铅锭模热—应力耦合模拟及其结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锭模是铸造生产过程中重要的设备。在浇注铸锭的过程中,锭模受到高温和热应力的作用,表面容易产生热疲劳裂纹而失效,因而热疲劳是锭模最常见的失效形式。热疲劳开裂不仅缩短了模具寿命,而且还降低了铸锭表面质量。因此,研究锭模在工作过程中的温度场、应力场及其变化情况具有重要的实用价值。仅通过实验的手段得到锭模温度场和应力场是非常困难的。随着计算机数值仿真技术的发展,使得锭模的温度场和应力场的计算机模拟成为可能。本文根据铅锭实际生产过程,首先通过对不同石墨形态的铸铁进行热疲劳实验确定铅锭模的材质,然后利用有限元法对铅锭模工作过程进行热-应力耦合模拟计算,以此为基础,最后对铅锭模的结构进行了优化。
     不同石墨形态铸铁的冷热循环热疲劳试验的结果表明:铸铁的微裂纹总是起源于石墨相,由微裂纹扩展形成的主裂纹通常是沿着石墨和两石墨相间最近的基体扩展;在20℃-650℃间的冷热循环条件下,球墨铸铁的抗热疲劳性能最好,蠕墨铸铁次之,灰铸铁最差。根据热疲劳性能结果,选择了球墨铸铁作为铅锭模具的材质。文中温度场和应力场数值模拟中锭模的热物性参数和力学性能均按QT600设定。
     论文分析了有限元数值模拟中关于温度分析和应力计算的有限元理论,并根据实际模型建立了凝固过程中的瞬态温度场及热弹塑性应力场的数学模型。通过ANSYS软件模拟计算出铅锭模工作过程的瞬态温度场,并通过实验验证了铅锭模关键点和铅锭中心位置温度随时间的变化,模拟结果与实验结果较为吻合。通过导入温度场模拟结果作为体载荷,模拟并分析了铅锭模在铅锭凝固过程中应力场的分布及变化,结果表明最大的应力出现在锭模两面相交处,据此推断出锭模在工作过程中容易出现疲劳失效的部位是锭模两面相交处。
     在斜度为20°的条件下,对壁厚分别为15mm、25mm、35mm和45mm的铅锭模的温度场和应力场进行模拟计算,得出壁厚为25mm的锭模的应力最小。在壁厚为25mm的条件下,对锭模斜度分别为8°、12°和20°三种情况进行应力场模拟,结果表明:在相同壁厚条件下,斜度对铅锭模的应力影响较小。综合考虑铅锭模的使用寿命、铅锭表面质量问题,最终确定铅锭模的壁厚为25mm,斜度为12°。
Ingot moulds are important equipment in the production process of casting. The ingot molds are influenced by high temperature and thermal-stress during casting of ingots and easy to fail due to thermal fatigue and hot cracking, so, thermal fatigue is the most common failure modes of ingot molds. It not only shortens the mold life, but also reduces the surface quality of castings. Therefore, to study the variations of the temperature field and stress field of the mold during casting process has important practical value. However, it is difficult to get the temperature field and stress field just through experiment research. With the development of computer numerical simulation technology, it is possible to apply computer simulation technique to calculate the temperature field and stress field of ingot mold, so as to optimize the structure of ingot mold to control and ensure the quality of castings and prolong the service life of ingot mold, reduce production cost and enhance the competitive ability of enterprise. This paper first carried out thermal fatigue tests of different graphite shape of cast iron to determine the lead ingot mold's material, then simulated the thermal-stress coupling of lead ingot mold in working process using finite element method based on the actual production process of lead ingots. On the base of this analysis, the structure of lead ingot mold was optimization.
     Thermal fatigue performance of different graphite contained cast iron was investigated by heat-colding recycle tests in the range of 20℃-650℃. The results show that micro-cracks always initiated at graphite phase during the thermal cycle process. The main crack often propagated along graphite and the matrix between two nearest graphite particles. The thermal fatigue resistance of nodular graphite iron is the best, vermicular graphite iron is moderate, and the flake graphite iron is the worst under the same heat-coding recycle condition. According to thermal fatigue test results, nodular graphite iron was choose as lead ingot mold's material. So the thermal physical parameters of a nodular graphite iron, QT600 were chosen during next numerical simulations of the thermal field and stress field.
