改性沥青桥梁伸缩缝性能及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改性沥青桥梁伸缩缝是近些年发展起来的一种新兴桥梁伸缩装置,逐步在我国桥梁建设中得到应用。本文以成都至仁寿高速公路新建桥梁长联无缝桥面关键技术研究课题为依托,通过桥梁伸缩装置病害调查,分析病害原因,得出了伸缩装置损坏的主要影响因素。试验测试了改性沥青混凝土路用性能和伸缩性能,同时利用ABAQUS有限元软件建立伸缩缝结构模型,获得了接触面上的力学响应规律,并对桥梁伸缩缝的施工工艺、应用效果和效益等进行了分析。
     (1)通过原材料的性能测试,确定了伸缩缝装置原材料应选用粘稠度大、耐高温性能好、弹塑性能强的改性沥青胶结料和粒径9.5mm~16mm的玄武岩粗集料。
     (2)根据有关资料推荐意见,改性沥青混合料采用的油石比为1:3,通过试验测试了改性沥青混合料强度特性、高温稳定性、水稳定性、渗水性、低温抗裂性、抗疲劳性等路用性能指标;并测定了混合料的性能恢复特性、直接拉伸性能、与水泥混凝土粘结性能等指标,测试结果表明该改性沥青混合料拥有较好适应伸缩变形的能力、恢复性能、自身抗拉性能以及与水泥混凝土的粘结性能;在保证良好伸缩性能的情况下,同时保证了良好的路用性能。
     (3)提出了粘结面粗糙处治可以提高改性沥青混合料与梁端水泥混凝土的粘结强度,在0℃以下时,提高率大于20%:在10℃~40℃区间时,提高率在10%~20%之间;在50℃以上,提高率小于10%,低温下效果更为明显。
     (4)通过桥梁伸缩装置模型计算得出了结构内部应力、位移的分布规律,计算结果表明结构接触面容易造成拉压破坏和剪切破坏,并对结构模型进行了接触面粗糙化及预埋钢筋的优化,在一定程度上降低接触面发生破坏的可能。
     (5)贝克曼梁回弹弯沉测试结果表明改性沥青桥梁伸缩缝处路面能够满足承载能力的要求,分析表明其具有良好的社会效益与可观的经济效益。
The modified bitumen bridge expansion joint is a new kind of bridge expansion devices which has been applied and developed in bridge construction in china. After surveying the disease form of bridge expansion devices, and analyzing the cause of diseases, the main factors of bridge expansion devices damage are concluded which are based on the research of the technology of the new long seamless bridge deck which is widely used in Chengdu to Renshou expressway. The pavement performance and expansion performance of modified asphalt concrete are obtained through test. This paper studies the law of mechanical response on the interface by building the model of expansion joint structure under the environment of finite element software of ABAQUS. Construction technology, application effect and advancement of the bridge expansion joint are analyzed also.
     (1) For the performance test of raw material, a modified asphalt cement material is selected with high viscosity, high temperature performance and strong elastic-plastic performance,and the range of basalt size is from9.5mm to16mm.
     (2) According to the relevant documents, they propose that the asphalt-aggregate ratio is1:3. The performance index of it is tested that of strength characteristics, high temperature stability, water stability, water permeability, low temperature crack resistance and fatigue resistance of the modified asphalt mixture. The results indicate that this modified asphalt mixture has a good performance to adapt the stretching deformation, recovery performance, tensile properties, and bonding properties with cement concrete.
     (3) Making the bond interface roughly could improve the bond strength between the asphalt mixture and the end of the beam concrete. The results show that if the temperature is below0℃, the enhancement rate is more than20%, and if between10℃to40℃, that is between10%to20%,while above50℃, that is lower than10%. The effect is significant at low temperature.
     (4) Based on the internal stress and displacement distribution of the structure, a conclusion is obtained that the interface of the structure is likely to cause tension and compression damage and shear failure. Making the interface more roughly and embedding some steel may reduce the interface damage to a certain extent.
     (5) The test of deflection by baker-man beam shows that the pavement with modified bitumen bridge expansion joint can meet the requirement of the carrying capacity. At the same time, it has a good social benefit and considerable economic benefit.
引文
[1]孟广文,赵卫国.简明公路桥涵设计实用指南[M].北京:人民交通出版社,2005.
    [2]李扬海,程潮海,鲍卫刚,郑学珍.公路桥梁伸缩装置[M].北京:人民交通出版社,1998.
    [3]林琳.小变位量桥梁弹塑体伸缩装置的应用研究[D].重庆交通大学硕士学位论文,2008.
    [4]Alan A.Soltani and Anant R.Kukreti, Performance uation of Integral Abutment Bridges, Transportation Research Record 1371, TRB, National Research Council,1992.
    [5]Structural Memorandum No.45. Tennessee Department of Transportation.
    [6]C. F. Steward, "Long highway Structures Without Expansion Joints", Final Report, California Department of Transportation, May.1983.
