新型组合钢桁桥可靠性分析及极限承载力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,随着我国钢桁梁建设的飞速发展,多座大跨径新型组合钢桁桥建成通车。这些钢桁桥的共同特点是结构造型新颖、力学性能空间性强、施工工艺复杂。同时地处交通要道,交通流量大,是国民经济的命脉,因此它们施工阶段及服役期间的可靠性及极限承载能力至关重要。目前国内外关于新型组合钢桁桥的可靠性研究较少,同时关于桥梁结构弹塑性极限承载力的评估方法也存在争议。为此,本文以东江大桥-刚性悬索加劲钢桁桥为工程背景,进行了如下研究:
     1)对几种常用结构可靠性研究方法的特点及原理进行了介绍,并结合各自的优势,提出了结构可靠性的综合分析法:首先采用响应面法(RSM)拟合结构真实的极限状态曲面,得到近似的极限状态函数表达式,然后采用蒙特卡罗法(MC)对该表达式进行随机抽样,得到近似极限状态函数的概率分布及数字特征,最后采用一次二阶矩法(FORM)或矩法(MM)等计算可靠度指标及失效概率。通过算例及具体工程分析表明,该方法具有较高的精度及效率,适用于大型复杂结构的可靠性分析。
     2)考虑结构材料、几何尺寸、荷载等的变异性,建立东江大桥施工全过程静力随机有限元模型,应用可靠性综合分析法研究各种随机参数影响下结构响应的均值、标准差及概率分布。并进行参数敏感性分析,了解各参数对结构响应的影响程度。最后对基于东江大桥的杆件应力及跨中挠度建立极限状态方程,求解结构可靠度指标及失效概率,并对结构可靠性进行了评估。
     3)首次考虑施工安装误差的随机性,将其模拟成随机变量,采用可靠性综合分析法研究安装误差对东江大桥结构可靠性的影响,并研究结构响应对各施工安装误差的敏感程度,结果表明施工安装误差对结构可靠性影响较大。鉴于国内外规范关于目标可靠度指标的取值均未考虑桥梁施工安装误差的影响,因此本文提出:根据桥梁结构施工工艺的复杂程度以及对其受力性能的掌握程度,将现行规范的目标可靠度指标进行上调,确保结构的可靠性。
     4)针对大型桥梁结构在到达极限状态后线弹性可靠性分析方法已不再适用的情况,对大型复杂桥梁结构进行双重非线性随机有限元分析,并结合可靠性综合分析法了解结构的极限荷载系数及挠度的概率分布与数字特征,研究大桥在进入非线性状态下的结构体系可靠度。
     5)鉴于目前桥梁结构的弹塑性极限承载力评估尚无统一标准,提出基于可靠度理论的安全系数评估方法。根据单一系数设计准则,将可靠度指标转换为易被工程设计人员所接受的安全系数,为桥梁结构的弹塑性极限承载力评估提供依据。并依此方法对东江大桥最大悬臂阶段及成桥阶段的弹塑性极限承载力进行了评估。
Since the 21th century, with the rapid development of steel truss bridge construction in china, many new composite steel truss bridges have been constructed and opened to traffic. Their common characteristics are novel in Structure, dramatically special in mechanic properties and complex in construction technology. Meanwhile, they were located in the traffic arteries and were the lifeline of national economy. So their reliability and the ultimate bearing-load capacity are quite important in service period. But rarely studies about large-span steel truss bridges'reliability could be found at the present time, and there also exited disputes about the assessment ways of elastic-plastic ultimate capacity of the bridge structure. Therefore, based on the Dongjiang Bridge, a steel truss bridge with rigid cable, this paper unfolded some research in following ways:
     1) Characters and principles of several commonly used reliability methods are introduced, and a composite method is presented on the basis of their own advanced. Firstly, the Response Surface Method (RSM) to fit the true curved surface of structure's ultimate state is used to get the approximate equation in ultimate state. Secondly, random sampling on the equation by Monte-Carlo (MC) is proceeded to get the probability distributions and numerical characteristic about equation in ultimate state. Finally utilize the method of First Order Second Moment (FORM) or the Moment Method (MM)to calculate reliability index and failure probability. And found that the response surface method with cross terms have a better accuracy and efficiency, which is suitable to be used in the reliability analysis of large special structures;
     2) Considered the variability of the structural materials, geometric dimensions and loads, a static stochastic finite element model was established to analyze whole construction processes of Dongjiang Bridge, and the Response Surface Method (RSM) was used to study the mean value, standard deviation and probability distribution of structural response. And parameter sensitivity analysis was adopted to research the influence degrees of each parameter on structural response. Then the equations in ultimate state of trusses’stress and mid-span's deflection were established to get the reliability index and failure probability. Then make an assessment on the reliability of the bridge.
