机车构架侧梁焊接数值仿真与变形控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构架是机车车辆的重要承载部件,其侧梁的焊接残余变形是影响构架生产质量的关键因素。因此,定量地预测焊接变形规律,并在此基础上实现最优控制,不仅对构架,而且对其它焊接构件的完整性设计和制造工艺方法的选择以及运行中的安全评定具有重要的理论价值与工程意义。
     本文首先利用热弹塑性耦合法和固有应变法分别对侧梁模型进行了焊接数值仿真,并与实验测量结果进行了对比验证;在此基础上对控制焊接变形的工艺参数进行了一系列深入研究,得到最优的焊接工艺控制参数。本文的研究工作及研究成果主要有:
     1.修正了固有应变法。以T形焊接接头为算例,结合热弹塑性有限元法和映射应变分量法研究角焊缝角变形的产生机制,认为固有剪切应变才是产生角变形的主要根源。以此观点为基础,通过数值仿真和实验,对比分析了两种不同的加载方位对横向约束度、横向固有应变及残余角变形的影响,研究结果表明沿焊缝表面斜向加载更接近于实际测量值和热弹塑性模拟值。
     2.建立侧梁三维数值分析模型,根据实际焊接参数、焊接顺序对数值模型进行加载计算,得到整个焊接过程的瞬态温度场;然后以此温度场为基础,对侧梁分别进行了热弹塑性耦合数值分析和基于固有应变法的焊接残余变形分析,这两种仿真值与测量值对比表明外部4条纵向焊缝是造成侧梁焊接残余变形的主要因素,且三者变形规律基本吻合,热弹塑性数值仿真结果与测量值间的误差较小,在10%以内。
     3.以热弹塑性仿真模型为基础,优化分析了外部4条纵向焊缝的焊接顺序与方向对焊接变形的影响规律。为了能够对焊接顺序和方向这样的“非变量”进行优化分析,借鉴C语言编程中指针和堆栈的概念,生成所有的排序组合,通过对指针变量的分析实现对焊接顺序和方向的优化。
     4.提取以指针变量为基础所得到的优化分析结果中的可行方案,利用正交试验法,形成四因素三水平的正交试验表。通过正交试验分析,得出各因素对焊接残余变形影响的主次顺序和最优方案。研究结果表明打底层和盖面层的焊接顺序在焊接变形中起重要作用,为主要因素。对于立弯和旁弯分别得到不同的“最优”方案,综合分析后确定了一个最优方案,优化后侧梁的立弯降低18.9%,旁弯降低9.5%。
     5.由于侧梁非严格对称,且外部4条主焊缝环绕在纵向中性轴(X轴)的四个角点;焊缝金属收缩是形成焊接残余变形的主要因素。因此提出了每条主焊缝焊接时的反变形面压力大小及方向都互不相同的逐一反变形法。通过综合分析、评估,确定了最优方案,其立弯量为+4.87mm,与无反变形压力时的立弯量+6.18mm相比,降低了21%;其旁弯量为+10.34mm,与无反变形压力时的旁弯量-10.78mm相比,除量值有所降低外,弯曲方向也发生了改变,与内部焊缝的焊接残余变形方向相反。
     6.以平板对接焊为例,对动态温差拉伸法(DC-LSND法)作用下的焊接变形进行了数值分析,并与实验对比,结果表明实验与数值仿真结果较吻合,通过此工艺能够得到低应力小变形的焊接效果。
     7.热沉强度h及热沉热源距离L是影响焊接应力和变形控制效果的主要参数,以T形单斜坡口焊接梁为例,通过优化分析得到最优的h、L值,与常规焊相比,其Y向位移降低了43.7%,Z向位移降低了47.0%。通过对比正交试验表中的极差值表明热沉强度h在DC-LSND焊中起主要作用,而热沉热源距离L为次要因素。经分析计算,分别得到位移值δ和μ(分别为横向和垂向)随热沉参数h、L的变化曲线,由此推荐热沉强度h的最佳取值范围为[0.004,0.2]W/mm2K,热沉热源距离L的最佳取值范围为[15,30]mm。
     8.为进一步控制侧梁的焊接残余变形,本文研究了焊接方向,顺序,反变形等综合措施作用下的侧梁焊接变形规律。在考虑内部焊缝焊接残余变形量及方向的情况下,当控制措施联合作用时,所有焊缝焊接完毕后侧梁中部弯曲变形量及方向:δ为+2.64mm;μ为+1.46mm。与无任何控制措施时的变形相比,旁弯δ量值降低了84.0%,立弯μ量值降低了73.8%,侧梁中部用于评判弯曲的节点平均位移值小于3mm。
The bogie frame is the main carrying part of locomotive, the welding residual deformation of the side beam is the key factors effecting production quality. So the quantitative predicting of welding deformation regularities and, thereon, taking the optimal quality-control measures, have theoretical values and engineering significance in the integral design, manufacturing technique selection and the service security evaluation of the side beam welding structures themselves, as well as other kinds of welding structures.