    [7]H. W. Lee and M. B. Sarsam, "Analysis of Integral Abutment Bridges", South Dakota Department of Highways, Pierre, March.1973.
    [8]A. M. Wolde-Tinsae, L. F. Greimann and B. V. Johnson, "Performance of Integral Bridge Abutments", IABSE Proceeding, Feb.1983.
    [9]于天来,唐涛,吴思刚.改性沥青伸缩缝结合料与混合料低温性能研究[J].中国公路学报,2005,18(2):18-23.
    [10]唐涛.弹塑体改性沥青桥梁伸缩缝在寒冷地区应用技术的研究[D].东北林业大学硕士学位论文,2003.
    [11]陈惟珍,徐俊,龙佩恒.现代桥梁养护与管理[M].北京:人民交通出版社,2010
    [12]杨大勇,姜万录.从伸缩缝病害谈公路桥梁日常养护管理[J].公路交通科技(应用技术版).2011,12:131-132.
    [13]赵健.高速公路桥梁伸缩缝病害的成因及防治[J].公路交通科技(应用技术版).2007,12:128-133.
    [14]陈伟乐,张长江.广深高速公路桥梁伸缩缝改造工程的研究与实践[J].公路(增刊).1999,5:21-24.
    [15]蒲广宁.桥涵伸缩装置破损状况平价方法[D].长安大学硕士论文,2005,5.
    [16]王敏.再生橡胶碎片在无伸缩缝整体式桥梁中的应用[D].华中科技大学硕士学位论文,2005.
    [17]廖海亮.无伸缩缝桥受力特征[D].南昌大学硕士学位论文,2006.
    [18]Jonathan Kunin, Sreenivas Alampalli. Integral abutment bridges:current practice in United States and Canada [J]. Journal of Performance of Constructed Faeilities,2000, 14 (3):104-111.
    [19]中华人民共和国行业标准.公路工程沥青及沥青混合料试验规程(JTG E20-2011)[S].北京:人民交通出版社,2011.
    [20]中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40-2004)[S].北京:人民交通出版社,2004.
    [21]中华人民共和国行业标准.公路工程集料试验规程(JTG E42-2005)[S].北京:人民交通出版社,2005.
    [22]成猛.考虑层间接触的沥青路面疲劳特性研究[D].西南交通大学硕士学位论文,2012.
    [23]刘斌清,宋柳,王选仓.开级配沥青稳定碎石最佳沥青用量确定方法研究[J].中外公路.2011,31(3):256~259.
    [24]马翔,倪富健,顾兴宇,沈恒.聚脂纤维沥青混合料路用性能研究分析[J].公路交通科技.2006,23(1):24-27.
    [25]杨锡武,角述兵,唐军,赖增成.硫磺改性沥青混合料性能及其应用研究[J].公路交通科技.2009,26(6):1-7.
    [26]陆学元.湿陷性黄土地区SMA混合料组成设计和最佳沥青用量确定方法研究[D].长安大学硕士学位论文,2004.
    [27]徐慧宁.体积指标对沥青混合料路用性能的影响[D].哈尔滨工业大学硕士学位论文,2007.
    [28]艾长发.高寒地区沥青路面行为特性与设计方法研究[D].西南交通大学博士学位论文,2008.
    [29]刘涛.SMA混合料体积参数及配合比设计方法研究[D].长安大学硕士学位论文,2007.
    [30]李立寒,张南鹭,孙大权,杨群.道路工程材料[M].北京:人民交通出版社,2009.
    [31]Ota J.Vacin, Jiri Stastna, Ludo Zanzotto. Creep Compliance of Polymer Modified Asphalt, Asphalt Mastic and Hot Mix Asphalt [C]. TRB, Annual Meeting,2003.
    [32]Kevin D Stuart, Jack S Youtcheff. Evaluating the Performance of Modified Asphalt Binders with Identical High-Temperatures PG's but Varied Polymer Chemistries [C]. TRB, Annual Meeting,2004.
    [33]Hamid R Soleymani, Ph D, Huachnun Zhai, Ph D, Hussain Bahia, Ph D. Role of Modified Binders in Rheology and Damage Resistance Behavior of Asphalt Mixtures [C]. TRB, Annual Meeting,2004.
    [34]J Stastna, L Zanzotto, O J Vacin. Viscosity Function in Polymer-Modified Asphalts [J]. Journal of Colloid and Interface Science,2003,259:200-2071.
    [35]冯俊领,郭忠印,陈崇驹,李德章.高温多雨条件下沥青混合料水损害模拟研究[J].建筑材料学报.2007,10(5):548-552.
    [36]蒋俊.沥青混合料空隙率与渗水系数的关系[J].公路与汽运.2005,2:68-70.
    [37]陈景,孙澎涛,李福普,沈金安.沥青混合料渗水系数的研究[J].公路交通科技.2006,23(1):5~8.