     3) Firstly to consider the randomicity of installation errors and simulate it as to be random interval. By the composite methods, researched the influence on reliability of Dongjiang Bridge and studied the sensitive degree about structural response to installation errors. In consequence, the installation errors have a great affection on structural reliability.Many domestic research about the uncertainty of loads and resistances was concentrated on the statistical analysis of geometric parameters, material properties and all kinds of loads, while rarely research about installation errors in the construction process. So this paper proposed that according to the complexity of construction technology, the corresponding target should raise reliability by 1,0.5 and 0 on basement of the original codes to ensure the structural reliability.
     4) For large bridge structure, they have strong non-linear character when reaching their ultimate state, then the linear elastic analysis method is not applicable any more. To analyze the probability distributions and numerical characteristic of the structure's ultimate load factors and deflection, then the Stochastic finite element model taking the double non-linear into account are established. Finally the reliability of the structural as a system in construct's non-linear stage is researched.
     5) Respecting no unite assessment standard on the elastic-plastic ultimate bearing-load capacity of bridge structure at present, a safety factors assessment method based on reliability theory was proposed: According to the single factor design criteria, the reliability index is converted to safety factor which can easily accepted by engineers and provides reference for evaluating the elastic-plastic ultimate bearing-load capacity of bridge structure. And based on this way, the elastic-plastic ultimate bearing-load capacity of Dongjiang Bridge in largest cantilever stage and finished stage were assessed.
引文
[1]周仁忠,徐国平,翟世鸿等.重庆朝天门长江大桥施工控制关键技术研究[J].中外公路,2010,1(30):119-125.
    [2]骆双全,于祥君.南京大胜关长江大桥主桥钢梁南边跨合龙技术[J].桥梁建设,2009,3:9-11.
    [3]秦顺全.武汉天兴洲公铁两用长江大桥关键技术研究[J].工程力学,2008,增刊Ⅱ(35):99-105.
    [4]高健,伍小平,顾海欢.闵浦大桥边跨钢结构整体安装结构分析[J].建筑施工,2009,1(31):64-66.
    [5]LIU Yong-jian, LIU Jian, ZHONG Guan-xin, et al. Mechanical Behavior of Steel Truss Bridge Stiffened with Rigid Cable in Construction Stage[J].Journal of Traffic and Transportation Engineering, 2009,9(03):1-10.
    [6]常大民,江克斌.桥梁结构可靠性分析与设计[M].中国铁道出版社,1995.
    [7]Ellingwood B., Galambos T.V., Mac Gregor J.G. and Cornell C.A. Development of a probability based load criterion for American National Standard A58[R].Publication 577, National Bureau of Standard, Department of Commerce, Washington, D.C,1980.
    [8]O.Ditlevsen, H.O.Madsen. Structural Reliability Methods[M]. Inc John Wiley & Sons,1996.
    [9]何军译.结构可靠度方法[M].同济大学出版社,2007.
