HEV用永磁同步电机优化设计与系统性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕混联式混合动力电动汽车(HEV)用永磁同步电机优化设计与系统性能分析展开。
     首先,阐述了HEV的研究背景和研究意义,讨论了国内外HEV发展现状与趋势,介绍了目前电动汽车的主要类型,选择研究混联式结构HEV,分析了HEV的几个方面的主要技术的发展现状,包括电池及电池管理系统、双向大功率DC/DC变换器拓扑技术与控制、电机及其驱动控制、多能源控制策略与整车管理以及HEV的仿真技术。详细介绍了HEV用永磁同步电动机转子结构、弱磁控制以及无位置传感器控制三方面的发展现状。通过分析各种电机性能以及永磁同步电机的发展现状,为混联式HEV选择了两台内置式永磁同步电机MG1和MG2。
     接着,在Prius混联结构HEV发电机单向功率流动基础上提出了复合式混联结构HEV,特点是两台永磁同步电机均参与电动发电能量功率双向流动,工作模式更多,效率进一步提高。通过分析复合式混联式结构HEV能量双向流动的各种运行工况对两台内置式混合结构永磁同步电动机MG1和MG2的要求,借助ANSOFT软件对所选用的两台内置式混合结构永磁同步电动机MG1和MG2进行初始参数计算和重要参数的优化分析,并对起动、助动、发电和纯电动运行等10多种运行工况进行瞬态仿真分析,仿真结果满足了各种运行工况要求,其中制动能量回收效率达到了39%。
     其次,分析内置式永磁同步电机输入输出量与电机转子位置量之间关系,在快速、准确和容易测量的选择原则基础上选择了包括电机转子静止状态下的电瞬态在内的瞬态反电势数据来确定电机转子位置。通过分析不同状态反电势与发电电动时转速和位置关系,首次提出了三个反电势之间的归一化方法,归一化后数据与反电势大小无关,从而突破了低速反电势小误差大的难题,根据反电势数据周期性创造性地提出了数据的复合可逆条件,很好地实现了静止、机械运动、电动和发电状态下位置的精确判断,实现了简单方便和快速的无位置以及速度传感器控制。同时为了克服永磁同步电机高速弱磁效率低的问题,借助于ANSOFT软件电机设计和瞬态分析工具,从结构设计以及性能分析方面提出了电动时升压和低速强磁控制相结合的控制思想,基本实现了永磁同步电机高速不需弱磁的大范围高效率的运行。
     再次,详细介绍了DC/DC变换器的拓扑结构,分析了Boost模式和Buck模式下电感L和电容C电气参数以及占空比D和开关频率f控制参数对非隔离式DC/DC变换器输出特性影响,分析了电压SPWM控制、空间电压矢量PWM(SVPWM)控制以及电流跟踪PWM控制三种常见的逆变器PWM控制方法的特点,分析了电流跟踪控制开关频率特性与电压和滞环宽度的关系,为电机的控制器设计包括元器件的选择和软件控制算法提供了理论依据,并对所设计的高性能电流跟踪逆变器进行了测试实验研究,跟踪效果良好。
     最后,主要介绍了Advisor电动汽车仿真软件参数的设置,仿真模块模型的数学描述和模块的建立以及对仿真软件的介绍,最后在Advisor的Prius混联式的基础上进行适合本文设计的复合式混联结构的二次开发,给出了整车模型、发电机、电动机以及复合电源模块。仿真工况很好地验证了控制策略的可行性。分析结果显示百公里油耗和排放满足了整车开发的性能要求目标,与相应结构的传统汽车相比大大提高了节能与环保性能。
This paper has paid more attention to the optimization design of permanent magnet synchronous machine (PMSM) and system performance analysis of serial and parallel hybrid electric vehicle (SPHEV).
     Firstly, the research background and significance are expounded. The status quo and development trend of inside and outside national EV have been analyzed. The main types of EV have been summarized at present and SPHEV has been selected. The main technologies' development status quo of HEV has been analyzed, including battery and its management system, high power bi-directional DC/DC converter's topology technology and control, the motor and its driving and control technique, multi-power-source control strategies and vehicle management, simulation technology of HEV. The development status quo of rotor structure, flux-weakening control and sensor-less control of PMSM for HEV has been introduced in detail. The two interior PMSM (IPMSM) MG1 and MG2 have been selected as the motors in SPHEV by analyzing various existing motor performance and development status quo of PMSM.