     In this dissertation, first, based on thermal elastic-plastic coupling method and inherent strain method, the welding residual deformation's numerical simulation was done respectively for the side beam model, and compared with experimental measurement result. Then, on this basis, for the process parameters of controlling welding deformation, a series of investigations were made, optimal process parameters have been got by optimization analysis. The study works and achievements are summed up as follows:
     1. The inherent strain method has been corrected. Take a welded T-joint as example, the formation mechanism of fillet weld's angle distortion was studied by combining thermal elastic plastic analysis with mapping strain component method. The results show that the main source of fillet weld's angle distortion is the inherent shear strain but not the transverse inherent normal strain. Then, based on the view, two different loading direction that influence transverse restraint degree、transverse inherent strain and residual angle distortion were analyzed. The result made by the diagonal load along weld's surface is closer to the practical measured values and thermal-elastic-plastic simulated values, it indicate the rationality of the diagonal loading along weld's surface.
     2. The three-dimensional numerical analysis model was established. According to the establishment current welding parameters and sequence, The numerical model was loaded and analyzed, and transient temperature field throughout the welding process was got. Based on the transient temperature field, thermal elastic-plastic coupling numerical analysis has been done, and welding residual deformation analysis using inherent strain method has been made also. To validate the fitness of two simulation methods, the actual welding deformations are measured after experimental side beam welded, and by contrasting simulation value with measured value, it was found that the main factor of the side beam welding residual deformation is the external four longitudinal weld, deformation law of three results are consistent with each other; the error between the result of thermal elastic-plastic coupling analysis and measured value is less, within10%.
     3. Based on the thermal elastic-plastic simulation method, the laws of welding deformation caused by the welding sequence and direction of the external four longitudinal weld were analyzed by optimization method. In order to optimize the welding sequence and direction(nonnumeric variable), the concept of pointer and stack of C language programming were referenced, the combination and order were generated, saved them in the array, therefore, the optimization analysis of pointer variable was equated with the optimization analysis of welding sequence and direction.
     4. Based on orthogonal test, the schemes obtained by pre-analysis were extracted, then, the datas formed orthogonal experiment table comprising four-factor three-level. Through the orthogonal-test analysis, the important order of the various factors effecting residual welding deformation is found, as well as optimum scheme. The welding sequence of the first layer and the second layer play an important roles on the welding residual deformation, and is the main factors of the welding residual deformation. The different "optimum" schemes of vertical bending and side bengding were respectively obtained, after comprehensive analysis the optimum scheme was determined. The optimum scheme can make vertical bend deformation reduce about18.9%, and make lateral bend deformation reduce about9.5%.
     5. Because the side beam is asymmetric, and the external four longitudinal weld locate four corner of longitudinal neutral axis(X axis) of the side beam. For the groove weldment, the shrinkage of weld metal is the main factor making residual welding deformation. Based on analysis above, when the main welds were welded, it was supposed that surface pressure value and direction of the reverse-deformation were different each other.Compared with the reverse-deformation method of the uniform surface pressure value and direction, the new method is called as one by one reverse deformation method. Through comprehensive analysis and evaluation, it was determined that the twenty-ninth scheme of the optimizing sequence is as the optimum scheme. The vertical bending value of the optimum scheme is+4.87mm, compare with+6.18mm of the vertical bending value without reversible deformation pressure, the quantity value is decreased by21%, and the side bengding value is+10.34mm, compare with-10.78mm of the side bengding value without reversible deformation pressure, the quantity value is slightly decreased, and it is important that the bending direction is changed, the opposite direction with the welding residual deformation of the intenal welds.