     The finite element theory about thermal analysis and stress calculation in the numerical simulation was reviewed. The mathematical of an ingot mold model of the transient temperature field and thermal elastic-plastic stress field in the solidification process was established according to actual process of a lead ingot product. Then, the transient temperature field of lead ingot mold during casting was simulated using ANSYS software. Temperature and its variation with time of key points of lead ingot mold and the center position of lead ingot were verified by experimental method, and the simulation results are identical with experiment. Furthermore, lead ingot mold's stress field distribution and its variation in lead ingot solidification process were simulated and analyzed by the import temperature field simulation results as body load. The results shows that the maximum stress appears at two intersect surfaces. And so, it is inferred that the fatigue failure easily occurs at the intersect faces of mold.
     When the draft is 20 degree, temperature field and stress field of lead ingot molds wall thickness of 15mm,25mm,35mm and 45mm were simulated respectively, the stress of ingot mold whose wall thickness is 25 mm is the minimum. When the wall thickness is 25 mm, stress fields of lead ingot molds draft of 8,12 and 20 degree were simulated respectively. In the same wall thickness, the draft has little influence on the ingot mold stress. Considering the service life of lead ingot mold and ingot surface quality, and finally determined that the wall thickness of lead ingot mould for 25mm, draft of 12 degrees.
引文
[1]李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982
    [2]朱广为.我国铸造技术的现状与发展趋势[J].工程设计与研究,2008,(4):1-7
    [3]H. P. Lieurade, Dias, Giusti, Wsniewski. Experimental simulation and theoretical modeling of crack initiation and propagation due to thermal cycling [J]. High Temperature Technology,1990,8(2):137-145
    [4]张杰.钢锭模裂纹原因分析及改进措施[J].宽厚板,1995,1(2):22-25
    [5]王树达,张德臣,吴秀娥,等.提高钢锭模使用寿命的优化设计[J].钢铁,1995,30(2):32-36
    [6]王树达,吴秀娥,张德臣,等.模厚比K值对钢锭模热应力分布的影响[J].特殊钢,1996,17(4):15-18
    [7]王立功,张文杰.大型钢锭模的优化设计与开发[J].大型铸锻件,2005,(2):34-35
    [8]陈进,余连权.大型钢锭模的设计[J].重庆科技学院学报(自然科学版),2010,12(5):116-118
    [9]王立源.锌锭模制造问题探讨与研究[J].铸造技术,2001,1:23-25
    [10]浦恩彬,周开亮.圆盘铸锭机锌锭模的改进[J].中国有色冶金,2005,(2):45-46
    [11]陈立亮,刘瑞祥,周建新,等.铸造数值模拟技术新进展及铸造CAE应用[J].铸造纵横,2005,(9):132-139
    [12]Saeed Moaveni著,王崧,刘丽娟,董春敏,等译.有限元分析-ANSYS理论与应用(第3版)[M].北京:电子工业出版社,2008.1
    [13]马兆敏.铸造凝固过程三维温度场及热应力场有限元计算研究:[硕士学位论文].南宁:广西大学,2002
    [14]K. M. Bastian. A look back at the 20th century casting process simulation [J]. Modem Casting,2000, (12):43-45
    [15]隋大山.铸造凝固过程热传导反问题参数辨识技术研究:[博士学位论文].上海:上海交通大学,2008
    [16]陈瑶.铸件凝固过程温度场、应力场数值模拟技术的研究:[博士学位论文].北京:清华大学,1997
    [17]R. A. Stoehr. Modeling the flow of molten having a free durface during entry into molds [J]. The Min, Met, Mat Soc,1988, (02):845-857
