细观偶应力/应变梯度弹塑性理论的几个基本问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统连续体理论引入均匀化假定,认为材料性质从宏观一直延伸到微细观保持不变。这种理论已被成功用于宏观结构力学性能分析。但是,当尺寸降至微细观尺度,材料微缺陷(如位错、微孔洞、微夹杂)的作用开始显现,这导致了材料性质的不均匀性,在实际上表现为尺寸效应。此时,传统连续体理论不再适用。此外,采用传统理论有限元法计算软化材料的局部化问题会出现病态的网格依赖性现象。要想解决尺寸效应和网格依赖性问题,必须求诸于其他理论。
     在Cosserat理论的基础上,众多学者发展出了多种细观偶应力/应变梯度理论。这些理论均引入了材料长度参数,可以衡量材料微缺陷的尺寸和软化材料局部化变形的宽度,因此可以成功地解决尺寸效应和网格依赖性问题。但是,细观偶应力/应变梯度理论存在着几个基本问题:
     (1)如何构建微细观尺度的连续体理论没有统一的认识,目前的偶应力/应变梯度理论不像弹性力学那样拥有标准的理论框架,它们多是基于不同思想建立起来的。这导致了细观偶应力/应变梯度理论类型繁多,目前常见的理论有十多种,工程应用难以取舍;
     (2)除了个别的基于细观机制的应变梯度理论,多数理论包含的材料长度参数没有明确的物理意义,它们的特点还有待进一步研究。目前常采用实验手段标定材料长度参数,但还缺乏精确稳定的偶应力/应变梯度弹塑性解析解作为标定的理论依据。
     本文就这两个基本问题展开研究,详细对比了各种理论的特点以便作为工程使用的参考,采用理论推导和数值计算的手段分析了材料长度参数的特点,并构造了两种微弯曲偶应力弹塑性解析解作为标定材料长度参数的依据。各章的具体安排如下:
     第一章详细给出了细观偶应力/应变梯度理论的发展近况,包括理论的工程背景、各理论的特点简介、各理论中材料长度参数的区别、偶应力/应变梯度有限元法和无网格法的发展状况、偶应力/应变梯度理论的具体应用。
     第二章总结了常见的几种偶应力/应变梯度理论,详细推导了这些理论的弹塑性本构关系,并分析了各理论之间的联系和区别。
     第三章基于位移-转角不独立的偶应力理论,提供了微尺度下纯弯曲梁和悬臂梁的弹塑性解。通过与数值解对比,证实了这两种解的可靠性。结合相应的微弯曲实验,这两种解析解可用来标定细观偶应力/应变梯度理论的材料长度参数。
     第四章总结了多种细观偶应力/应变梯度理论的刚塑性解,结合微扭转和微弯曲实验数据,标定出了各理论的材料长度参数。通过对比可以发现:材料长度参数严重地依赖于偶应力/应变梯度理论的类型。
     第五章给出了两种偶应力/应变梯度有限元—八节点等参元和18参精化三角形单元,并将之应用于弹塑性领域。通过分析纯弯曲问题和孔边应力集中问题,发现采用罚函数有限元法计算位移-转角不独立的偶应力理论存在着问题。通过分析变形局部化问题,证实了偶应力/应变梯度理论可以有效地避免传统连续体力学存在的网格依赖性现象。
Classical continuum theory includes the homogenization assumption that the material properties remain the same from macroscale to mesoscale, which has been successfully applied in structural analysis on macroscale. However, when the size scales down to mesoscale or microscale, the effect of micro-defects in material (e.g., dislocation, micro-void, micro-inclusion) emerges, which results in inhomogeneous material properties and is represented as size effects in practice. In this case, classical continuum theory is not applicable. Moreover, the pathological mesh-dependency is exhibited when classical finite element method is applied in localization problems of softening materials. Therefore, other theories are needed to solve both size effects and mesh-dependency problems.
     Based on Cosserat theory, many kinds of mesoscale couple stress/strain gradient theories have been developed. All of these theories include the material length parameters which can be used to describe the size of micro-defects and the width of localized deformation in softening material, and therefore can successfully predict the size effects and eliminate the mesh-dependency. However, there are some basic problems in mesoscale couple stress/strain gradient theories, e.g.,
     (1) The inconsistent opinions on how to build continuum theory at the mesoscale or microscale lead to the fact that unlike in the elastic mechanics, there does not exist a standard framework for the current couple stress/strain gradient theories, which are built on different concepts. Consequently, lots of mesoscale couple stress/strain gradient theories are proposed, more than 10 of which are frequently cited. It increases the difficulties in choosing proper theory for engineering application.
     (2) Besides several strain gradient theory based on physical mechanism, most theories include the material length parameters without specific physical meaning. The characteristics of these parameters need further research. At present, the micro-tests are used to determine the material length parameters in general, while exact and stable analytical solutions in couple stress/strain gradient elasto-plasticity are lacked as theoretical basis.
     Focusing on the above problems, this paper compares the characteristics of various couple stress/strain gradient theories which can be taken as reference in engineering applications, analyzes the characteristics of material length parameters based on theoretical and numerical methods, and develops two kinds of micro-bend solutions in couple stress elasto-plasticity for the convenience of determining material length parameters. The thesis is arranged as follows:
     In chapter 1, recent advances in mesoscale couple stress/strain gradient theories are introduced in detail, which includes the engineering backgrounds and characteristics of these theories, the differences of material length parameters between various theories, the corresponding finite element methods and mesh-free methods, and their specific applications.
     In chapter 2, the author summarizes several couple stress/strain gradient theories and provides the corresponding elasto-plastic constitutive relations. By analyzing the relations and differences between these theories, some basic principles are proposed as references in choosing couple stress/strain gradient theory.
     In chapter 3, the elasto-plastic solutions of pure-bending beam and cantilever beam are brought forward based on the couple stress theory where rotations depend on displacements. By comparison with numerical results, it is proved that both the solutions are reliable. With the corresponding micro-bend tests, both the analytical solutions can be used to determine material length parameters in mesoscale couple stress/strain gradient theories.