     6. Butt plates welding was as an example, the DC-LSND numerical simulation was done, then,test-part was measured, the computation result was founded basically consistent with the measured data, therefore, through process control, the welding effect of low stress no-distortion can be obtained.
     7. The L of the distance between arc and heat sink is one of main parameter influencing the control effect, as well as the h of the heat sink intensity. With T-shape single slope groove welding beam as an example, the optimal value about h、L were acquired by the optimization analysis. Compare the result of the DC-LSND welding's optimum scheme with the result of conventional welding, because of the action of heat sink, the displacement of Y-direction is decreased by43.7%, the displacement of Z-direction is decreased by47.0%. Compare with the difference of the orthogonal experiment table, it is indicate that the h of the heat sink intensity plays a major role, whereas the L of the distance between arc and heat sink is the secondary factor. Through analysis and calculation, the change curves that δ (transverse displacement)and μ (vertical displacement)of the displacement value was variational with the parameters changing of the heat sink have been respectively gotten. Based on the change curves, the best range of the h is [0.004,0.2] W/mm2K, the best range of the L is [15,30]mm.
     8. For controlling the welding residual deformation of the side beam, the welding deformation law by the combined effect with the welding sequence and direction and the reverse-deformation is researched. When the welding residual deformation caused by Internal welds was been calculated in advance, together with the combined effect of optimal parameters, after all welds were been welded, the amount and direction of the welding residual transverse displacement δ in middle part of side beam is+2.64mm, and vertical displacement μ is+1.46mm. Compared with the welding residual displacement withou control measures, it can make lateral bend deformation reduce about84%,and make vertical bend deformation reduce about73.8%, and make bending direction change. And, the node average displacement evaluating bend in middle part of side beam is less than3mm.
引文
[1]格尔内R著.焊接结构的疲劳.周殿群译.北京:机械工业出版社,1988:76-93
    [2]王红,赵邦华.我国车辆焊接转向架研制及引进运用现状.甘肃科学学报.1997,9(1):32-37
    [3]李强,刘志明.高速客车转向架残余应力的试验研究.试验力学.1999,14(2):260-265
    [4]彭德其,许平.120km/h整体焊接转向架的疲劳分析.铁道机车车辆.1999,1:28-30
    [5]张向辉,尹博文.209型转向架纵向牵引拉杆座裂纹原因.铁道车辆.2004,42(9):39-40
    [6]蒲高,谢青.CKD7F型机车转向架构架的改进.内燃机车.2007,2:17-20
    [7]王俊卿,侯成龙.焊接矫正工艺在生产中的应用.焊接,1992,12(8):87-90.
    [8]Blackburn J M, Kirk M, Conrard P C, et al. An overview of some current research on welding residual stresses and distortion in the U. S. Navy,1996.9
    [9]关桥.关桥论著选编.北京:北京航空制造工程研究所档案馆,2002:11-73
    [10]Okerblom N O. The calculation of deformations of welded metal structures. London:H. M.Stationery Office,1958.
    [11]Gunnert R. Residual welding stresses. Stockholm:Almqvist & Wiksell,1955.
    [12]Vinokurov V A. Welding stresses and deformation. Wetherby:British Library,1977.
    [13]Masubuchi K. Analysis of welded strctures. New York:Pergamon Press,1980.
    [14]周浩森等编.焊接结构设计手册.北京:机械工业出版社,1999.
    [15]陈丙森主编.计算机辅助焊接技术.北京:机械工业出版社,1999
    [16]汪建华.焊接变形和残余应力预测理论与计算-发展及应用前景.第三届计算机在焊接中的应用技术交流会论文集.上海:2000,13-19.
    [17]潘际銮.见:国家自然科学基金委员会.自然科学学科发展战略调研报告,机械制造科学(热加工).北京:机械工业出版社,1995:26-46.
    [18]潘际銮.展望21世纪焊接科研.中国机械工程,2000,11(2):21-35.
    [19]鹿安理.焊接过程仿真领域的若干关键技术问题及其初步研究.中国机械工程.2000,11(2):201-205.
    [20]Junek L, Slovacek M. Numerical Simulation of Welding and Computation of Residual Stresses, Zvaranie(Slovak Republic),2000,49(5):44-47.