    [10]Schueller G I. Structural reliability-recent advances, In: Schueller G I eds[M]. Int conf on struct safety and reliability.Kyoto: Science end Technology Press.1997:1-34.
    [11]Schueller G I. A state-of-the-art report on computational stochastic mechanics[R]. Probabilistic Engineering Mechanics.1997.12(4):197-321.
    [12]Zhang X T. Proc Of the first China-USA-Japan workshop on civil infrastructure system. Sponsored by national science foundation of China and national science foundation of USA[M].Shanghai: Tongji University Press,1998.
    [13]卓家寿,刘宁.计算力学与应用的若干动态与展望[J].河海大学学报,24(计算力学专辑).1996:1-9.
    [14]Sang Hyo Klm, Seong Won Na. Response surface method using projected vector sampling points [J]. Structural Safety,1997,19(1):3-19.
    [15]Jorge E, Hrutado. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory [J]. Structural Safety,2004,26 (3):271-293.
    [16]吴世伟.结构可靠度分析[M].北京:人民交通出版社,1988.
    [17]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:水利电力出版社,1984.
    [18]刘宁.基于三维弹塑性随机有限元的结构体系可靠度计算[J].工程力学,1995(增刊):443-448.
    [19]刘宁,卓家寿.基于三维弹塑性随机有限元的可靠度计算[J].水利学报,1996,9:53-61.
    [20]刘宁,卓家寿.三维弹塑性随机有限元的迭代计算方法研究[J].河海大学报,1996,24(1):1-8.
    [21]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面法[J].土木工程学报,1997,30(4):51-57.
    [22]许林.基于可靠度的结构优化研究[D].大连,大连理工大学,2004.
    [23]武清玺,卓家寿.结构可靠度分析的变f序列响应向法及其应用[J].河海大学学报.2001,29(2):75-78.
    [24]颜立新,康红普,高谦.基于响应面函数的可靠度分析及其应用[J].岩土力学,2001,22(3):327-329.
    [25]杨成永,张弥,白小亮.用于结构可靠度分析的多响应面法[J].北方交通大学学报,2001,25(1):1-4.
    [26]桂劲松,康海贵.结构可靠度分析的全局响应面法研究[J].建筑结构学报,2004,25(4):100-105.
    [27]桂劲松,康海贵.结构可靠度分析的响应面法及其Matlab实现[J].计算力学学报,2004,21(6):683-687.
    [28]蒋友宝,冯健,孟少平.极限状态响应面法分析结构可靠度的研究[J].公路交通科技,2006,23(11):52-55.
    [29]熊铁华,常晓林.响应面法在结构体系可靠度分析中的应用[J].工程力学,2006,23(4):58-61.
    [30]谭晓慧,王建国,刘新荣.改进的响应面法及其在可靠度分析中的应用[J].岩石力学与工程学报,2005,增2:5874-5878.
    [31]熊铁华,常晓林.基于响应面的三维随机有限元法在大型结构可靠度分析中的应用[J].武汉大学学报(工学版),2005,38(1):125-128.
    [32]于英霞,李雪玲,张伟,梁斌.基于响应面法的带肋圆柱壳结构强度可靠性分析[J].船舶力学,2009,13(4):609-614.
    [33]李国强,李进军.基于整体承载极限状态的钢结构可靠度设计力法其在门式钢刚架设计中的应用[J].建筑结构学报,2004,25(4):94-99.
    [34]刘海鑫.建筑钢结构适用性能的可靠性分析与蒙特卡罗实现[D].重庆大学,2003.
    [35]王永胜.基于响应面法和蒙特卡罗法的混凝土结构可靠性分析[D].西安,西安建筑科技大学, 2005.
    [36]房长宇,李文军.基于ANSYS的SRC框架结构侧移限值的可靠度[J].华中科技大学学报(城市科学版),2005,22(2):52-55.
    [37]叶勇,郝艳华,张昌汉.基于ANSYS的结构可靠性分析[J].机械工程与自动化,2004,6:63-65.