     In chapter 4, the rigid-plastic solutions are summarized in various mesoscale couple stress/strain gradient theories. Combining the solutions with experimental results of micro-torsion and micro-bend, the material length parameters in various theories are determined. Finally, it is observed that these parameters are deeply dependent on the type of couple stress/strain gradient theory.
     In chapter 5, two kinds of couple stress/strain gradient elements, i.e.,8-node parametric element and 18-DOF refined triangular element, are given and applied in elasto-plastic problems. By analyzing pure-bending and stress concentration problems, it is proved that the penalty approach is not stable in finite element implementation of the couple stress theory where rotations depend on displacements. By analyzing localization problems, it is shown that couple stress/strain gradient theories can effectively eliminate the mesh-dependency in classical continuum theory.
引文
[1]Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment. Acta Metallurgica et Materialia,1994,42(2):475-487.
    [2]Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale. Acta Materialia,1998,46(14):5109-5115.
    [3]Shrotriya P, Allameh S M, Lou J, et al. On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mechanics of Materials,2003,35(3-6):233-243.
    [4]Lou J, Shrotriya P, Allameh S, et al. Strain gradient plasticity length scale parameters for LIGA Ni MEMs thin films. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,441(1-2):299-307.
    [5]Ehrler B, Hou X D, Zhu T T, et al. Grain size and sample size interact to determine strength in a soft metal. Philosophical Magazine,2008,88(25):3043-3050.
    [6]Haque M A, Saif M T A. Strain gradient effect in nanoscale thin films. Acta Materialia,2003,51(11): 3053-3061.
    [7]冯秀艳,郭香华,方岱宁等.微薄梁三点弯曲的尺度效应研究.力学学报,2007,39(4):479~485.
    [8]Stelmashenko N A, Walls M G, Brown L M, et al. Microindentation on W and Mo oriented single crystals:an STM study. Acta Metallurgica et Materialia,1993,41:2855-2865.
    [9]Ma Q, Clarke D R. Size-Dependent Hardness of Silver Single-Crystals. Journal of Materials Research, 1995,10(4):853-863.
    [10]Poole W J, Ashby M F, Fleck N A. Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Materialia,1996,34:559-564.
    [11]McElhaney K W, Valssak J J, Nix W D. Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments. Journal of Materials Research,1998,13: 1300-1306.
    [12]Zhao M H, Slaughter W S, Li M, et al. Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Materialia,2003,51(15):4461-4469.
    [13]Swadener J G, George E P, Pharr G M. The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids,2002,50:681-694.
    [14]Zagrebelny A V, Carter C B. Indentation of strained silicate-glass films on alumina substrates. Scripta Materialia,1997,37(12):1869-1875.
    [15]Zagrebelny A V, Lilleodden E T, Gerberich W W, et al. Indentation of silicate-glass films on Al2O3 substrates. Journal of the American Ceramic Society,1999,82(7):1803-1808.
    [16]Suresh S, Nieh T G, Choi B W. Nano-indentation of copper thin films on silicon substrates. Scripta Materialia,1999,41(9):951-957.
    [17]Elmustafa A A, Stone D S. Indentation size effect in polycrystalline F.C.C metals. Acta Materialia, 2002,50:3641-3650.
    [18]Elmustafa A A, Lou J, Adewoye O, et al. Bilinear behavior in the indentation size effect:A consequence of strain gradient plasticity. Surface Engineering 2002-Synthesis, Characterization and Applications,2003,750:27-32.
    [19]Elmustafa A A, Stone D S. Nanoindentation and the indentation size effect:Kinetics of deformation and strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2003,51(2):357-381.
    [20]Beegan D, Chowdhury S, Laugier M T. Modification of composite hardness models to incorporate indentation size effects in thin films. Thin Solid Films,2008,516(12):3813-3817.
    [21]魏悦广,王学峥,武晓雷等.微压痕尺度效应的理论和实验.中国科学(A辑),2000,30(11):1025-1032.
    [22]周亮,姚英学.纳米压痕硬度尺寸效应分析及其试验研究.机械工程学报,2006,42:84-88.
    [23]苏建君,江五贵,黎军顽等.纳米压痕试验中圆柱形压头尺寸效应.南昌航空大学学报(白然科学版),2007,21(4):78-82.
    [24]Yang J, Cady C, Hu M S, et al. Effects of damage on the flow strength and ductility of a ductile Al-alloy reinforced with SiC particulates. Acta Metall. Mater,1990,38:2613-2619.
    [25]Lloyd D J. Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews,1994,39:1-23.
    [26]Ling Z. Deformation behavior and microstructure effect in 2124Al/SiCp composite. Journal of Composite Materials,2000,34:101-115.
    [27]Yan Y W, Geng L, Li A B. Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,448(1-2):315-325.
    [28]Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium. Acta Materialia,2002,50:39-51.
    [29]Elssner G, Korn D, Ruehle M. The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scripta Metallurgica Et Materialia,1994,31:1037-1042.
    [30]Drugan W J, Rice J R, Sham T L. Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids. J. Mech. Phys. Solids,1982,30(6):447-473.
    [31]Hutchinson J W. Linking scales in mechanics. in:Karihaloo B L, Mai Y W, Ripley M I, et al. Advances in Fracture Research. New York:Pergamon Press,1997.
    [32]Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids,2003,51:1477-1508.
    [33]孙亮,王珺,韩平畴.单根聚己内酯电纺亚微米纤维的动力学特性分析.高分子学报,2009,6(6):535-539.
    [34]Bazant Z P. Scaling of quasibrittle fracture:Asymptotic analysis International Journal of Fracture, 1997,83(1):19-40.
    [35]Bazant Z P. Size effect on structural strength:a review Archive of Applied Mechnics,1999,69(9-10): 703-725.
    [36]Bazant Z P. Concrete fracture models:testing and practice. Engineering Fracture Mechanics,2002,69: 165-205.
    [37]Bazant Z P, Pang S D. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. Journal of the Mechanics and Physics of Solids,2007,55:91-131.
    [38]Comi C, Perego U. A generalized variable formulation for gradient dependent softening plasticity. International Journal for Numerical Methods in Engineering,1996,39:3731-3755.