    [21]史清宇.厚板焊接过程温度场应力场的三维有限元数值模拟.1999年MSC中国用户大会会议论文.北京:1999,23-28.
    [22]Rosenthal D. Mathematical Theory of Heat Distrbution during Welding and Cutting. Welding Journal,1941,20(5):220-223.
    [23]H.H.雷卡林著.焊接热过程计算.庄鸿寿,徐碧宇等译.北京:中国工业出版社,1958,34-52.
    [24]武传松.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990,58-62.
    [25]陈楚等.数值分析在焊接中的应用.上海:上海交通大学出版社,1985,80-82.
    [26]奥凯尔勃洛姆H O.焊接应力与变形.北京:中国工业出版社,1958,72-81.
    [27]Wilson E, Nicken R E.Application of the Finite Element Method to Heat Conduction Analysis.Nuclear Engineer and Design,1966,4:276-286.
    [28]Ueda Y. Analysis of thermal elastic-plastic stress and strain during welding. Trans. Japan Welding Soc,1971,2(2):90-100.
    [29]Ueda Y,Nakacho K,Yuan M G. Application of FEM to Theoretical Analysis,Measurement and Prediction of Welding Residual Stresses. Transaction of JWRI,1991,20 (2):97-107.
    [30]Murakawa H. Computational Welding Mechanics and its Interface with Industrial Application. International Symposium on Theoretical Predication in Joining and Welding, 1996,11:231-245.
    [31]Murakawa H. Theoretical Prediction of Residual Stress in Welded Structures. Welding Research Abroad,1998,44(6-7):2-7.
    [32]汪建华.焊接结构三维热变形的有限元模拟.上海交通大学学报,1994,28(6):59-65.
    [33]Masubuchi K. Application of Numerical Analysis in Welding. Welding in the World.1979,17: 11-12.
    [34]Masubuchi K. Analysis of Welded Structures. Pergamon Press.1980.
    [35]Masubuchi K. Prediction and Control of Residual Stress and Deformation in Welded Structures. Proceedings of the International Symposium on Theoretical Prediction in Joining and Welding. Japan,1996:71-88.
    [36]Goldak J, Chakravarti. A New Finit Elment Model for Welding Heat Sources. Metallurgical Transactions B,1984,15B:299-305.
    [37]Goldak J, Zhou J. Thermal Stress Analysis of Welds:From Melting Point to Room Temperature. Proceedings of the International Symposium on Theoretical Prediction in Joining and Welding. Japan.1996:225-230.
    [38]Alfredsson K S, Josefson B L. Harmonic Response of a spot Welding Box Beam Influence of Welding Residual and Deformations, Proc IUTAM Symposium on the Mechanical Effects of welding LULEA, Sweden, June,1991:1-8.
    [39]Inoue T. Metallo-Thermo-Mechanics Application to Phase Transformation Incorporated Processes. Proc. Theoretical Prediction in Jioning and Welding.1996,11:89-112.
    [40]Chidiac K. Improvement in numerical accuracy and stability of 3-D FEM analysis in welding. WeldingJournal,1996,75(4):1295-1345.
    [41]Karlsson L, Josefson B L. Three-Dimensional Finite Element Analysis of Temperature and Stress in a Single-Pass Butt-Welded Pipe. Journal of Pressure Vessel Technology.1990,112:76-78.
    [42]Tso-Liang Teng, Chih-Cheng Lin. Effect of Welding Conditions on Residual Stresses due to Butt Welds. International Journal of Pressure Vessels and Piping.1998,75:857-864.
    [43]Tso-Liang Teng, Peng-Hsiang Chang. Three-Dimensional Thermomenchanical Analysis of Circumferentially Welded Thin-Walled Pipes. International Journal of Pressure Vessels and Piping.1998,75:237-247.
    [44]Tso-Liang Teng, Peng-Hsiang Chang, Hsush-Chao K. Finite Elment Analysis of Circular Patch Welds. International Journal of Pressure Vessels and Piping.2000,77:643-650.
    [45]Bachorski A, Paiter M. Finite-Element Prediction of Distortion during Gas Metal Arc Welding Using the Shrinkage Volume Approach. Journal of Materials Processing Technology.1999,92:405-409.
