单层单跨变截面门式刚架结构梁柱节点与结构整体抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻型门式刚架结构具有良好的经济效益和抗震性能,在低层建筑中应用广泛。由于自重较轻,地震作用力较小,人们对于该结构的抗震研究较少。但在后来的一些强烈地震中,结构局部仍然会发生一定程度的破坏,严重的局部变形甚至会引起整体结构的倒塌,这引起了人们对其抗震性能研究的重视。
     本文对1/2缩尺模型端板竖放、平放、斜放螺栓连接节点进行滞回试验研究,每种节点形式3个试件。试验得到了节点的荷载-位移曲线、骨架曲线、刚度退化和螺栓内力分布情况。研究表明:三种形式节点的破坏模式基本相似,均为距梁端约1.5倍梁大头截面高度位置翼缘发生局部屈曲,构件承载力达到峰值后迅速下降,呈脆性破坏形式。试件的荷载-位移滞回曲线饱满程度不高,说明其塑性发展较小,耗能能力较差,地震作用下不能利用其塑性耗能能力,结构设计应按弹性阶段考虑。端板厚度和螺栓强度对节点刚度影响较大,端板越厚,螺栓强度越高,节点刚度越大。但进入弹塑性阶段,端板越厚其刚度退化速度越快。综合考虑三种节点的抗震性能,建议设计时优先考虑使用端板竖放形式。总之,按“规程”设计的节点可满足了“强节点,弱构件”的抗震设计理念要求。
     本文同时对1/3缩尺模型柱脚铰接端板竖放节点的整体门式刚架结构进行拟静力试验研究,刚架的破坏模式为形成3个“屈曲铰”的机构:2个铰位于梁的两个端部,1个位于梁跨中截面薄弱处;试验得到了结构的滞回曲线、骨架曲线、刚度、刚度退化及水平位移情况,并利用底部剪力法对其地震承载力进行验算。结果表明:虽然该结构延性、耗能能力较低,难以利用其塑性变形提高抗震性能;但由于结构自重轻,地震作用力小,仍可较好满足抗震设防要求。通过应变数据的分析,发现塑性阶段,近、远端梁应变差异较大,并分析了影响结构整体性能的因素,如局部屈曲、蒙皮效应、楔率、翼缘宽厚比及腹板高厚比等。
     本文通过有限元软件对试验模型进行验证,并分析了试验模型原型结构的抗震性能,在此基础上进行参数分析,包括翼缘宽厚比、腹板高厚比和楔率对结构抗震性能的影响。研究发现:梁翼缘宽厚比、腹板高厚比及楔率主要影响结构的承载力和耗能情况;柱翼缘宽厚比、腹板高厚比及楔率主要影响结构初始刚度、退化刚度和位移情况。在有限元参数分析结果上,拟合得到结构屈服荷载、峰值荷载与破坏荷载之间的计算公式以及退化刚度、负刚度与初始刚度之间的计算公式。同时,本文提出了一种提高门式刚架整体抗震性能的支撑形式,有限元分析表明:带支撑结构比未设置支撑结构承载力提高10%以上,耗能能力提高1.8倍。
     在强化双线性模型以及端板竖放节点滞回试验的基础上,建立了该节点的M-θ简化模型,与整体拟静力试验及有限元模型对比发现,该简化模型对结构的屈服荷载与最大荷载计算较准确,具有较高的工程意义。最后,本文提出了考虑翼缘宽厚比、腹板高比及楔率影响的门式刚架退化三线型恢复力模型,与试验结果吻合较好,为该结构的抗震性能分析提供了一种简化方法。
     根据上述研究结果,对轻型门式刚架节点及整体结构的抗震性能有了较全面认识,可为相关规范修订提供一定依据,并为日后展开更深入的研究奠定基础。
Light portal frame structure was widely adopted in low-rise buildings for goodeconomic benefit and aseismic performance, but there ware less anti-seismicresearches on the structure due to light dead-weight and small seismic force. However,the structure partial of portal frame was some extent damaged under severeearthquakes; the structural integer collapse could be caused by the serious localdeformation, which arose of people’s stress on its anti-seismic research.