     Subsequently, based on the Prius SPHEV generator's working on unidirectional way, the composite SPHEV has been proposed, whose two motors can work on motor-generator bidirectional power flow. The composite SPHEV has more working modes with high working efficiency. The initial parameter calculating and important parameters optimization analysis of two IPMSM MG1 and MG2 have been done according to the various operation modes' requirements. The transient simulation analysis of more than 10 working modes including starting, power assisted, power generation and electric operation have been carried out. The simulation results have fulfilled the requirements of various working modes, such as that the efficiency 39% of energy-recover of vehicle's Braking has been attained.
     Then, the back EMF of transient including electric transient under stationary status of rotor has been selected to determine the position of rotor based on the rules of quick, accurate and easy to be measured after the relationship between inputs-outputs and rotor's position has been analyzed. The normalization method among the three phases back EMF has been first put forward, by using which the normalized data has no relationship with the amplitudes of back EMF and the problem of low-speed small back EMF amplitude with big error has been solved after the relationship between the back EMF and speed and position based on motor and generation modes has been analyzed.The composite invertible conditions have been proposed with creativity according to the periodic data. The accurate judgment of the rotor's position has been very well realized under stationary, mechanical movement, motor and generator status. The simple, easy and quick sensor-less control of position and speed has been attainted. At the same time, in order to overcome the shortcomings of low efficiency under high speed with flux-weakening, the control idea of boost under motor status and flux-strengthening under low speed status has been proposed from structure design and performance analysis by using the motor design and transient analysis software of ANSOFT. The wide range running of IPMSM with high efficiency has been basically realized with no flux-weakening under high speed status.
     Subsequently, the paper has introduced the topological structure of DC/DC converter in detailed. The relationships between the output characteristics of non-isolated DC/DC converter and the electric parameters of L and C and control parameters D and f have been analyzed. The PWM control characteristics of three kinds of familiar converters of voltage controlled SPWM, space voltage vector PWM (SVPWM) and current regulated PWM (CRPWM) have been discussed. The relationships between switching frequency of CRPWM and voltage and hysteresis band have been analyzed, which provides theoretical basis for the design of motor controller including the components' selection and control algorithm of software. The tracking effect is good according to the tested result of the designed high performance CRPWM converter.
     At last, simulation software Advisor parameters setting, simulation modules' mathematical description, modules' building have been mainly discussed. The secondary developments for the designed composite SPHEV have been done based on the Prius SPHEV in Advisor. The vehicle, generator, motor and composite power module have been shown. The simulation results have proved the feasibility of the control strategy. The analyzed results show that One-Hundred-Kilometer Fuel Consumption and emission of the vehicle can meet the needs of vehicle development and greatly improve the energy saving and environmental protection.
引文
[1]薛玉春.电动汽车驱动和转向系统的振动与驱动电机的可靠性研究[D].吉林大学博士学位论文.2007年6月
    [2]辛克伟,周宗详,卢国良国内外电动汽车发展及前景预测[J].电力需求侧管理,2008,10(1):75-77
    [3]邹声文,吴晶晶.中国汽车工业寄希望于电动汽车研发[J].汽车电器,2006,(3):60
    [4]杨超.电动车动力学建模与仿真研究[D].武汉理工大学硕士学位论文.2007年5月
    [5]晨曦.混合动力汽车最优化模拟与仿真系统[D].大连海事大学硕士学位论文.2007年3月.
    [6]李红朋.基于HEV发动机起动性能的ISG转矩控制与仿真研究[D].重庆大学硕士学位论文.2005年4月
    [7]华寿南.国外混合动力车用VRLA电池的研发进展[J].电池.2007,37(1),29-31.
    [8]姚明亮.长安混合动力汽车排放控制研究[D].重庆大学硕士学位论文.2007年4月
    [9]胡洪详.驱动工况的ISG型混合动力汽车控制策略研究[D].重庆大学硕士学文论文.2006年4月
    [10]高燕.串联式混合动力城市客车参数匹配与控制策略研究[D].山东理工大学硕士学文论文.2007年4月
    [11]李欣.并联式混合动力电动汽车动力系统的模糊控制策略研究[D].西安理工大学.2007年3月
    [12]严冬.混合动力电动车参数匹配及电机控制系统仿真研究[D].武汉理工大学硕士学位论文.2007年5月
    [13]胡庆波,吕征宇,郑继文.混合动力电动汽车主要技术的发展状况[J].变频器世界.2007,(3):48-56
    [14]徐勇.AT并联混合动力电动汽车驱动系统的建模与仿真研究[D].武汉理工大学硕士学文论文.2005年5月
    [15]Jae-Sub Ko,Jung-Sik Choi,Dong-Hwa Chung.Maximum Torque Control of IPMSM Drive with LM-FNN Controller[C].SICE-ICASE,2006.International Joint Conference.Oct.2006:684-689
    [16]侯雪璐.混合动力汽车驱动电机控制系统及性能的研究[D].西安交通大学硕士学位论文.2006年4月
    [17]张丽丽.永磁交流牵引电动机弱磁特性研究及其设计[D].沈阳工业大学硕士学位论文.2007年6月
    []8]杨立勇.电动汽车用永磁无刷直流电机控制技术研究[D].重庆大学硕士学位论文.2004年3月.