    [46]Matos C G, Dodds Jr R H. Modeling the Effects of Residual Stresses on Defects in Welds of Steel Frame Connections. Engineering Structures.2000,22:1103-1120.
    [47]Khaled Abdel-Tawal, Ahmed K. Uncertainty Analysis of Welding Residual Stress Fields. Comput Methods Appl.Engng,1999,179:327-344.
    [48]Gareth A, Taylor M H, Nadia S, et al. Finite Volume Methods Applied to the Computational Modelling of Welding Phenomena. AppliedMathematical Modeling,2002,26 (2):309-320.
    [49]Klein R. L, Mucino V.H, Klinkbachorn P. Use of ANN to Simulate the Effects of Welding Process Parameters in Curved Steel Plates:Residual Stresses, Strains and Distortions. Proceedings of the 2002 SSST Conference, Hunstsville Al, March 2002.
    [50]Dean D, Murakawa H, Ueda Y. Theoretical Prediction of Welding Distortion Considering Positioning and Gap Between Parts. International Journal of Offshore and Polar Engineering.2004,14(2): 138-144.
    [51]Runnemalm H, Hyum S. Three-dimensional welding analysis using an adaptive mesh Scheme. Computer Methods in Applied Mechanics and Engineering.2000,189(2):515-523.
    [52]Nishikawa H,Serizawa H,Murakawa H. Actual application of EFM to analy sis of large scale mechanical problems in welding. Science and Technology of Welding and Joining.2007, 12(2):147-152.
    [53]楼志文等.瞬态温度场和热弹塑性场的有限元分析.西安交通大学学报,1981,15(6):1-8.
    [54]唐慕尧,楼志文等.单面焊时终段裂纹的研究.焊接学报.1986,7(3):123-132.
    [55 ]唐慕尧等.焊接对接接头残留应力的盲孔法测定.焊接,1981(3):1-7.
    [56]唐慕尧,丁士亮等.焊接过程力学行为的数值研究方法研究.焊接学报.1998(3):123-133.
    [57]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算.焊接学报,1983,3:139-148.
    [58]陈楚,汪建华,罗宇.轴对称热弹塑性应力有限元分析在焊接中的应用.焊接学报,1987,8(4):196-203
    [59]汪建华,陈楚,丁凤鸣.考虑相变的焊接动态和残余应力的研究.第六届全国焊接学术会议论文集,第5册,1990:209-212.
    [60]武传松等.熔透情况下三维TIG焊接熔池流场和热场的数值分析.金属学报,1992,28(10):B427-B432.
    [61]武传松等.TIG焊接熔池表面变形对流长和热场的影响.金属科学与工艺,1992,11(3,4):108-113.
    [62]蔡洪能,唐慕尧.TIG焊接温度场的有限元分析.机械工程学报,1996,32(2):34-39.
    [63]Goldak J. Thermal stress Analysis of welds From melting point to room temperature Proc. Theoretical Prediction in Joining and welding(Osaka, JaPan),1996:225-230.
    [64]Ueda Y, Wang J, Murakawa H, et al. Three dimensional numerical simulation of various thermomechanical processes by FEM (Report Ⅰ). JWRI,1992,21(2):251-257.
    [65]汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟,上海交通大学学报,1994,28(6):59-65.
    [66]Wang J,Lu H,Murakawa H.An FEM Model of Buckling Distortion During Welding of Thin Plate.Shanghai Jiaotong University,1999, E4(2):69-72.
    [67]Wang J,Lu H.Prediction of Welding Deformations by FEM Based on Inherent Strains. Shanghai Jiaotong University,2000, E5(2):83-85.
    [68]关桥,李菊.热拉仲效应控制飞行器板壳结构焊接变形.航空制造技术,2007,81(9):30-34.
    [69]关桥,张崇显,郭德伦.动态控制的低应力无变形焊接新技术.焊接学报,1994,15(1):8-15.
    [70]董俊惠,霍立兴,张玉凤.低碳钢焊接残余应力有限元分析.焊接,2000,(12):11-15.
    [71]杨庆祥,李艳丽,赵言辉等.堆焊金属残余应力场的计算机模拟.焊接学报,2001,22(3):44-46.
    [72]蔡志鹏,赵海燕,鹿安理等.串热源模型及其在焊接数值模拟中的应用.中国机械工程.2001,37(4):25-28.