    [39]de Borst R, Pamin J. Some novel developments in finite element procedures for gradient-dependent plasticity. International Journal for Numerical Methods in Engineering,1996,39:2477-2505.
    [40]Reusch F, Svendsen B, Klingbeil D. Local and non-local Gurson-based ductile damage and failure modelling at large deformation. European Journal of Mechanics A/Solids,2003,22:779-792.
    [41]Abu Al-Rub R K, Voyiadjis G Z. A direct finite element implementation of the gradient-dependent theory.2005.
    [42]Aifantis E C. On the microstructural origin of certain inelastic models. ASME Journal of Engineering Materials and Technology,1984,106(4):326-330.
    [43]Aifantis E C. The physics of plastic deformation. International Journal of Plasticity.,1987,3:211-247.
    [44]Zbib H M, Aifantis E C. On the structure and width of shear bands. Scripta Materialia,1988,22: 703-708.
    [45]Zbib H M, Aifantis E C. A gradient-dependent model for the Portevin-Le Chatelier effect. Scripta Materialia,1988,22:1331-1336.
    [46]Zbib H M, Aifantis E C. A gradient-dependent flow theory of plasticity:application to metal and soil instabilities. ASME Journal of Applied Mechanics Review,1989,42(11):295-304.
    [47]Miihlhaus H B, Aifantis E C. A variational principle for gradient plasticity. International Journal of Solids and Structures,1991,28:845-857.
    [48]Zbib H M, Aifantis E C. Size effects and length scales in gradient plasticity and dislocation dynamics. Scripta Materialia,2003,48:155-160.
    [49]Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids,1993,41(12):1825-1857.
    [50]Fleck N A, Hutchinson J W. Strain gradient plasticity. Advances in Applied Mechanics,1997,33: 295-361.
    [51]Voigt W. Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abh. Kgl. Ges. Wiss. Gottingen,1887,34:3-51.
    [52]Cosserat E, Cosserat F. Theorie des corp deformables. Paris:Herman,1909.
    [53]Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua. Proc.11th International Congress on Applied Mechanics, Springer,1965:153-158.
    [54]Eringen A C. Linear theory of micropolar elasticity. J. Math. Mech.,1966,15(6):909-923.
    [55]Eringen A C. Linear theory of micropolar viscoelasticity. International Journal of Engineering Science, 1967,5:191-204.
    [56]Tauchert T R, Claus W D, Ariman T. The linear theory of micropolar thermoelasticity. International Journal of Engineering Science,1968,6:37-47.
    [57]Toupin R A. Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 1962,11:385-414.
    [58]Mindlin R D, Tiersten H F. Effects of couple stresses in linear elasticity. Archive for Rational Mechanics and Analysis,1962,11:415-448.
    [59]Mindlin R D. Influence of couple-stresses on stress concentrations. Experimental Mechanics,1963,3: 1-7.
    [60]Banks C B. On certain two-dimensional applications of the couple stress theory. International Journal of Solids and Structures,1968,4:15-29.
    [61]Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures,2002,39(10):2731-2743.
    [62]Green A E, Mcinnis B C, Naghdi P M. Elastic-plastic continua with simple force dipole. International Journal of Engineering Science,1968,6:373-394.
    [63]de Borst R. Simulation of strain localisation:a reappraisal of the Cosserat continuum. Engineering Computations,1991,8(317-332).
    [64]Ristinmaa M, Vecchi M. Use of couple-stress theory in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering,1996,136(3-4):205-224.
    [65]Koiter W T. Couple stresses in the theory of elasticity, Ⅰ and Ⅱ. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, seris B,1964,67:17-44.
    [66]Chen S H, Wang T C. Strain gradient theory with couple stress for crystalline solids. European Journal of Mechanics A/Solids,2001,20(5):739-756.
    [67]李锡夔.,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24:1497-1505.
    [68]Xia Z C, Hutchinson J W. Crack tip fields in strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1996,44(10):1621-1648.
    [69]Shu J Y, Fleck N A. The prediction of a size effect in micro-indentation. International Journal of Solids and Structures,1998,35(13):1363-1383.
    [70]Green A E, Rivlin R S. Simple force and stress multipoles. Archive for Rational Mechanics and Analysis,1964,16:325-353.
    [71]Green A E, Rivlin R S. Multipolar Continuum Mechanics. Archive for Rational Mechanics and Analysis,1964,17:113-147.
    [72]Mindlin R D. Microstructure in linear elasticity. Archive for Rational Mechanics and Analysis,1964, 16:51-78.
    [73]Mindlin R D. Second gradient of strain and surfacetension in linear elasticity. International Journal of Solids and Structures,1965,1(4):417-438.
    [74]Mindlin R D, Eshel N N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures,1968,4:109-124.
    [75]Suhubi E S, Eringen A C. Nonlinear theory of microelastic solids. International Journal of Engineering Science,1964,2:389-404.
    [76]Eringen A C. Nonlinear theory of continuous media. New York:McGraw-Hill,1962.
    [77]Aifantis E C. On the role of gradients in the localization of deformation and fracture. International Journal of Engineering Science,1992,30:1279-1299.
    [78]Altan B S, Aifantis E C. On the structure of the mode Ⅲ crack-tip in gradient elasticity. Scripta Metallurgica Et Materialia,1992,1:319-324.
    [79]Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2001,49(10):2245-2271.
    [80]Begley M R, Hutchinson J W. The mechanics of size-dependent indentation. Journal of the Mechanics and Physics of Solids,1998,46(10):2049-2068.
    [81]Shu J Y, Fleck N A. Strain gradient crystal plasticity:size-dependent deformation of bicrystals. Journal of the Mechanics and Physics of Solids,1999,47(2):297-324.
    [82]Menzel A, Steinmann P. On the continuum formulation of higher gradient plasticity for single and polycrystals. Journal of the Mechanics and Physics of Solids,2000,48:1777-1796.
    [83]Gudmundson P. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2004,52(6):1379-1406.
    [84]Gurtin M E, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part Ⅰ:Small deformations. Journal of the Mechanics and Physics of Solids,2005,53(7): 1624-1649.