     The paper conducted hysteretic tests for vertical, flat and bevel endplate boltjoints of1/2scale model and three specimens were prepared for each joint form. Theload-displacement curve, skeleton curve, and distribution of stiffness degradation andinternal forces of bolt were obtained by the tests. It was showed that the failure modesof the three joint forms were similar, which the local buckling occurred on the flangeabout1.5times of the height of large end of beam to the beam end, the memberbearing capacity declined quickly after peak value, and brittle failure modes wereformed. The load-displacement curves of all specimens were not plump, which showedsmall plastic development and poor energy-dissipating capacity of the light portalframe structure, so the structure should be designed with elastic theory. The jointstiffness was influenced by the thickness of endplate and the strength of bolt, which thejoint stiffness would be higher with thicker endplate and higher strength bolt,meanwhile, the stiffness would degenerate more quickly. The form of vertical endplateis recommended in design by the comprehension of the aseismic performance of three joint forms. In conclusion, the requirements for aseismatic design concept of “strongerjoint and weaker member” would be obtained according to the “portal frameregulation”.
     Through the quasi-static anti-seismic test of the entire portal frame structure onsingle-layer and single-span heel hinged endplate of1/3scale model, three “bucklinghinges” were formed: two hinges were located at the two ends of the beam and one atthe weak cross-section of beam span; and the situation of the hysteretic curve, skeletoncurve, stiffness, stiffness degradation and horizontal displacement of the structure wasobtained; and equivalent base shear method was adopted to calculate and check theearthquake bearing capacity. It was concluded that the aseismic performance of lightportal frame structure could not be improved by its plastic deformation for the lowductility and energy-dissipating capacity, but the structure could satisfy the requirementof seismic fortification criterion for light dead weight and small seismic action. Throughthe analysis of strain data, it was found that the strains of close and far ends of beamwere different in plastic stage, and the factors which affect overall structuralperformance was analyzed, such as local buckling, skin effect, taper, flange width-thickness ratio and web width-tapering ratio.
     The test model was verified by the finite element software and the aseismicperformance of the prototype structure was analyzed, by which the parameter analysiswas done, including the influence of flange width-thickness ratio, web width-taperingratio and taper on the aseismic performance of the structure. It was concluded that thebearing capacity and hysteretic behavior were influenced by the flange width-thicknessratio, web height-thickness ratio and tapering ratio of beam; and the initial stiffness,degradation stiffness and displacement were influenced by the flange width-thicknessratio, web height-thickness ratio and tapering ratio of column. Based on the parameteranalysis, the computation formula of yield load, ultimate load and peak load, as well asthat of stiffness degradation, negative stiffness and initial stiffness was obtained. Asupporting form specific to portal frame was presented, which would rise10%ofstructural bearing capacity and1.8times of energy-dissipating capacity compared tofinite element verified model.
     Based on strengthening bilinear model and the test, M-θ simplified model of vertical endplate joint was established, comparison with the overall quasi-static testsand finite element model, which could well calculate the yield load and maximum loadof the structure and had a high practical engineering significance. Finally, trilinearrestoring force model was established according to flange width-thickness ratio, webwidth-tapering ratio and taper, which was fitted with results of test, and could provide asimplified analysis method for seismic performance analysis of light portal framestructure.
     According to the above study, an all-round knowledge on the aseismic performanceof the joint of and entire portal frame structure was showed, which provided certainbasis for revising the relevant specifications and lays solid foundation for future study.