    [73]蔡志鹏,鹿安理,赵海燕等.串热源模型及1ZOOt桥式起重机主梁腹板装焊过程的数值模拟.中国机械工程.2002,13(9):502-806.
    [74]崔晓芳,马君,赵海燕等.基于遗传算法的箱型结构焊接顺序优化.焊接学报,2006,27(8):5-8.
    [75]崔晓芳,黄士卫,兆文忠等.高速动力车构架侧梁焊接变形数值模拟.焊接,2004,12:17-20.
    [76]李鸿,任慧龙.船体分段焊接变形仿真.船舶工程,2006,28(5):19-22.
    [77]李鸿,任慧龙,曾骥.基于固有应变的加筋板焊接变形分析.哈尔滨工程大学学报,2006,27(1):57-60.
    [78]汪建华等.陶瓷金属扩散焊接的残余应力及其缓和措施.硅酸盐学报.1995,23(6):605-609.
    [79]汪建华等.搅拌摩擦焊接的传热和力学计算模型.焊接学报.2000,12(4):61-64.
    [80]游敏,郑小玲,余海洲.关于焊接残余应力形成机制的探讨.焊接学报,2003,24(2):51-54.
    [81]史清宇.焊接过程三维数值模拟的研究及应用.博士学位论文.北京:清华大学机械工程系,2000.
    [82]Habib L M. Kleen U, Otremba F. Numerical simulation of weld residual stresses and countermeasures in austenitic steel piping.International Conference on Nuclear Engineering. Proceedings,ICONE,1997.25-29.
    [83]Nasstrom N,Wilander L,Karlsson L,et al. Combined 3-D and shell modeling of welding, Proc of IUTAM Symposium on the Mechanical Effects of Welding. Lulea, Sweden:Springer, Germany,1992,197-206.
    [84]Carpenter N.Locking and shear scaling factors in CO bending elements. Computers&Structures, 1986,22 (1):39-52.
    [85]李菊,关桥,史耀武,等.铝合金薄板带热沉GTAW焊的应力场.机械强度,2004,26(3):278-283.
    [86]ANSYS.inc.ANSYS Help.ANSYS.inc,2000
    [87]蔡志鹏.大型结构焊接变形数值模拟的研究与应用.博士学位论文.北京:清华大学,2001.
    [88]董克权,刘超英,陈英俊ANSYS焊接仿真中高斯热源加载算法研究.机械设计与制造.2007,2(2):83-85.
    [89]Habib L M, Kleen U, Otremba F. Numerical simulation of weld residual stresses and countermeasures in austenitic steel piping. International Conference on Nuclear Engineering, Proceedings,ICONE,1997.25-29.
    [90]Goldak J, Breiguine V, Dai N, Zhou J. Thermal stress analysis in welds for hot cracking. Proceedings of the ASME Pressure Vessels and Piping Conference.Montreal, Canada,1996:9-16.
    [91]McDill J M J, Oddy A S, Reed R C. Predicting residual stress and distortion when welding aeroengine alloy. Canadian Aeronaustic and Space Journal,1998,44(2):68-72.
    [92](美)格兰巴(Grama M).并行计算导论.张武(译),第二版,北京:机械工业出版社,2005,32-51.
    [93]Serizawa H, Itoh S, Tsuda T, et al. Development of 3-D dimensional high-speed FEM for welding problem. Proceedings of the International Conference on Welding Science and Engineering,2005: 240-246.
    [94]刘川,张建勋.基于动态子结构的三维焊接残余应力变形数值模拟.焊接学报.2008,29(4):21-24.
    [95]马继,陆皓,汪建华.预测焊接变形几种方法的比较.造船技术.2002,245(1):27-29.
    [96]汪建华,陆皓,魏良武.固有应变有限元法预测焊接变形理论及其应用.焊接学报,2002,23(6):36-40.
    [97]Jang C D, Lee C H, Ko D E. Prediction of welding deformations of stiffened panels. Proc Instn Mech Engrs,1998,216(12):361-374.
    [98]徐军.大型起重机主梁焊接变形的模拟与控制.硕士学位论文.北京:清华大学机械工程系,2001
    [99]Tsai C,Cheng W T,Lee T. Modelling strategy for control of welding induced distortion. Modelling of Casting, Welding and Advanced Solidification Processes Ⅶ,The Minerals, Metals and Material Society,1995:335-345.