    [38]汪莹鹤,王保田.基于ANSYS的路基沉降可靠度计算[J].路基工程,2008,1:65-67.
    [39]叶梅新,陈玉骥.铁路钢板梁的可靠度研究[J].长沙铁道学院学报,1995,13(3):1-7.
    [40]武芳文.混凝土斜拉桥主梁静力可靠性分析[D].成都,西南交通大学,2002.
    [41]李广慧.高速公路桥梁结构体系可靠性评估[R].北京,中国地震局地球物理研究所博士后研究工作报告.
    [42]王军.在役拱桥结构承载力可靠度评估研究[D].西安,长安大学,2003.
    [43]张彦飞.RC桥梁寿命的可靠度分析[D].西安,长安大学,2005.
    [44]王常青.基于可靠度的钢桥设计方法研究[D].西安,长安大学,2006.
    [45]李生勇.自锚式悬索桥结构可靠性研究[D].大连,大连理工大学,2006.
    [46]周林聪.钢筋混凝上结构非线性和可靠度分析方法研究[D].上海,上海交通大学,2007.
    [47]李昆.基于可靠度理论的公路钢桥概率极限状态设计方法研究[D].上海,同济大学,2007.
    [48]雷霄雯,杨刚,史金星,李晓莉.钢桁架拱桥的结构优化分析[J].大连海事大学学报,2009,3:75-79.
    [49]徐岳,来猛刚,姚晓飞,张东东.基于横向分布的简支梁桥结构体系可靠度应用研究[J].公路交通科技,2009,26(8):84-87.
    [50]杨书仪,刘德顺,文泽军.基于响应面法的桥梁主桁架结构优化设计[J].机械设计,2007,24(6):14-16.
    [51]隋允康,张立新,杜家政.基于响应面方法的桁架截面灵敏度分析和优化[J].力学季刊,2006,27(1):96-102.
    [52]张银龙,王春明,从友良.用响应面法分析装配式公路钢桥的平面结构系统可靠度[J].公路交通科技,2005,22(1):85-88.
    [53]帅长斌,张银龙,常大民等.基于响应面法的桥面结构可靠度近似计算[J].中国公路学报,2003,16(3):52-57.
    [54]李广慧,刘晨宇,托拉·欧尼弗里奥.响应面方法及其在桥梁体系可靠度分析中的应用[J].郑州大学学报(工学版),2004,25(1):16-20.
    [55]Liu P.L, Kiureghian A D. Finite element reliability of geometrically nonlinear uncertain structure[J]. J of Eng Mech.1988.117(8):164-168.
    [56]Hisada T, Noguchi H. Development of a nonlinear stochastic FEM and its Application[A]. The 5th Int confon Struct Safety and Reliability[C]. Australia: Balkema Press.1989.1097-1104.
    [57]Papadrslcakis M, Papadopoulos V. A computationally efficient method for the limit elasto-plastic analysis of space frames[J]. J of Comp Meth,1995,16 (2):132-141.
    [58]Schorling Y and Bucher C G Stability analysis of a geometrically imperfect structure using a random field model[J]. Ptoc ASCE Special Conf, Worcester. MA, ASCE. New York,1996,604-607.
    [59]刘宁,卓家寿.基于三维弹塑性随机有限元的可靠度计算[J].水利学报.1996,9:53-62.
    [60]梁鹏,肖汝诚,徐岳.超大跨度斜拉桥施工过程随机模拟分析[J].中国公路学报,2006,19(4):52-58.
    [61]梁鹏.超大跨度斜拉桥施工过程随机模拟分析[D].同济大学博士学位论文,2004.
    [62]梅刚.基于非线性随机有限元的结构可靠度问题研究[D].清华大学博士学位论文,2005.
    [63]Ranganthan R. Generation of dominant modes and reliability analysis of frames[J]. Struct Safety, 1987,4:63-69.