引文
[1-1]王元清,石永久,陈宏,等.现代轻钢建筑及其在我国的应用[J].筑结构学报,2002,23(1):2-8
    [1-2]陈晓波.门式刚架轻型房屋钢结构经济性探索[D].重庆:重庆大学,2007
    [1-3]燕佳.门式刚架结构整体拟静力性能有限元分析[D].西安:西安建筑科技大学,2011
    [1-4]陈绍蕃.钢结构[M].北京:中国建筑工业出版社,2003
    [1-5]肖亚明.建筑钢结构设计[M].合肥:合肥工业大学出版社,2006
    [1-6]邱国桦.国内外轻钢结构应用发展概况[J].施工技术,1999,28(8):3-5
    [1-7]杨志勇,郑冰心,范么清.我国轻钢结构的发展现状[J].国外建材科技,2004,(3):60-63
    [1-8]程东梅.半刚性钢框架结构研究及优化设计[D].哈尔滨:哈尔滨工程大学,2003
    [1-9] Packer J A,Morris L J. Correspondence on a Limit state design method for the tensionregion of bolted beam-column connections[J]. The Structural Engineer,1978,56A(8):7-223
    [1-10] Chen W F, Kishi N. Semi-rigid steel beam-to-column connections: date base andmodeling[J]. Journal of Structural Engineering,1989,115(1):105-119
    [1-11] Eurocode3. Design of steel structures[S]. European Committee for Standar-Dization,1992
    [1-12] AISC-LRFD. Load and Resistance Factor Design Specification for Structural SteelBuildnings[S].AISC Committee for Standar-Dization,1999
    [1-13] GB50017-2003.中华人民共和国国家标准:钢结构设计规范[S].北京:中国计划出版社,2003
    [1-14] G J Simitses, J Giri. None-linear analysis of unbraced frames of variable geometry[J].International Journal of Non-Linear Mechanics,1982,17(1):47-61
    [1-15] S Kawashima, T Fujimoto. Vibration analysis of frames with semi-rigid connections[J].Computers&Structures,1984,19(1-2):85-92
    [1-16] E M Lui. Effects of Connection Flexibility and Panel Zone Deformation on the Behaviorof Plane Steel Frames[D]. School of Civil Engineering, Purdue University,1985
    [1-17] J A. Packer, G A Morris, G Davies. A limit states design method for welded tensionconnections to I-section webs[J]. Journal of Constructional Steel Research,1989,12(1):33-53
    [1-18] E Attiogbe, G Morris. Moment-rotation functions for steel connections[J]. Journal ofStructural Engineering,1991,117(6):1703-1718
    [1-19] R Hassan, N Kishi, WF Chen et al. M-θ Relationship of end-plate connection[J]. Structuralsteel,1995,95(3):12-16
    [1-20] K Zhu, F G A AI-Bermani, S Kitipornchai et al. Dynamic response of flexibly jointedframes[J]. Engineering Struetures,1995,17(8):575-580
    [1-21] E M Liu and ALopes. Dynamic analysis and response of semi rigid frames[J]. EngineeringStructures,1997,19(8):644-654
    [1-22] Peter Pui, Tak Chui, Siu Lai Chan. Vibration and deflection characteristics of semi-rigidjointed frames[J]. Engineering Structures,1997,19(12):1001-1010
    [1-23] Alfredo Reyes-Salazar, Achintya Haldar. Nonlinear seismic response of steel structureswith semi-rigid and composite connections[J]. Journal of Constructional Steel Research,1999,51(1):37-59
    [1-24] Miodrag Sekulovic, Ratko Salatic, Marija Nefovska. Dynamic analysis of steel frameswith flexible connections[J]. Computers and Structures,2002,80(11):935-955
    [1-25] D S Sophianopoulos. The effect of joint flexibility on the free elastic vibrationcharacteristics of steel plane frames[J]. Journal of Constructional Steel Research,2003,59(8):995-1008
    [1-26] Daniel Grecea, Florea Dinu and Dan Dubin. Performance criteria for MR steel frames inseismic zones[J]. Journal of Constructional Steel Research,2004,60(3-5):739-749
    [1-27] Ioannis G Raftoyiannis. The effect of semi-rigid joints and an elastic bracing system on thebuckling load of simple rectangular steel frames[J]. Journal of Constructional SteelResearch,2005,61(9):1205-1225