    [18]B. G. Thomas, I. V. Samarasekeraa, J. K. Brimacombe. Application of mathematical heat flow and stress models of steel ingots casting to investigate panel crack formation [J]. Modeling and Control of Casting and Welding Process,1986,479-495
    [19]G. L. Dymova, P. V. Sevastyanov. Comparative analysis of mathematical models for thermal stress and deformation generation in solidified ingots [J]. J. ENG. PHYS. (USSR),1991,60(1):99-103
    [20]钱小波.铸件流场与温度场耦合计算下的数值模拟研究:[硕士学位论文].西安:西安理工大学,2008
    [21]廖敦明,林汉同,刘瑞祥,等.铸造热应力场数值模拟研究的最新进展[J].现代铸铁,2000,(4):4-7
    [22]V. Sergey, S. Paolucc. Numerical simulation of filling and solidification of permanent mold castings [J]. Applied Thermal Engineering,2002, (22):229-248
    [23]Ho-Mun Si, Chongdu Cho, Si-Young Kwahk. A hybrid method for casting process simulation by combining FDM and FEM with an efficient data conversion algorithm [J]. Journal of Materials Processing Technology,2003, (133):311-321
    [24]D. McBride, T. N. Croft, M. Cross. A coupled finite volume method for the computational modeling of mould filling in very complex geometries [J]. Computers & Fluids,2008, (37):170-180
    [25]Nitin Pathak, Arvind Kumar, Anil Yadav. Effects of mould filling on evolution of the solid-liquid interface during solidification [J]. Applied Thermal Engineering,2009, (29):3669-3678
    [26]A. Kermanpur, M. Eskandari, H. Purmohamad. Influence of mould design on the solidification of heavy forging ingots of low alloy steels by numerical simulation[J]. Materials and Design,2010,31:1096-1104
    [27]金俊泽等.大型铸钢件凝固进程的数值模拟[J].大连工学院学报,1980,(2): 1-16
    [28]张毅.铸件凝固数值模拟及铸造工艺CAD现代进展[J].铸造,1987,(6):8
    [29]徐宏,程军,钟雪友.铸造CAE集成技术研究综述[J].材料导报,2002,16(6):5-8
    [30]薛莉,毛红奎,徐宏,等.铸造充型过程的数值模拟研究现状及发展[J].热加工工艺,2010,39(3):80-83
    [31]陈瑶,柳百成.国内外铸造过程应力场数值模拟技术的研究进展[J].中国机械工程,1996,7(4):50-53
    [32]林家骝,朱世根,于震宗.铸钢件凝固过程三维温度场热应力场的数值模拟与缩孔(松)热裂的判定[J].铸造,1993,(10):1-8
    [33]林家骝,于震宗.铝合金汽缸盖数值模拟[J].机械工人:热加工,1994,(6):8-9
    [34]林家骝.微机热应力场模拟解决铸钢件热裂[J].机械工人:热加工,1995,(4):2-4
    [35]林家骝,杨振枢,于震宗,等.回火过程应力场计算机模拟[J].金属热处理学报,1996,17(2):59-62
    [36]陈瑶,白雪峰,朱日明,等.铸造过程应力场数值模拟集成化技术的研究[J].铸造,1997,(3):1-5
    [37]陈位铭,金胜灿.铝合金压铸工艺的数值模拟及应用[J].汽车技术,2005,(6):32-35
    [38]马敏团,陈鹏波,黄引平,等.ProCAST在铸造工艺优化中的应用[J].热加工工艺,2006,35(1):52-54
    [39]刘小刚,康进武,黄天佑,等.大型轧钢机机架凝固过程温度场应力场模拟分析[J].铸造,2006,55(9):922-926
    [40]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟Ⅰ.数学模型及求解方法[J].金属学报,2009,45(3):356-362
    [41]朱维,韩志强,柳百成.挤压铸造凝固过程热-力耦合模拟Ⅱ.模拟计算机实验验证[J].金属学报,2009,45(3):353-368
    [42]V. Sergey, Shepel, S. Paolucci. Numerical simulation of filling and solidification of permanent mold casting [J]. Applied Thermal Engineering,2002,22:229-248
    [43]金俊泽,郑贤淑.铸件凝固简化三维模拟法[J].铸造,1987,6:351-355
    [44]X. S. Zheng, M. H. Sha, J. Z. Jin. Experimental research and numerical simulation of mold temperature field in continuous casting of steel[J]. Acta Metallurgica Sinica,2006,19(3):479-495
    [45]郑贤淑,张兴国,金俊泽,等.依据温度场和应力场的钢锭模结构优化设计[J].钢铁,1992,27(5):20-22