    [85]Gurtin M E, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part Ⅱ:Finite deformations. International Journal of Plasticity,2005,21(12):2297-2318.
    [86]Acharya A, Bassani J L. Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids,2000,48:1565-1595.
    [87]Chen S H, Wang T C. A new hardening law for strain gradient plasticity. Acta Materialia,2000, 48(16):3997-4005.
    [88]Yuan H, Chen J. Analysis of size effects based on lower-order symmetric gradient plasticity model. Computational Materials Science,2000,19:143-157.
    [89]Yuan H, Chen J. Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests. International Journal of Solids and Structures,2001,38:8171-8187.
    [90]Bassani J L. Incompatibility and a simple gradient theory of plasticity. Journal of the Mechanics and Physics of Solids,2001,49:1983-1996.
    [91]Nix W D, Gao H J. Indentation size effects in crystalline materials:A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [92]Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-Ⅰ. Theory. Journal of the Mechanics and Physics of Solids,1999,47(6):1239-1263.
    [93]Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity-Ⅱ. Analysis. Journal of the Mechanics and Physics of Solids,2000,48(1):99-128.
    [94]Qiu X, Huang Y, Wei Y, et al. The flow theory of mechanism-based strain gradient plasticity. Mechanics of Materials,2003,35(3-6):245-258.
    [95]Hwang K C, Jiang H, Huang Y, et al. Finite deformation analysis of mechanism-based strain gradient plasticity:torsion and crack tip field. International Journal of Plasticity,2003,19(2):235-251.
    [96]Yun G, Hwang K C, Huang Y, et al. A reformulation of mechanism-based strain gradient plasticity. Philosophical Magazine,2005,85(33-35):4011-4029.
    [97]云赓.考虑Taylor位错模型的含非经典应力矢量的应变梯度塑性理论:(博士学位论文).北京:清华大学,2006.
    [98]Han C S, Gao H J, Huang Y G, et al. Mechanism-based strain gradient crystal plasticity-Ⅰ. Theory. Journal of the Mechanics and Physics of Solids,2005,53(5):1188-1203.
    [99]Han C S, Gao H J, Huang Y G, et al. Mechanism-based strain gradient crystal plasticity-Ⅱ. Analysis. Journal of the Mechanics and Physics of Solids,2005,53(5):1204-1222.
    [100]Gao H, Huang Y. Taylor-based nonlocal theory of plasticity. International Journal of Solids and Structures,2001,38(15):2615-2637.
    [101]Guo Y, Huang Y, Gao H, et al. Taylor-based nonlocal theory of plasticity:applications to micro-indentation experiments and crack tip fields. International Journal of Solids and Structures, 2001,38(42-43):7447-7460.
    [102]Huang Y, Qu S, Hwang K C, et al. A conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity,2004,20(4-5):753-782.
    [103]Nye J F. Some geometrical relation in dislocated crystals. Acta Metallurgica,1953,1:153-162.
    [104]Ashby M F. The deformation of plastically non-homogeneous materials. The Philosophic Magazine, 1970,21(2):399-424.
    [105]Taylor G I. The mechanism of plastic deformation of crystals. Part Ⅰ.-theoretical. Proceedings of the Royal Society of London,1934:362-387.
    [106]Taylor G I. Plastic strain in metals. J. Inst. Met,1938,62:307-324.
    [107]Abu Al-Rub R K, Voyiadjis G Z. A physically based gradient plasticity theory. International Journal of Plasticity,2006,22(4):654-684.
    [108]Kocks U F. A statistical theory of flow stress and work hardening. Philosophical Magazine,1966,13: 541-566.
    [109]Kocks U F. Laws for work-hardening and low-temperature creep.. ASME Journal of Engineering Materials and Technology,1976,98:76-85.
    [110]Estrin Y, Mecking H. A unified phenomenological description of work-hardening and creep based on one-parameter models. Acta Metallurgica,1984,32:57-70.
    [111]Kroner. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures,1967,3:731-742.
    [112]Eringen A C. Non-local polar elastic continua. International Journal of Engineering Science,1972, 10(1):1-16.
    [113]Voyiadjis G Z, Dorgan R J. Bridging of length scales through gradient theory and diffusion equations of dislocations. Computer Methods in Applied Mechanics and Engineering,2004,193(17-20): 1671-1692.
    [114]de Borst R, Miihlhaus H B. Gradient-dependent plasticity:formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering,1992,35:521-539.
    [115]Li X K, Cescotto S. A mixed element method in gradient plasticity for pressure dependent materials and modelling of strain localization. Computer Methods in Applied Mechanics and Engineering, 1997,144(3-4):287-305.
    [116]Stromberg L, Ristinmaa M. FE-formulation of a nonlocal plasticity theory. Computer Methods in Applied Mechanics and Engineering,1996,136(1-2):127-144.
    [117]Alshiblin K A, Sture S. Sand shear band thickness measurements by digital imaging techniques. Journal of Computing in civil engineering,1999,13(2):103-109.
    [118]Adachi T, Tomita Y, Tanaka M. Computational simulation of deformation behavior of 2D-lattice continuum. International Journal of Mechanical Sciences,1998,40(9):857-866.
    [119]Shu J Y, King W E, Fleck N A. Finite elements for materials with strain gradient effects. International Journal for Numerical Methods in Engineering,1999,44:373-391.
    [120]Zervos A, Papanastasiou P, Vardoulakis I. A finite element formulation for gradient elastoplasticity. International Journal for Numerical Methods in Engineering,2001,50:1369-1388.
    [121]肖其林,凌中,吴永礼.偶应力问题的杂交/混合元分析.计算力学学报,2003,20(4):427-433.
    [122]李雷,吴长春,谢水生.基于Hellinger-Reissner变分原理的应变梯度杂交元设计.力学学报,2005,37(3):30 1-306.
    [123]郑长良,任明法,张志峰等.应用离散偶应力单元分析弹性Cosserat介质.计算物理,2004,21(3):377-352.