    [1-28] T W Stelmack, M J Marley. Analysis and tests of flexibly connected steel frames[J].Journal of Structural Engineering,1986,112(7):1573-1588
    [1-29] Jenkins W M, Tong G S and Prescott A T. Moment-transmitting endplate connections insteel construction and a proposed basis for flush endplate design[J]. The StructuralEngineer,1986,64A(5):121-136
    [1-30] Aggarwal A K, Coates R C. Moment-rotation characteristics of bolted beam-columnconnections[J]. Journal of Constructional Steel Research,1986,6:303-318
    [1-31] Aggarwal A K. Behavior of Flexible End Plate Beam-to-Column Joints[J]. Journal ofConstructional Steel Research,1990,16:151-175
    [1-32] Aggarwal A K. Comparative Tests on Endplate Beam-to-Column Connections[J]. Journalof Constructional Steel Research,1994,30:151-175
    [1-33] Zandonini R, Zanon P. Experimental analysis of end-plate connections[J]. In Bjorhovde R,Brozzetti J, Colson A. Connections in steel structures:behavior strength and design,1988,41-51
    [1-34] Janss J, Jaspart J P, Maquoi R. Experimental study of the non-linear behavior ofbeam-to-column bolted joints[J]. In: Bjorhovde R,Brozzetti J, Colson A. Connections insteel structures: behavior strength and design,1988,26-32
    [1-35] Tsai Keh-Chyuan, Popov E P. Cyclic Behavior of End Plate Moment Connection[J].Journal of Structural Engineering,ASCE,1990,116(11):2917-930
    [1-36] Kukreti A R, Ghassemieh M, Murray T M. Behavior and Design of Large CapacityMoment End Plates[J]. Journal of Structural Engineering,ASCE,1990,116(3):809-828
    [1-37] Chasten C P, Lu Le-Wu, Driscoll G C. Prying and Shear in End-Plate connection Design[J].Journal of structural Engineering,1992,118(5):1295-1311
    [1-38] Aggarwal A K. Comparative Tests on Endplate Beam-to–Column Connections[J]. Journalof Constructional Steel Research,1994,30(2):151-175
    [1-39] Plumier A. Behavior of Connections[J]. Journal of Constructional Steel Research,1994,29:95-119
    [1-40] Roeder C W, Foutch D A. Experimental Results for Seismic Resistant Steel MomentFrame Connections[J]. Journal of Structural Engineering,1996,122(6):581-588
    [1-41] Bernuzzi C, Zandonini R, Zanon P. Experimental Analysis and Modeling of Semi-rigidSteel Joints under Cyclic Reversal Loading[J]. Journal of Constructional Steel Research,1996,38(2):95-123
    [1-42] Bose B. Design resistance of unstiffened column web subject to transverse compression inbeam-to-column joints[J]. Journal of Constructional Steel Research,1998,45(1):1-15
    [1-43] Adey B T, Grondin G Y, Cheng J R. Cyclic Loading of End Plate Moment Connections[J].Canadian Journal of Civil Engineering,2000,27(4):683-701
    [1-44] Yorgun C, Bayramoglu G. Cyclic tests for welded-plate sections with end-plateconnections[J]. Journal of Constructional Steel Research,2001,57(12):1309-1320
    [1-45] Broderick B M, Thomson A W. The response of flush end-plate joints under earthquakeloading[J]. Journal of Constructional Steel Research,2002,58:1161-1175
    [1-46] Julie Mills, Roger LaBoube. Self-Drilling Screw Joints for Cold-Formed Channel PortalFrames[J]. Journal of Structural Engineering,2004,130(11):1799-1806