    [64]李宏.框架结构失效机构的自动产生与体系可靠度[D].南京,河海大学,1990.
    [65]吴世伟,李同春.重力坝最大可能失效模式初探[J].水利学报,1990,4:36-44.
    [66]李同春,吴世伟.基于三维SFEM的拱坝可靠度分析[C].工程结构可靠性全国第二届学术交流会议论文集,重庆:1989,114-125.
    [67]雷俊卿.20世纪中国公路钢桥的现状评估与对策[J].公路,2000,20(1),21-23.
    [68]E. Dulacska, L. Kollar. Buckling Analysis of Reticulated Shells[J]. Int. J. Space Structures.2000, 15(3):195-203.
    [69]胡学仁.弯顶网壳稳定性[C].第三届空间结构学术交流会论文集,吉林,1986:525-536.
    [70]尹德钰,刘善维,钱若军等.网壳结构设计[M].北京:中国建筑工业出版社,1996.
    [71]沈世钊.大跨空间结构理论研究若干新进展[C].第十一届空间结构学术会议论文集,南京,2005:26-39.
    [72]苏慈.大跨度刚性空间钢结构极限承载力研究[D].同济大学博士学位论文,2006.
    [73]GB 50153-92.工程结构可靠度设计统一标准[S].中华人民共和国国家标准,1992.
    [74]赵国藩.工程结构可靠性理论与应用[M].大连,大连理工大学出版社,1996.
    [75]李云贵,赵国藩.广义随机空间内的一次可靠度分析方法[J].大连理工大学学报,1993,33(S.1).
    [76]赵国藩.结构可靠度的实用分析方法[J].建筑结构学报,1984,5(3).
    [77]ZHAO G F. A practical FOSM method for structural reliability analysis[C]. In:Proceedings of 4th International Conference on Structural Safety and Reliability,1985.
    [78]李云贵,赵国藩.结构可靠度分析的广义验算点法[J].结构工程学报,1989,1(1).
    [79]赵国藩,王恒栋.广义随机空间内的结构可靠度实用分析方法[J].土木工程学报,1998,29(4).
    [80]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京,中国建筑工业出版社,2000.
    [81]Rakwitz R. Reliability analysis-a review and some perspectives[J]. Structural Safety,2001,23, 365-395.
    [82]Press W P. Numerical Recipes: The Art of Scientific Computing[M]. Cambridge University Press, 1986.
    [83]Polidori D C, Beck J L, Papadimitriou C. New Approximations for Reliability Integrals[J].Journal of Engineering Mechanics,1999,125(4):466-475.
    [84]Tvedt L.Two Second-order approximations to the Failure Probability. Det Norske Veritas, RDIV/20-004-83,1983.
    [85]Cai G Q, Elishakoff I. Refined Second-order Reliability Analysis[J]. Structural Safety,1994,14: 267-276.
    [86]Koyluoglu H U, Nielsen S R K. New Approximations for SORM Integrals[J].Structural Safety, 1994,13:236-246.
    [87]林道锦.结构可靠度随机有限元分析若干理论问题研究及程序实现[D].清华大学博士论文,2003.
    [88]Der Kiureghian A, Lin H Z, Hwang S J.Second-order Reliability Approximations[J]. Journal of Engineering Mechanics,2003,113(8):1208-1225.
    [89]Hohenbichier M, Rakwitz R. Improvement of Second-order Reliability Estimates by Importance Sampling[J]. Journal of Engineering Mechanics,1988,114(2):2195-2199.
    [90]Zhao Y G, Ono T. New Point Estimates for Probability Monments[J]. Journal of Engineering Mechanics,2000,126(4):433-436.
    [91]Zhao Y G, Ono T. Moment methods for structural reliability[J]. Structural safety,2000,23:47-75.
    [92]Ticly M. First-order third-moment reliability method[J]. Structural Safety.1994,16:189-200.