    [124]黄若煜,吴长春,钟万勰.基于平面偶应力-Reissner/Mindlin板比拟的偶应力有限元.力学学报,2004,36(3):272-280.
    [125]Yu S W. On the analogues relating plane problem of couple-stress theory and Reissner's plate theory. Zeitschrift Fur Angewandte Mathematik Und Physik,1987,67(4):246-247.
    [126]Wood R D. Finite element analysisi of plane couple-stress problems using first order stress functions. Int. J. Num. Mech. Engng.,1988,26:489-509.
    [127]钟万勰,姚伟岸,郑长良.Reissner板弯曲与平面偶应力模拟.大连理工大学学报,2002,42(5):519-521.
    [128]李雷,吴长春.基于Cosserat理论的应变梯度非协调数值研究.工程力学,2004,21(5):166-171.
    [129]Swaddiwudhipong S, Hua J, Tho K K, et al. C0 solid elements for materials with strain gradient effects. International Journal for Numerical Methods in Engineering,2005,64:1400-1414.
    [130]Swaddiwudhipong S, Tho K K, Hua J, et al. Mechanism-based strain gradient plasticity in C-0 axisymmetric element. International Journal of Solids and Structures,2006,43(5):1117-1130.
    [131]Wei Y G. A new finite element method for strain gradient theories and applications to fracture analyses. European Journal of Mechanics A/Solids,2006,25:897-913.
    [132]Papanicolopulos S-A, Zervos A, Vardoulakis I. A three-dimensional C1 finite element for gradient elasticity. International Journal for Numerical Methods in Engineering,2009,77:1396-1415.
    [133]Chen W J. Finite element methods in strain gradient theory:C0-1 patch test and its variational basic. Journal of Dalian University of Technology,2004,44(4):474-477.
    [134]陈万吉.应变梯度理论有限元:C0-1分片检验及其变分基础有限元增强型分片检验.大连理工大学学报,2004,44(4):474-477.
    [135]Chen W J, Zhao J, Wang J Z, et al. Patch test function for axisymmetric element of conventional and couple stress theory. Science in China Series G-Physics Mechanics & Astronomy,2009,52(8): 1257-1261.
    [136]赵杰,陈万吉,冀宾.轴对称弹性应变梯度理论公式推导及有限元实现.计算力学学报,2009,26(2):209-214.
    [137]Steinmann P. A Micropolar Theory of Finite Deformation and Finite Rotation Multiplicative Elastoplasticity. International Journal of Solids and Structures,1994,31(8):1063-1084.
    [138]Providas E, Kattis M A. Finite element method in plane Cosserat elasticity. Computers and Structures, 2002,80:2059-2069.
    [139]Li L, Xie S S. Finite element method for linear micropolar elasticity and numerical study of some scale effects phenomena in MEMS. International Journal of Mechanical Sciences,2004,46: 1571-1587.
    [140]Zhang H W, Wang H, Liu G Z. Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies. Acta Mechanica Sinica,2005,21(4):388-394.
    [141]张洪武,王辉.平面Cosserat模型有限元分析的4和8节点单元与分片试验研究.计算力学学报,2005,22(5):512~517.
    [142]陈万吉.细观尺度C0和C1理论及有限元分片检验函数中国科学G辑:物理学力学天文学,2009,39(10):1480-1486.
    [143]Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977,8(12):1013-1024.
    [144]Gingold R A, Monaghan J J. Smooth particle hydrodynamics:theory and application to non-spherical stars. Royal Astronomical Society, Monthly Notices,1977,181:375-389.
    [145]Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximations and diffuse elements. Computational Mechanics,1992,10:307-318.
    [146]Belytschko T, Lu Y Y, Gu L. Element-Free Galerkin Methods. International Journal for Numerical Methods in Engineering,1994,37(2):229-256.
    [147]Liu W K, Jun S, Zhang Y F. Reproducing Kernel Particle Methods. International Journal for Numerical Methods in Fluids,1995,20(8-9):1081-1106.
    [148]Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids,1995,21:901-931.
    [149]Liu W K, Chen Y, Chang C T, et al. Advances in multiple scale kernel particle methods. Computational Mechanics,1996,18(2):73-111.
    [150]Liu W K, Chen Y J, Uras R A, et al. Generalized multiple scale reproducing kernel particle methods. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):91-157.
    [151]Sambridge M, Braun J, McQueen H. Geophysical parame terization and interpolation of irregular data using natural neighbours. Geophysics Journal International,1995,122:837-857.
    [152]Onate E, Idelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering,1996,39(22):3839-3866.
    [153]Melenk J M, Babuska I. The partition of unity finite element method:basic theory and applications. Computer Methods in Applied Mechanics and Engineering,1996,139:263-288.
    [154]Babuska I, Melenk J M. The partition of unity method. International Journal for Numerical Methods in Engineering,1997,40(4):727-758.
    [155]Duarte C A, Oden J T. Hp clouds:an h-p meshless method. Numerical Methods for Partial Differential Equations,1996,12:673-705.
    [156]Duarte C A, Oden J T. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering,1996,139:237-262.
    [157]Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics,1998,22(2):117-127.
    [158]Atluri S N, Kim H G, Cho J Y. A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods. Computational Mechanics,1999, 24(5):348-372.
    [159]Atluri S N, Cho J Y, Kim H G. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics,1999, 24(5):334-347.
    [160]Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics,2000,25(2-3):169-179.
    [161]Zhu T, Zhang J, Atluri S N. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics,1998,22(2):174-186.
    [162]Zhu T, Zhang J D, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics,1998,21(3):223-235.
    [163]Atluri S N, Sladek J, Sladek V, et al. The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity. Computational Mechanics,2000,25:180-198.
    [164]Askes H, Aifantis E C. Numerical modeling of size effects with gradient elasticity-Formulation, meshless discretization and examples. International Journal of Fracture,2002,117(4):347-358.
    [165]Tang Z, Shen S, Atluri S N. Analysis of materials with strain-gradient effects:a meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only. Comput. Model Eng. Sci.,2003, 4(1):177-196.