    [100]Bachorski A, Painter M J, Smailes A J, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology.1999,92:405-409.
    [101]D.拉达伊.焊接热效应温度场、残余应力、变形.熊第京等译.北京:机械工业出版社,1997,72-81.
    [102]田锡唐.焊接结构.北京:机械工业出版社,1981,5-31.
    [103]项前,张悦.弹性反变形法的研究[J].电焊机,2004,34(2):52-55.
    [104]Guangtao Zhou, Xuesong Liu, Cheng Jin, et al. Welding deformation controlling of aluminum-alloy thin plate by two-direction pre-stress method. Materials Science and Engineering A.2008,230(24): 1-6.
    [105]姬书得.水轮机转轮焊接残余应力调控措施的虚拟优化.博士学位论文.哈尔滨:哈尔滨工业大学,2006.
    [106]关桥主编.航空制造工程手册-焊接分册.北京:航空工业出版社,1996,36-47.
    [107]Kukrin S A, Anurfiev V L, Milekhin E S. Improving Meehanical ProPorties of welded Amg6 Alloy Joints by Plaslic deformation during arc welding. Svar.Proiz No.10.1984:32-34.
    [108]中国机械工程学会焊接学会,焊接结构设计与制造(XV)委员会等编.焊接结构设计手册.北京:机械工业出版社,1993,82-98.
    [109]田锡唐主编.焊接手册.第2版第3卷.北京:机械工业出版社,2001.
    [110]邹增大,王新洪,曲仕尧.锤击消除焊接接头残余应力的数值模拟[J].中国机械工程,1994,10(4):466-468.
    [111]Kudinov V M, Kareta N A, Petushkov V G, etal. Micro-Stersses in circumferential welds treated by explosion. Ayt.Svarka, No5,1978:34-38.
    [112]刘国楷.爆炸消除残余应力及对材料力学性能的影响和工业应用.机械强度,1990,12(2):58-64.
    [113]Yanchenko Yu A, Sagalevich V M, Markushin G Yu, et al. The mechanism of reducing residual stresses in thin-sheet welded joints by contact ultrasonic treatment. Svar.Proiz., No.6,1980:1-3.
    [114]Petushkov V G. Opara V S, Yurchenko E S. Effect of electohydropulsed treament on the dislocation structure in welded joints. Svar.Proiz, No.10,1984:10-11.
    [115]汪建华.焊接数值模拟技术及其应用.上海:上海交通大学出版社,2003(第1版)
    [116]武传松.焊接过程的计算机模拟,第十次全国焊接学术会议IT与焊接专题会议,2001,10
    [117]程书立.基于温度和应力场的焊接残余应力数值分析.南昌大学,硕士学位论文,2007
    [118]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.12(第1版).
    [119]侯志刚.薄板结构焊接变形的预测与控制.华中科技大学,博士学位论文,2005
    [120]唐慕尧等.焊接温度场计算(一).西安交通大学科学技术报告,1981.
    [121]罗双双.大型水轮机转轮焊接残余应力热弹塑性分析.西南交通大学,硕士学位论文,2006
    [122]倪栋,段进,徐久成等.通用有限元分析ANSYA7.0.北京:电子工业出版社.2003:424-451.
    [123]陈丙森.计算机辅助焊接技术.北京:机械工业出版社,1999,107-168.
    [124]孔祥谦.热应力有限单元法分析.上海:上海交通大学出版社,1999.
    [125]刘高腆.温度场的数值模拟.重庆:重庆大学出版社,1990.
    [126]李冬林.焊接应力和变形的数值模拟研究,武汉理工大学,硕士论文,2003
    [127]余同希.塑性力学.北京:高等教育出版社,1989.
    [128]ANSYS.inc.ANSYS Nonlinear analysis.ANSYS.inc,2000
    [129]李球.高速列车转向架焊接质量分析及控制方法研究.大连交通大学,硕士学位论文,2007.
    [130]龚曙光,黄云清.有限元分析与ANSYS APDL编程及高级应用.北京:机械工业出版社,2009.
    [131]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展.焊接学报,2001,22(3):93-96.