    [38]易军艳,冯德成.沥青混凝土路面表面层混合料渗水特性的试验分析[J].公路.2009,10:114~117.
    [39]郁晓军,隆海健.纤维沥青混合料线收缩系数研究[J].公路.2012,9:184-188.
    [40]吕光印,郝培文,陈志一,汪海年.沥青混合料抗拉性能试验研究及力学特性分析[J].公路.2008,5:143~146.
    [41]朱洪洲,黄晓明.沥青混合料疲劳性能关键影响因素分析[J].东南大学学报(自然科学版).2004,34(2):260~263.
    [42]许志鸿,李淑明,高英,丰晓.沥青混合料疲劳性能研究[J].交通运输工程学报.2001,1(1):20-24.
    [43]Chew M Y L. Retention of movement capability of polyurethane sealants in the tropics [J]. Construction and Building Materials,2004,18:455-459.
    [44]刘晓曦,王旭,刘国忠,王硕太.机场混凝土道面封缝材料弹性恢复特性试验研究[J].新型建筑材料,2008,2:74-77.
    [45]赵明宇,姜友生,陈光新,丁庆军.改性沥青弹性恢复性能评价方法研究[J].石油沥青,2012,26(2):41-46.
    [46]刘少文,李智慧.应用回弹恢复评价橡胶沥青的弹性恢复能力[J].公路交通科技,2009,26(7):22-26.
    [47]邵腊庚,周晓青,李宇峙,应荣华.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J].土木工程学报,2005,38(4):125-128.
    [48]Christensen D W. Anderson D A. Interpretation of dynamic mechanical test data for paving grade asphalt cements[J]. Journal of the Association of Asphalt Paving Technologists,1992,61(3):192-212.
    [49]WEN H. Fatigue Performance Evaluation of WesTrack Asphalt Mixtures Based on Viscoelastic Analysis of Indirect Tensile Test[D]. Raleigh, NC:North Carolina State University,2002.
    [50]Susanna Man SzeHo, Ludo Zanzotto. Impact of Different Types of Modification on Low Temperature Tensile Strength and Tcritical of Asphalt Binders[C]. TRB, Annual Meeting,2002.
    [51]张洪刚,黄慧,钱国平.反复冻融条件下沥青混合料的间接拉伸试验研究[J].公路,2012,4:185-188.
    [52]Krans, R. L., Tolman, F. and Van de Ven, M. F. C.. Semi-Circular Bending Test:A Practical Crack Growth Test Using Asphalt Concrete Cores, Reflective Cracking in Pavements, Design and Performance of Overlay Systems, Proceedings of the Third International RILEM Conference, Maastricht, The Netherlands,1996, October 2-4, pp.123-132.
    [53]中华人民共和国行业标准.公路土工合成材料试验规程(JTJ/T060-98)[S].北京:人民交通出版社,1999.
    [54]Kochi Oba and Manfred N. Part. Adhesion of Bituminous Waterproofing Membranes for Bridge Applications, Science and Technology of Building Seals. Sealants, Glazing, and Waterproofing,1998.
    [55]何良杰.桥面高粘沥青粘结防水材料性能与应用研究[D].长沙理工大学硕士学位论文,2009.
    [56]Waterproofing Membranes for Concrete Bridge Decks[R]. NCHRP Synthesis of Highway Practice 220.1995.
    [57]雷宗建,王康.温拌橡胶沥青桥面防水粘结层的粘结性能试验研究[J].石油沥青,2011,25(5):24-27.
    [58]Szydlo A, Mackiewicz P. Asphalt Mixes Deformation Sensitivity to Change in Parameters [J]. Journal of Materials in Civil Engineering,2005,17 (1):1-9.
    [59]孔保林,蔡燕霞.水泥混凝土桥面构造对桥面防水层粘结性能的影响[J].公路工程,2012,37(4):207-209.
    [60]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [61]廖公云,黄晓明.ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008.
    [62]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [63]中华人民共和国行业标准.公路沥青路面设计规范(JTG D50-2006)[S].北京:人民交通出版社,2006.
    [64]黄仰贤著,余定选,齐诚译.路面分析与设计[M].北京:人民交通出版社,1998.
    [65]封基良.新疆油田公路层间滑移分析[D].长安大学硕士论文,2000.
    [66]黄晓明,刘玉荣,邓学钧.旧水泥混凝土道面加铺层有限元分析方法[J].中国公路学报.1996,9(1):30~36.
    [67]高辉.组合钢板剪力墙试验研究与理论分析[D].同济大学硕士学位论文,2007.
    [68]艾长发,邱延峻,毛成,兰波.考虑层间状态的沥青路面温度与荷载耦合行为分析[J].土木工程学报.2007,40(12):30-36.
    [69]中华人民共和国行业标准.公路工程路基路面现场试验规程(JTG E60-2008)[S].北京:人民交通出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700