    [166]Manzari M T, Regueiro R A. Gradient plasticity modeling of geomaterials in a meshfree environment. Part Ⅰ:Theory and variational formulation. Mechanics Research Communications,2005,32: 536-546.
    [167]Yeon J H, Youn S K. Variational multiscale analysis of solids with strain gradient plastic effects using meshfree approximation. International Journal of Computational Methods,2005,2(4): 601-626.
    [168]张敦福,朱维申,李术才.基于偶应力理论的无网格Galerkin方法及尺度效应数值模拟研究.机械强度,2008,30(4):628-632.
    [169]张敦福.无网格Galerkin方法及裂纹扩展数值模拟研究:(博士学位论文).济南:山东大学,2007.
    [170]李晓琴.考虑偶应力理论的无网格伽辽金法及其在裂纹扩展中的应用:(硕士学位论文).济南:山东大学,2008.
    [171]王敏,王锡平,周慎杰.偶应力理论的无网格法.计算力学学报,2008,25(4):464-468.
    [172]王敏.基于偶应力理论的局部彼得洛夫-伽辽金无网格(MLPG)法:(硕士学位论文).济南:山东大学,2008.
    [173]李雷,周毅英,谢水生等.应变梯度形变理论的无网格数值方法研究.塑性工程学报,2009,16(4):152-156.
    [174]Aifantis E C. Strain gradient interpretation of size effects. International Journal of Fracture,1999, 95(1-4):299-314.
    [175]Anthoine A. Effect of couple-stresses on the elastic bending of beams. International Journal of Solids and Structures,2000,37:1003-1018.
    [176]Huang Y, Xue Z, Gao H, et al. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research,2000,15(8):1786-1796.
    [177]Qiu X, Huang Y, Nix W D, et al. Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Materialia,2001,49(19):3949-3958.
    [178]Duan D M, Wu N Q, Slaughter W S, et al. Length scale effect on mechanical behavior due to strain gradient plasticity. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001,303(1-2):241-249.
    [179]Konstantinidis A A, Aifantis E C. Recent developments in gradient plasticity-Part Ⅱ:Plastic heterogeneity and wavelets. Journal of Engineering Materials and Technology-Transactions of the Asme,2002,124(3):358-364.
    [180]Hwang K C, Jiang H, Huang Y, et al. A finite deformation theory of strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2002,50(1):81-99.
    [181]Xu Z H, Rowcliffe D. Deriving mechanical properties of soft coatings using nanoindentation:an application of mechanism-based strain gradient plasticity. Surface & Coatings Technology,2002, 157(2-3):231-237.
    [182]Wang W, Huang Y, Hsia K J, et al. A study of microbend test by strain gradient plasticity. International Journal of Plasticity,2003,19(3):365-382.
    [183]Wei Y G, Wang X Z, Zhao M H, et al. Size effect and geometrical effect of solids in micro-indentation test Acta Mechanica Sinica,2003,19(1):59-70.
    [184]Abu Al-Rub R K, Voyiadjis G Z. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments. International Journal of Plasticity,2004,20(6):1139-1182.
    [185]Lee H, Ko S, Han J, et al. Novel analysis for nanoindentation size effect using strain gradient plasticity. Scripta Materialia,2005,53(10):1135-1139.
    [186]Park S K, Gao X L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering,2006,16(11):2355-2359.
    [187]Zhang F, Huang Y G. The indenter tip radius effect in micro-and nanoindentation hardness experiments Acta Mechanica Sinica,2006,22(1):1-8.
    [188]Qu S, Huang Y, Pharr G M, et al. The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity,2006,22(7):1265-1286.
    [189]Estrin Y, Molotnikov A, Davies C H J, et al. Strain gradient plasticity modelling of high-pressure torsion. Journal of the Mechanics and Physics of Solids,2008,56(4):1186-1202.
    [190]Molotnikov A. Application of strain gradient plasticity modelling to high pressure torsion. Nanomaterials by Severe Plastic Deformation Iv, Pts 1 and 2,2008,584-586:1051-1056,1094.
    [191]Estrin Y, Muhlhaus H B. From micro-to macroscale, gradient models of plasticity. Proceedings of the International Conference on Engineering Mathematics, AEMC Sydney,1996:161-165.
    [192]Fredriksson P, Larsson P L. Wedge indentation of thin films modelled by strain gradient plasticity. International Journal of Solids and Structures,2008,45(21):5556-5566.
    [193]Shu J Y, Barlow C Y. Strain gradient effects on microscopic strain field in a metal matrix composite. International Journal of Plasticity,2000,16(5):563-591.
    [194]Chen S H, Wang T C. Size effects in the particle-reinforced metal-matrix composites. Acta Mechanica,2002,157(1-4):113-127.
    [195]Liu X N, Hu G K. A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect. International Journal of Plasticity,2005,21(4):777-799.
    [196]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica et Materialia,1973,21:571-574.
    [197]Qu S, Siegmund T, Huang Y, et al. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain-gradient plasticity. Composites Science and Technology,2005,65:1244-1253.
    [198]Legarth B N, Niordson C F. Debonding failure and size effects in micro-reinforced composites. International Journal of Plasticity,2010,26(1):149-165.
    [199]Atkinson A, Leppington F G. The effect of couple stresses on the tip of a crack. International Journal of Solids and Structures,1977,13:1103-1122.
    [200]Hwang K C, Huang Y. Mechanism-based strain gradient (MSG) plasticity and the associated asymptotic crack-tip fields. Fracture and Strength of Solids, Pts 1 and 2,2000,183-1:9-18.
    [201]Shi M X, Huang Y, Gao H, et al. Non-existence of separable crack tip field in mechanism-based strain gradient plasticity. International Journal of Solids and Structures,2000,37(41):5995-6010.
    [202]Shi M, Huang Y, Jiang H, et al. The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity. International Journal of Fracture,2001,112(1):23-41.
    [203]Jiang H, Huang Y, Zhuang Z, et al. Fracture in mechanism-based strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2001,49(5):979-993.
    [204]Chen S H, Wang T C. Finite element solutions for plane strain mode Ⅰ crack with strain gradient effects. International Journal of Solids and Structures,2002,39:1241-1257.