    [93]Zhao Y G, Alfredo H S. System reliability assessment by Method of moments[J]. Journal of Structural Engineering,2003,129(10):1341-1349.
    [94]Hasofer A M, Lind N C. An Exact and Invariant Firs Order Rehability Format[J]. Journal of Engineering Mechanics,1974,100(EMI):111-121.
    [95]徐仲济.蒙特卡罗方法[M].上海,上海科学技术出版社,1985.
    [96]Wong F S. Uncertainties in dynamic soil-structure interaction[J]. Journal of Engineering Mechanics, 1984,110(2):308-324.
    [97]Wong F S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering Mechanics,1985,111(1):32-53.
    [98]Bucher C G, Bourgund U. A. fast and efficient response surface approach for structural reliability problems[J]. Structural Safety,1990,7(1):57-66.
    [99]ANSYS Inc. ANSYS Version 11.0:Users Manual.
    [100]Sang-Hyo Kim. Seong-Won Na. Response surface method using projected vector sampling points[J]. Structural Safey.1997.19(1):3-19.
    [101]程进,肖汝诚.结构可靠度分析的混合法[J].公路交通科技.2004,121(17):75-78.
    [102]Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability[J]. Structural Safety,1993,12(3):205-220.
    [103]Liu W. K, Moses F. A sequential response surface method and its application in the analysis of aircraft structural system[J]. Structural Safety,1994,16(1):39-46.
    [104]Kim S H, Na S W. Response surface method using vector projected sampling points[J]. Structural Safety,1997,19(1):3-19.
    [105]Faravelli L. Response surface approach for reliability analysis[J]. Journal of Structural Engineering, 1989,115(12):2763-2781.
    [106]Turk G M, Ramirez R, Corotis R. Response-surface approach for reliability analysis of non-linear systems[J]. Journal of Structural Engineering,1989,115(12):2763-2781.
    [107]Bucher C G and Schueller G I. Systems' reliability revisited 6th International Conference on Structural Safety and Reliability, ICOSSAR'93, Schueller, Shinozuka & Yao(eds),1994,1227-1232.
    [108]Das P K, Zheng Y:Cumulative formation of response surface and its use in reliability analysis[J]. Probabilistic Engineering Mechanics,2000,15(4):309-315.
    [109]Zhao Y G, Ono T. System reliability evacuation of ductile frame structures[J]. Journal of Structural Engineering,1998,124(6):678-685.
    [110]Hopperstad O S, Leira B J, Remseth S, Tromborg E. Reliability-based analysis of a stretch-bending process for aluminum extrusions[J]. Computers&structures,1999,71(1):63-75.
    [111]董聪,刘西拉.非线性结构系统可靠性理论及其模拟算法[J].土木工程学报,1998,31(1):33-43.
    [112]龚尧南,钱纯.非线性随机过程的有限元分析[J].计算力学学报,1994,11(1):9-18.
    [113]陈铁冰.斜拉桥几何、材料非线性静力及其可靠度评估[D].同济大学博士学位论文.上海,2000.
    [114]石磊.混凝土自锚式悬索桥设计理论研究[D].大连理工大学博士学位论文,大连:2003.
    [115]石磊,张哲,刘春城.大跨度悬索桥非线性随机静力分析[J].大连理工大学学报,2003,43(2):202-206.
    [116]Das P K, Zheng Y Cumulative. Formation of Response Surface and Its Use in Reliability Analysis[J]. Probabilistic Engineering Mechanics,2000,15(4):309-315.
    [117]方开泰,王元.数论方法在统计中的应用[M].北京:科学出版社,1996.
    [118]王世忠.公路桥梁恒载的概率模型[J].公路,1992(3).
    [119]林昱,雷俊卿.公路钢桥可靠度分析及抗力分项系数研究[J].北京交通大学学报,2006,30(增):43-49.