    [132]黄小叶.焊接构架侧梁残余应力数值模拟分析,西南交通大学,硕士论文,2008
    [133]崔晓芳.箱型结构焊接变形预测、控制及应用.大连交通大学,博士学位论文,2005
    [134]陈家权等,基于单元生死的焊接温度场模拟计算,热加工工艺,2005.7
    [135]张文钺.焊接传热学.北京:机械工业出版社,1989.
    [136]ANSYS.inc. ANSYS Thermal analysis guide, ANSYS.ine,1999.
    [137]万嘉礼.机电工程金属材料手册.上海:上海科学技术出版社,1990.
    [138]《机械工程材料性能数据手册》编委会.机械工程材料性能数据手册.北京:机械工业出版社,1994.
    [139]马庆芳等著.实用热物理性质手册.北京:中国农业机械出版社,1986.
    [140]Lindgren L E.Finite modeling and simulation of welding. part 2:Improved material modeling. Journal of Thermal Stress.2001,24(3):195-231.
    [141]Zimniak Z, etal.Finite element analysis of a tailored blanks stamping process.Journal of Materials Processing Technology.2000,106(1-3):254-260.
    [142]Reynolds A P, etal.Digital image correlation for determination of weld and base metal constitutive behavior.Welding Journal,1999,78(10):355-360.
    [143]Shykhaliev S Z.Simplified physical-mathematical model for electromagnetic and thermal interaction of plasma with an electrode.Engineering Simulation.1998,15(5):583-593.
    [144]Ueda Y, Kim Y C, Yuan M G. A prediction method of welding residual stress using source of residual stress(Report Ⅰ)—Characterstice of inherent strain(source of residual stress). J Trans. of JWRI,1989,18(1):135-141.
    [145]罗宇,鲁华益,朱枳锋.固有应变的概念及其在船舶建造中的应用.造船技术,2005,264(2):35-39.
    [146]李鸿.基于固有应变的船体分段焊接变形预测.哈尔滨工程大学,博士学位论文,2006.
    [147]Fujita Y, Nomoto T, Hasegawa H. Thermal stress analysis based on initial strain method. ⅡW 1979,28 (2),926-951.
    [148]Lee C H. Prediction of Welding Deformation of Ship Hull Panel Blocks using Equivalent Loading Method based on Inherent Strain. Doctor thesis,2002.
    [149]徐琳.角焊缝角变形数值预测方法研究.武汉理工大学,博士学位论文,2007.
    [150]孙焕纯,柴山,王跃方.离散变量结构优化设计.大连:大连理工大学出版社,1995.
    [151]王成强.200Km/h高速动车组焊接构架侧梁焊接顺序优化研究.大连交通大学,硕士学位论文,2007.
    [152]李娅娜,兆文忠,杨鑫华,等.构架侧梁焊接变形的数值仿真与实验验证.铁道学报,2008,30(3):26-30.
    [153]柯常忠,索海波.ANSYS优化技术在结构设计中的应用.煤矿机械,2005,27(1):9-11.
    [154]马跃进.辊材堆焊锤击消除应力机理及随焊锤击系统研究.天津大学,硕士学位论文,2009.
    [155]刘玉君,李艳君.确定焊接反变形的数值模拟及规律分析.船舶力学,2008,12(2):277-282.
    [156]尤仕武.预留反变形量与焊接变形的关系及应用.焊接技术,2005,34(5):78-79.
    [157]李军,杨建国,翁路露,等.薄壁结构焊接的焊中控制研究现状.焊接,2008,14(8):16-22.
    [158]李菊.钛合金低应力无变形焊接过程机理研究.北京工业大学,博士学位论文,2004.
    [159]田锡唐,杨愉平,张忠.随焊激冷防止焊接热裂纹新方法的研究.材料科学与工艺,1994,2(1):69-73.
    [160]Kaviany M. Priciples of Convective Heat Transfer. Second Edition. New York:Springer,2001.
    [161]Martin H. Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces. In:J. P. 1-fartnett (editor), Advances in Heat Transfer.1977,13:1-60.
    [162]施连章.大型滑履磨机焊接残余应力测试试验研究.武汉理工大学,硕士学位论文,2007.
    [163]于晗,孙刚.金属材料及热处理.北京:冶金工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700