    [205]Xia S, Wang T C, Chen S H. Crack tip field and J-integral with strain gradient effect. Acta Mechanica Sinica,2004,20(3):228-237.
    [206]Radi E. Strain-gradient effects on steady-state crack growth in linear hardening materials. Journal of the Mechanics and Physics of Solids,2003,51:543-573.
    [207]Radi E. Effects of characteristic material lengths on mode Ⅲ crack propagation in couple stress elastic-plastic materials. International Journal of Plasticity,2007,23(8):1439-1456.
    [208]Brinckmann S, Siegmund T. Computations of fatigue crack growth with strain gradient plasticity and an irreversible cohesive zone model. Engineering Fracture Mechanics,2008,75(8):2276-2294.
    [209]Muhlhaus H B. Surface instability of a half space with bending stiffness. Ingenieur-Archiv,1985,55: 388-400.
    [210]Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987,37(3):271-283.
    [211]Muhlhaus H B. Application of Cosserat theory in numerical solutions of limit load problems. Ingenieur-Archiv,1989,59:124-137.
    [212]Muhlhaus H B. Stress and couple stress in a layered half plane with surface loading. International Journal for Numerical and Analytical Methods in Geomechanics,1989,13:545-563.
    [213]Dai C, Muhlhaus H, Meek J, et al. Modelling of blocky rock masses using the Cosserat method. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1996, 33(4):425-432.
    [214]Muhlhaus H B, Oka F. Dispersion and wave propagation in discrete and continuous models for granular materials. International Journal of Solids and Structures,1996,33(19):2841-2858.
    [215]Dietsche A, Steinmann P, Willam K. Micropolar Elastoplasticity and Its Role in Localization. International Journal of Plasticity,1993,9(7):813-831.
    [216]Peric D, Yu J G, Owen D R J. On Error-Estimates and Adaptivity in Elastoplastic Solids-Applications to the Numerical-Simulation of Strain Localization in Classical and Cosserat Continua. International Journal for Numerical Methods in Engineering,1994,37(8):1351-1379.
    [217]Cramer H, Findeiss R, Steinl G, et al. An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena. Computer Methods in Applied Mechanics and Engineering,1999,176(1-4):187-202.
    [218]Adhikary D P, Dyskin A V, Jewell R J. Numerical modelling of the flexural deformation of foliated rock slopes. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1996,33(6):595-606.
    [219]Adhikary D P, Dyskin A V. A Cosserat continuum model for layered materials. Computers and Geotechnics,1997,20(1):15-45.
    [220]Tejchman J, Wu W. Numerical simulation of shear band formation with a hypoplastic constitutive model. Computers and Geotechnics,1996,18(1):71-84.
    [221]Tejchman J, Herle I, Wehr J. FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(15):2045-2074.
    [222]Huang W, Nubel K, Bauer E. Polar extension of a hypoplastic model for granular materials with shear localization. Mechanics of Materials,2002,34(9):563-576.
    [223]Huang W X, Bauer E. Numerical investigations of shear localization in a micro-polar hypoplastic material. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(4): 325-352.
    [224]Shi M X, Huang Y, Hwang K C. Plastic flow localization in mechanism-based strain gradient plasticity. International Journal of Mechanical Sciences,2000,42(11):2115-2131.
    [225]Kruyt N P. Statics and kinematics of discrete Cosserat-type granular materials. International Journal of Solids and Structures,2003,40(3):511-534.
    [226]Nubel K, Huang W X. A study of localized deformation pattern in granular media. Computer Methods in Applied Mechanics and Engineering,2004,193(27-29):2719-2743.
    [227]Voyiadjis G Z, Alsaleh M I, Alshibli K A. Evolving internal length scales in plastic strain localization for granular materials. International Journal of Plasticity,2005,21(10):2000-2024.
    [228]Froiio F, Tomassetti G, Vardoulakis I. Mechanics of granular materials:The discrete and the continuum descriptions juxtaposed. International Journal of Solids and Structures,2006,43(25-26): 7684-7720.
    [229]陈胜宏,王鸿儒,熊文林.节理岩体的偶应力影响研究.水利学报,1990,1(1):44-48.
    [230]佘成学,熊文林,陈胜宏.具有弯曲效应的层状结构岩体变形的Cosserat介质分析方法.岩土力学,1994,15(4):12~19.
    [231]佘成学,熊文林,陈胜宏.层状岩体的弹粘塑性Cosserat介质理论及其工程应用.水利学报,1996,4:10~17.
    [232]李桂荣,佘成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验及有限元分析.岩石力学与工程学报,1997,16(4):305-311.
    [233]刘俊,陈胜宏.节理岩体三维偶应力弹性理论.岩土力学,1995,16(4):20-29.
    [234]刘俊,黄铭,葛修润.Cosserat介质理论针对节理岩体的应用.岩土力学,2004,25(2):27-31.
    [235]刘俊,黄铭,葛修润等.层状岩体开挖的空间弹性偶应力理论分析.岩石力学与工程学报,2000,19(3):276-280.
    [236]王学滨,潘一山.考虑围压及孔隙压力的岩石试件应力与应变关系解析.地质力学学报,2001,7(3):265-270.
    [237]王学滨,宋维源,马剑等.多孔介质岩土材料剪切带孔隙特征研究(1)—孔隙度局部化.岩石力学与工程学报,2004,23(15):2514-2518.
    [238]王学滨,姚再兴,马剑等.多孔介质岩土材料剪切带孔隙特征研究(2)—最大孔隙比分析.岩石力学与工程学报,2004,23(15):2519-2522.
    [239]王学滨,潘一山,马瑾.剪切带-弹性岩体系统的稳定及失稳滑动理论研究.岩土工程学报,2002,24(3):360-362.
    [240]王学滨,张智慧,潘一山.基于梯度塑性理论的岩样拉压剪破坏统—失稳判据.岩土力学,2003,24:138-142.
    [241]王学滨,潘一山,任伟杰.基于应变梯度理论的岩石试件剪切破坏失稳判据.岩石力学与工程学报,2003,22(5):747-750.
