuomo F W. SPIE,1984,478:28-32
    [96]吕海宝,冯勤群,周卫红,罗武胜,杨华勇.强度型光纤传感检测中的强度补偿技术.激光技术[J],1999,23(2):91-94
    [97]LuHB, Chen T Zh. SPIE,1996,2899:304-310
    [98]冯颖.微型钯银氢气传感器的制备与应用研究,杭州:2006,16-17
    [99]吕卓.光学氢敏传感器实验与研究.浙江,浙江大学,2006.pp:55
    [100]P. Sigmund, A. Oliva, G. Falcone, sputtering of multi-component materirals:
    elements of a theory, Nucl. Instur. Mech.1982,194:541
    [101]J.Krug, P.Meakin, Scaling properties of the shadowing model for sputter deposition, Phys.Rev.E,47(1993)R17
    [102]A.M. Ektessabi, S. Sato. Simulation of ion beam assisted deposition:a comparison with experimental results.Vacuum 44,1993,213.
    [103]H. Gnaser, H. Oechsner. Yields and composition changer in low-energy sputtering of binary alloys:experiments and computer simulations, Phys. Rev.1993, B 47(14) 199393.
    [104]I. Neshev, R.G. Vichev. Sputtering of NiTi alloys:a comparison of experiment and simulation, Vacuum 44 (1993) 209.
    [105]B. D. Cullity. Elements of X-Ray Diffraction,2nd, Addison-Wesley, Reading, MA, 1978.
    [106]B. McCool, G. Xomeritakis, Y.S. Lin. Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes. Journal of Membrane Science,1999,161:67-76
    [107]顾培夫,薄膜技术,杭州,浙江大学出版社,1990
    [108]Hien Duy Tong, J.W. Ervin Berenschot, Meint J. De Boer, J. G. E. Gardeniers, HenkWensink, Henri V. Jansen, Wietze Nijdam, Miko C. Elwenspoek, F. C. Gielens, and Cees J. M. van Rijn. Microfabrication of Palladium-sliver alloy membranes for hydrogen separation. Journal of microelectromechanical systems,2003,12(5):622-629
    [109]L.S.McLeod, F. L. Degertekin, A. G. Fedorov. Effect of microstructure on hydrogen permeation through thermally stable sputtered palladium-sliver alloy membranes. applied physics letters,2007,90,261905
    [110]Thornton J A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol.1974,11:666
    [111]Dirks A G, Leamy H J.Columnar microstructure in vapor-deposited thin films. Thin solid films,1977,49:219
    [112]Thornton J, Hoffman D W. Stress-related effects in thin films. Thin solid films, 1989,171:5
    [113]Savitskii E M. Handbook of precious metals. San Diego:Academic Press,1989.84
    [114]《贵金属材料加工手册》编写组,《贵金属材料加工手册》1978年4月第1版,P3
    [115]Sharma S K, Spitz J. Hillock formation, hole growth and agglomeration in thin silver films. Thin solid films,1980,65:339
    [116]Sharma S K, Spitz J. Void growth in thin silver films. Thin solid films,1989, 67:109
    [117]徐科军,陈荣保,张崇巍.自动检测和仪表中的共性技术.北京:清华大学出版社,2000:26227.
    [118]Ku C C, L ee K Y. Diagonal recurrent neural network for dynamic systems control. IEEE Trans on NN 1995,6(1):1442155.
    [119]戴先中,殷铭,王勤.传感器动态补偿的神经网络逆系统方法.仪器仪表学报,2004,25(5):5932594.
    [120]侯立群,仝卫国,何同祥.基于RBF神经网络的传感器静态误差综合校正方法.传感技术学报,2004,12(4):6432645
    [121]王永骥,涂健.神经元网络控制.北京:机械工业出版社,1999:1210
    [122]Pasquale A, Pasquale D, Domenico G. ANN-Based error reduction for experimentally modeled sensors. IEEE Trans. on Instru.&Mea.,2002,51 (1):23230
    [123]Tian S P, Ding G Q. Yan D T. Nonlinear dynamic modeling of sensors based on recurrent neural network. Chinese Journal of Test and Measurement Techno logy, 2004,18 (2):992103
    [124]朱滨峰,徐桂云,李俊敏.LabVIEW设计中压力传感器的BP神经网络温度非线形校正.洛阳工业高等专科学校学报,2006,16(4):10-12
    [125]昝涛,王民,费仁元,徐洪安.LabVIEW中人工神经网络计算的实现与应用,微计算机信息,2006,22(6):122-124
    [126]Nielsen H R. Theory of the Back Propagation Neural Network. IEEE IJCNN, 1989,593-606,
    [127]Wang Xiao-dong. Separation a Linearization of Outputs of Polarization Modulated Fiber-Optic Sensor for Two-Parameter Simultaneous Measurement. Acta Optica Sinica, 2002,22(4):485-490
    [128]Zhouying Zhao, Mark Knight, Sumit Kumar, Eric T.Eisenbraun, Michael A.Carpenter. Humidity effects on Pd/Au-based all-optical hydrogen sensors. sensors and actuators B,2008,129:726-733

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700