    [46]商全义,弓金霞.钢锭模在铸锭过程中温度场的计算机数值模拟[J].郑州纺织工学院学报,1995,6(3):39-44
    [47]弓金霞,商全义,安阁英.钢锭模在铸锭过程中热弹塑性应力的数值模拟[J].郑州纺织工学院学报,1999,10(2):43-46
    [48]唐萍,张德臣.1.8t钢锭模热应力的有限元法计算[J].鞍山钢铁学院学报,1995,18(3):33-36
    [49]张立志,严宏志.基于ProCAST的锌锭铸模失效机制研究及结构改进[J].金属铸锻焊技术,2009,38(3):142-145
    [50]解锦婷.金属铸造凝固过程的界面传热系数的研究与应用:[硕士学位论文].天津:天津理工大学,2008
    [51]赵鑫,温泽峰,金学松.铸件凝固过程温度场的数值模拟[J].西南交通大学学报,2006,41(1):15-19
    [52]T. Midea. Process simulation software round-up [J]. Modem Casting,2002, 90(8):40-45
    [53]周丹晨,蒋玉明,杨屹.国外铸件充型凝固过程数值模拟软件介绍[J].热加工工艺,2000,(5):45-46
    [54]李景渭.有限元法[M].北京:北京邮电大学出版社,1999
    [55]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007
    [56]赵海峰,蒋迪ANSYS8.0工程结构实例分析[M].北京:中国铁道出版社,2004
    [57]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000
    [58][日]平修二.郭廷伟,李安定,译.热应力与热疲劳(基础理论与设计应用)[M].北京:国防工业出版社,1984
    [59]T. Xin, Z. Hong, Q. R. Lu, etal. Effects of graphite shape on thermal fatigue resistance of cast iron with biomimetic non-smooth surface [J]. International Journal of Fatigue,2009,31:668-677
    [60]孙小捞,贾利晓,温广宇,等.石墨形态对铸铁热疲劳性能的影响[J].中国铸造装备与技术,2006,4:14-15
    [61]刘兴鹏,岳钟英,张伯明,等.灰铸铁热疲劳性能的研究[J].铸造,1989,5:7-9
    [62]W. S. Dai, M. Ma, J. H. Chen. The thermal fatigue behavior and cracking characteristics of hot-rolling material[J]. Materials Science and Engineering A, 2007,448:25-32
    [63]J. Yamabe, M. Takagi, T. Matsui, etal. Development of disc brake rotors for trucks with high thermal fatigue strength[J]. JSAE Review,2002,23: 105-112
    [64]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999
    [65]王泽鹏,张秀辉,胡仁喜.ANSYS12.0热力学有限元分析从入门到精通[M].北京:机械工业出版社,2010
    [66]M. Janik, H. Dyja. Modeling of three-dimensional temperature field inside the mould during continuous casting of steel [J]. Journal of Materials Processing Technology,2004,177-181
    [67]M. Trovant, S. Argyropoulos. Finding boundary conditions:a coupling strategy for the modeling of metal casting processes:part I. experimental etudy and correlation development [J]. Metallurgical and Materials Transactions B,2000, 31:76-86
    [68]M. Trovant, S. Argyropoulos. Finding boundary conditions:a coupling strategy for the modeling of metal casting processes:part II. numerical study and analysis[J]. Metallurgical and Materials Transactions B,2000,31:87-95
    [69]V. Sahai. Predicting interfacial contact conductance and gap formation of investment cast alloy 718 [J]. Journal of Thermophysics, Heat Transfer,1998, 12(4):562-566
    [70]李东辉,高云宝,辛启斌,等.铸件凝固潜热的处理方法与应用研究[J].铸造,2004,(12):1005-1007
    [71]S. I. Bakhtiyarov. Electrical and thermal conductivity of A319 and A356 aluminum alloys [J]. Journal of Materials Science,2001,36(19):4643-4648
    [72]李松瑞.铅及铅合金[M].长沙:中南工业大学出版社,1996
    [73]中国机械工程学会铸造学会编.铸造手册.第1卷:铸铁[M].北京:机械工业出版社,1993
    [74]温秉权,黄勇.金属材料手册[M].北京:电子工业出版社,2009
    [75]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水电水利出版社,1998
    [76]姜晋庆,张铎.结构弹塑性有限元分析法[M].北京:宇航出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700