    [242]王学滨.基于梯度塑性理论的岩样在压剪条件下变形及稳定性分析.岩土力学,2004,25:39-42.
    [243]王学滨.基于能量原理的岩样单轴压缩剪切破坏失稳判据.工程力学,2007,24(1):153-156,161.
    [244]王学滨,赵杨峰,张智慧等.考虑应变率及应变梯度效应的断层岩爆分析.岩石力学与工程学报,2003,22(11):1859-1862.
    [245]王学滨,海龙,宋维源等.断层岩爆是应变局部化导致的系统失稳回跳.岩石力学与工程学报,2004,23(18):3102-3105.
    [246]王学滨,潘一山,海龙.基于剪切应变梯度塑性理论的断层岩爆失稳判据.岩石力学与工程学报,2004,23(4):588-591.
    [247]王学滨,宋维源,黄梅等.考虑水致弱化及应变梯度的断层岩爆分析.岩石力学与工程学报,2004,23(11):1815-1818.
    [248]王学滨,马剑,刘杰等.基于梯度塑性本构理论的岩样侧向变形分析(Ⅰ):基本理论及本构参数对侧向变形的影响.岩土力学,2004,905-908(25):6.
    [249]王学滨,刘杰,王雷等.基于梯度塑性本构理论的岩样侧向变形分析(Ⅱ):尺寸效应及弹性回跳.岩土力学,2004,1127-1130(25):7.
    [250]王学滨.岩样单轴压缩轴向及侧向变形耗散能量及稳定性分析.岩石力学与工程学报,2005,24(5):846-853.
    [251]王学滨.基于梯度塑性理论的岩样峰后变形特征研究.岩石力学与工程学报,2004,23:4292-4295.
    [252]王学滨.岩样单轴压缩峰后泊松比理论研究.工程力学,2006,23(4):99-103.
    [253]王学滨.岩土材料物质成分对峰后性能影响的力学模型.科学技术与工程,2007,7(17):4382-4386.
    [254]ABAQUS Version 6.7 Documentation:ABAQUS, Inc.,2007.
    [255]Wei Y G, Hutchinson J W. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1997,45(8):1253-1273.
    [256]Smyshlyaev V P, Fleck N A. The role of strain gradients in the grain size effect for polycrystals. Journal of the Mechanics and Physics of Solids,1996,33:354-384.
    [257]陈少华,王自强.应变梯度理论进展.2003.
    [258]Acharya A, Bassani J L. On non-local flow theories that preserve the classical structure of incremental boundary value problems. Pineau, A., Zaoui, A. (Eds.), IUTAM Symp. On Micromechanics of Plasticity and Damage, Kluwer Academic Publishers,1996:3-10.
    [259]Arsenlis A, Parks D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia,1999,47(5):1597-1611.
    [260]Ai-Kah S, Chen W J. Finite element formulations of strain gradient theory for microstructures and the C0-1 patch test. International Journal for Numerical Methods in Engineering,2004,61(3): 433-454.
    [261]陈少华,王自强.微尺度塑性力学.合肥:中国科学技术大学出版社,2009.
    [262]Gao X L. Analytical solution of a borehole problem using strain gradient plasticity. Journal of Engineering Materials and Technology-Transactions of the Asme,2002,124(3):365-370.
    [263]Bazant Z P, Belytschko T, Chang T P. Continuum theory for strain-softening. J. Engng. Mech.,1984, 110:1666-1693.
    [264]Hill R, Hutchinson J W. Bifurcation phenomena in the plate tension test. Journal of Mechanics and Physics of Solids,1975,23:239-264.
    [265]Needleman A. Material rate dependence and mesh sensitivity in localisation problems. Computer Methods in Applied Mechanics and Engineering,1988,67(1):69-86.
    [266]Pietruszczak S, Niu X. On the description of localized deformation. International Journal of Numerical and Analytical Method in Geomechanics,1993,17:791-805.
    [267]黄茂松,贾苍琴,钱建固.岩土材料应变局部化的有限元分析方法.计算力学学报,2007,24(4):465-471.
    [268]Ellen K, Ekkehard R, de Borst R. An anisotropic gradient damage model for quasi-brittle materials. Computer Methods of Applied Mechanical and Engineering,2000,183(1):333-345.
    [269]M??hlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987,37(3):271-283.
    [270]Al Hattamleh O, Muhunthan B, Zbib H M. Gradient plasticity modelling of strain localization in granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28(6):465-481.
    [271]Wang X B. Analytical solution of complete stress-strain curve in uniaxial compression based on gradient-dependent plasticity. Eurock 2005:Impact of Human Activity on the Geological Environment,2005:661-667,745.
    [272]Jirasek M, Rolshoven S. Localization properties of strain-softening gradient plasticity models. Part Ⅱ: Theories with gradients of internal variables. International Journal of Solids and Structures,2009, 46(11-12):2239-2254.
    [273]Shi Z, Huang Y, Song J, et al. Study of Plastic Shear Localization via the Flow Theory of Mechanism-Based Strain Gradient Plasticity. Journal of Engineering Mechanics-Asce,2009,135(3): 132-138.
    [274]Bazeley G P, Cheung Y K, Irons B M, et al. Triangular elements in bending conforming and non-conforming solution. Proc. Conf. Matrix Methods in Structural Mechanics, Air Force Ins. Tech., 1965:547-576.
    [275]Cheung Y K, Chen W J. Refined nine-parameter triangular thin plate bending element by using refined direct stiffness method. International Journal for Numerical Methods in Engineering,1995, 38:283-298.
    [276]Wempner G A. Discrete approximation related to nonlinear theories of solids. International Journal of Solids and Structures,1971,7:1581-1599.
    [277]Riks E. The application of Newton's method to the problem of elastic stability. Journal of Applied Mechanics,1972,39:1060-1065.
    [278]Ramm E. Nonlinear Finite Element Analysis in Structural Mechanics. Strategies for tracing the nonlinear response near limit points. New York:Springer,1981.
    [279]Crisfield M A. An arc-length method including line searches and accelerations. International Journal for Numerical Methods in Engineering,1983,19:1269-1289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700