    [120]李昆.基于可靠度理论的公路钢桥概率极限状态设计方法研究[D].同济大学,2007.
    [121]陈国兴,李继华.钢构件材料强度及截面几何特性的统计参数[J].重庆建筑工程学院学报,1985.
    [122]Madsen H O, Krenk S, Lind N C. Methods of Structural Safety[D]. New York:Spinger Verlag.1986.
    [123]Hohenbichler M, Raekwitz R. Sensitivities and importance instruetural reliahility[J]. Civil Eng system.1986.3:203-209.
    [124]Bjerager P, Krenk S. Parameter sensitivity in first order reliahility analysis[J]. J of Eng Mech. 1989.115(7):1577-1582.
    [125]Karamchandani A, Cornell C A. Sensitivity estimation within first and second order reliability methods[J]. Struct Safty.1992.11:97-105.
    [126]刘宁,吕泰仁.三维结构可靠度对随机变量的敏感性分析[J].工程力学,1995,12(2):119-128.
    [127]Liu N. Sensitivity analysis of 3-D elasto-Plastic strucural reliability[J]. Acta Mechanica Solida Sinica.1996.9(4):296-305.
    [128]李扬海,鲍卫刚,郭修武等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.
    [129]ISO 2394: 1998. General principles on reliability for structures. International Organization for Standardization.
    [130]谭明鹤,王荣辉,黄永辉.整体节点刚度对钢桁梁桥结构受力的影响分析[J].公路,2007(10):27-30.
    [131]刘永健,刘剑,刘君平等.刚性悬索加劲钢桁梁桥施工阶段全桥模型试验研究[J].土木工程学报,2010,43(2):72-77.
    [132]Bathe K J. Finite Element Procedures in Engineering Analysis, Englewood Cliffs[J]. New Jersey Prentice-Hall,1982.
    [133]Cresfield M A. Non-linear Finite Element Analysis of Solid and Structures[J]. Chichertes John Wiley&Sons,1991.
    [134]Bathe K J, Bolourchi S. Large Displacement Analysis of Three-Dimensional Beam Structures[J]. International Journal for Numerical Methods in Engineering,1979,14,961-986.
    [135]Albermam F G A, Kitipornchai S L S. Nonlinear analysis transmission tower[J]. Engineering Structure.1992,14(3):139-150.
    [136]Duan L, Chen W F. A yield surface equation for doubly symmetrical sections[J]. Engineering Structure,1990,12:114-119.
    [137]Orbison J G, McGuire W, Abel J F. Yield surface applications in nonlinear steel frame analysis[J]. computer methods in applied mechanics and engineering,1982,33:557-573.
    [138]Haldar A, Mahadevan S. Reliability assessment using stochastic finite element analysis[J]. New York John Wiley&Sons,2000.
    [139]向天宇,赵人达,刘海波.混凝土结构全过程非线性分析的弧长法研究[J].铁道学报,2002,24(3):67-70.
    [140]方建瑞,李志高,朱合华.弧长法在边坡稳定非线性有限元分析中的应用[J].水利学报,2006,37(9):1142-1146.
    [141]段云岭.非线性方程组的解法:局部弧长法[J].力学学报,1997,29(1):116-121.
    [142]熊铁华.结构非线性分析中的可控制方向的弧长法[J].武汉大学学报(工学版),2001,34(1):53-55.
    [143]程进,江见鲸,肖汝诚等.大跨度拱桥极限承载力的参数研究[J].中国公路学报,2003,16(2):45-47.
    [144]赵灿晖,李乔,卜一之.钢桁拱桥非线性及面内极限承载力分析[J].中国铁道科 学,2007,28(5):52-57.
    [145]赵灿晖.上承式钢桁拱桥面内极限承载力分析[J].交通运输工程学报,2007,7(6):80-85.
    [146]孙海涛.大跨度钢桁架拱桥关键问题研究[D].上海:同济大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700