    [19]M.Zeraoulia,M.E.H.Benbouzid,D.Diallo.Electric Motor Drive Selection Issues for HEV Propulsion Systems:A Comparative Study[J],IEEE Transactions on Vehicular Technology.2006,55(6):1756-1764.
    [20]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报,2005,27(1):116-120.
    [21]王庆年,刘志茹,王伟华,等.混合动力汽车正向建模与仿真[J].汽车工程,2005,27(4):392-394
    [22]陈晓东,高世杰.混合动力汽车发展所面临的挑战[J].汽车工业研究.2001,(6):16-20
    [23]姜涛.混合动力汽车要解决的关键技术[J].汽车维修.2001,(11):8-10
    [24]赵涛.一种新型混合动力电动汽车的动力系统设计、仿真及电机驱动系统的研究[D].合肥工业大学博士学位论文.2005年10月
    [25]张靖.超级电容蓄电池复合电源的研究与仿真[D].武汉理工大学硕士学位论文.2005年5月
    [26]J.S.Hsu,S.T.Lee,R.H.Wiles,et al.Effect of Side Permanent Magnets for Reluctance Interior Permanent Magnet Machines[C].IEEE Power Electronics Specialists Conference.Jun.2007:2267-2272
    [27]唐任远,等.现代永磁电机理论与设计[M].北京:机械工业出版社,1997
    [28]谢永海,张豫南,颜南明,等.装甲车辆电传动系统永磁同步电机的设计与仿真[J].装甲兵工程学院学报.2006,20(1):66-69
    [29]欧金生.高动态性能稀土永磁同步电动机的设计研究[D].湖南大学硕士学位论文,2007年6月
    [30]李春艳,寇宝泉,程树康.永磁同步电动机弱磁扩速概况[J].微特电机.2008,(1):58-60
    [31]Jan-Mok Kim,Seung-Ki Sul.Speed Control of Inverter Permanent Magnet Synchronous Motor Drive for the Flux Weakening Operation[J].IEEE Transactions on Industry Applications.1997,33(4):43-48.
    [32]B.J.Chalmers,R.Akmese,L.Musaba.Design and field-weakening performance of a permanent magnet/reluctance motor with two-part rotor[J].Proc.IEE,Elec.Power Appl.Mar.1998:133-139.
    [33]D.S.Maric,S.Hiti,C.C.Stancu,et al.Two flux weakening schemes for surface-mounted permanent-magnet synchronous drives[C].ISIE'99,Proceedings of the IEEE International Symposium on.1999,2:673-678
    [34]Bon-Ho Bae,Nitin Patel.New Field Weakening Technique for High Saliency Interior Permanent Magnet Motor[C].Conference Record of the Industry Applications Conference.2003:898-905
    [35]陈礼敏.基于DSP的混合动力汽车用永磁同步电机控制系统[D].武汉科技大学硕士学位论文.2007年11月
    [36]杨伟民,徐月同,等.基于DSP的永磁同步直线电机无位置传感器控制系统[J].电机与控制应用.2007,34(4):28-32
    [37]孙凯,许镇琳,邹积勇.基于自抗扰控制器的永磁同步电机无位置传感器矢量控制系统[J].2007,27(3):18-22
    [38]顾军,陈志辉.基于DSP的永磁同步电机无传感器矢量控制系统研究[J].防爆电机.2006,41(3):37-41
    [39].赵建中,谭娃,金如麟,等.基于DSP的无位置传感器永磁同步电机磁场定向控制系统[J].中小型电机.2003,30(2):23-26
    [40]孙海军,赵成明,李俊,等.灰色预测法PMSM无传感器控制系统[J].电机与控制学报.2007,11(6):604-608
    [41]郭清风,杨贵杰,晏鹏飞.SMO在无位置传感器PMSM驱动控制系统的应用[J].电机与控制学报.2007,11(4):354-358
    [42]Mihai Cemat,Vasile Comnac,Radu-Marian Cernat,et al.Application of Stochastic Filtering to a Permanent Magnet Synchronous Motor Drive System Without Electromechanical Sensors[C].Proc.of the International Conference On Electrical Machines.Aug.1990:1225-1230.
    [43]N.Patel,T.O'Meara,J.Nagashima,et al.Encoderless IPM Traction Drive for EV/HEV's[C].Conference Record of the 2001 IEEE Industry Applications Conference,Oct.2001:1703-1707.
    [44]史婷娜,王向超,夏长亮.基于RBF神经网络的永磁同步电机无位置传感器控制[J].电工电能新技术.2007,26(2):16-19
    [45]年珩,贺益康,秦峰,刘毅.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105
    [46]江俊.基于非线性估计理论的永磁同步电机无传感器控制方法的研究[D].江南大学硕士 学位论文.2006年3月.
    [47]董亚绢,景占荣,景志林,薛峰.基于高频电压信号注入凸极PMSM无传感器控制[J].电力电子技术.2006,40(5):27-28.
    [48]Todd D.Batzel,Kwang Y.Lee.Electric Propulsion with Sensorless Permanent Magnet Synchronous Motor:Implementation and Performance[J].IEEE Transactions in Energy Conversion.2005,20(3):575-583
    [49]Todd D.Batzel.Electric propulsion using the permanent magnet synchronous motor without rotor position transducers[D].Ph.D.dissertation Dept.Elect.Eng.,Pennsylvania State Univ.,University Park,PA,2000.
    [50]王步来.高效节能永磁同步电机的设计研究[J].电机技术.2006,(2):3-6
    [51]陈晨,章玮.差异进化算法在永磁同步电机优化设计中的应用[J].微特电机.2004,(2):10-12
    [52]杨高.基于Ansoft的电动车驱动用永磁无刷同步电动机的设计[D].重庆大学硕士学位论文.2007年4月
    [53]吴建华等著.开关磁阻电机设计与应用[M].北京:机械工业出版社,2000年6月.
    [54]杨泽华.并联式混合动力电动轿车整车仿真及数据分析研究[D],华中科技大学硕士学位论文,2005年4月
    [55]钱勇生,周波,程永华,汪海龙.一类减速下坡车道的机理与试验分析[J].中外公路.2007,27(4):5-8
    [56]叶向好,郝志勇.基于MATLAB的发动机总成悬置系统设计研究[J].小型内燃机与摩托车.2004:12-15
    [57]黄鼎友,许荣明.基于Matlab的发动机悬置系统设计及优化[J].噪声与振动控制.2007,(1):57-60
    [58]杨博.基于模糊PI控制具有升压电路的永磁同步电机调速系统[D].天津大学硕士学位论文.2005年12月
    [59]F.Caricchi,F.Crescimbini,A.Di Napoli.Prototype of Innovative Wheel Direct Drive with Water-Cooled Axial-Flux PM Motor for Electric Vehicle Applications[C].Applied Power Electronics Conference and Exposition,1996,2:764-770.
    [60]F.Caricehi,F.Crescunbini,G.Noin,et al.Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM[C].Proc.of APEC'94.94,1:381-386
    [61]李平,何益宏,龚仁喜.双向直流变换器的发展现状[J].2006,23(2):100-103
    [62]沈涛,李桥梁.基于SVPWM的永磁同步电机控制系统的仿真研究[J].电气开关.2008,(1):19-21
    [63]王巍,候利民,李洪珠.一种永磁同步电机控制系统仿真建模的研究[J].沈阳工程学院学报(自然科学版).2008,4(1):15-17
    [63]吴军昌,欧阳红林,成兰仙,彭刚毅.基于Simplorer的开关电源的仿真研究[J].电气开关.2005,(6):1-4.
    [65]彭国秀.永磁无刷电机控制方法的研究[D].重庆大学所示学位论文.2007年4月.
    [66]于远彬,王庆年.基于Advisor的仿真软件的二次开发及其在复合电源混合动力汽车上的应用[J].吉林大学学报(工学版).2005,35(4):353-356.
    [67]于远彬.混合动力汽车用复合的电源参数匹配与控制策略研究[D].吉林大学硕士学位论文.2004年5月
    [68]贾爱静.混合动力大客车的性能分析及传动系统的研究开发[D].武汉理工大学硕士学位论文.2007年6月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700