    [1-47] Kwon Y B, Chung H S, Kim G D. Experiments of Cold-Formed Steel Connections andPortal Frames[J]. Journal of Structural Engineering,2006,132(4):600-607
    [1-48] M H Ackroyd, K H Gerstle. Elastic stability of flexibly connected frames[J]. Journal ofStructure Engineering,1983,109(1):241-245
    [1-49] Jenkins W M, Tong G S, Prescott A T. Moment-transmitting endplate connections in steelconstruction and a proposed basis for flush endplate design[J]. The Structural Engineer,1986,64A(5):121-136
    [1-50] Kukreti A R, Murray T M, Abolmaali A. End-Plate Connection Moment-RotationRelationship[J]. Journal of Constructional Steel Research,1987,8:137-157
    [1-51] Murray T M. Recent developments for the design of moment end-plate connections[J].Journal of Constructional Steel Research,1988,10:133-162
    [1-52] Bahaari M R, Sherbourne A N. Computer modeling of an extended end-plate boltedconnection[J]. Computers and Structures,1994,52(5):879-893
    [1-53] Sherbourne A N, Bahaari M R. Finite element prediction of end plate bolted connectionbehavior I:parametric study[J]. Journal of Structural Engineering,1997,123(2):157-164
    [1-54] Choi C K, Chung G T. Refined three-dimensional finite element model for end-plateconnection[J]. Journal of Structural Engineering, l996,122(11):1307-1316
    [1-55] M A Hadianf, R Razani. Effects of semi-rigid behavior of connections in the re1iability ofsteel frames[J]. Structural Safety,2003,25(2):123-138
    [1-56] James B P Lim and David A Nethercot. Finite Element Idealization of a Cold-FormedSteel Portal Frame[J]. Journal of Structural Engineering,2004,130(1):78-94
    [1-57] J G S da Silva, L R O de Lima, S A L de Andrade. Nonlinear dynamic analysis of steelportal frames with semi-rigid connections[J]. Engineer Structures,2007,30(9):2566-2579
    [1-58]陈绍蕃.门式刚架端板螺栓连接的强度和刚度[J].钢结构,2000,15(1):6-11
    [1-59]荆军,石永久.节点刚度对轻型门式刚架结构设计的影响[J].工业建筑,2000,30(5):58-61
    [1-60]李忠学,童根树,严慧.节点连接刚性对门式刚架结构承载能力的影响[J].力学季刊,2001,22(2):234-240
    [1-61]许建勋,赵慎生.刚架节点域斜加劲肋设计[J].贵州工业大学学报,2001,30(5):80-83
    [1-62]施刚,廖新军,王元清,等.门式刚架轻钢结构端板连接节点承载性能的试验研究[J].工业建筑增刊,2001,580-584
    [1-63]柳锋,郭兵,崔艳秋.半刚接门式刚架的性能讨论[J].建筑结构,2002,32(9):22-23
    [1-64]郭兵等.梁柱端板连接节点的滞回性能的试验研究[J].建筑结构学报,2002,23(3):8-13
    [1-65]郭成喜.半刚性钢框架的内力性态分析[J].建筑结构,2002,5:3-6
    [1-66]施刚,石永久,王元清,等.门式刚架轻型房屋钢结构端板连接的有限元与试验分析[J].土木工程学报,2004,37(7):6-12
    [1-67]廖新军,石永久,王元清,等.门式刚架轻钢结构端板连接节点承载性能的有限元分析[J].四川建筑科学研究,2005,31(1):1-4
    [1-68]石永久,廖新军,王元清,等.门式刚架梁柱Γ形节点受力性能的试验研究[J].中国矿业大学学报,2005,34(3):327-332
    [1-69]陈以一,王素芳,王赛宁,等. H形梁翼缘与端板非全熔透焊接的节点性能试验研究[J].建筑结构学报,2005,26(3):70-77
    [1-70]王素芳,陈以一,陈友泉,等.端板连接高强度螺栓群中和轴位置研究[J].建筑科学与工程学报,2005,22(3):45-54
    [1-71]崔文杰,吴乃森,罗加智.门式刚架中半刚性节点的性能探讨[J].低温建筑技术,2006,1:64-65
    [1-72]王燕,郑杰.高强螺栓端板连接的撬力分析与研究[J].工业建筑,2008,38(9):99-103
    [1-73] Burnett N and Rhodes J. Tests on a Lightweight Portal Frame[J]. Proceedings-BiennialCornell Electrical Engineering Conference,1980,252-265
    [1-74] Hwang J S, Chang K C, Lee G C, Lee R L. Shaking Table Tests of Pinned-Base SteelGable Frame[J]. Journal of Structural Engineering,1989,115(12):3031-3043
    [1-75] Hwang J S, Chang K C, Lee G C. Seismic Behavior of Gable Frame Consisting of TaperedMembers[J]. Journal of Structural Engineering,1991,117(3):808-821
    [1-76] Sumner E A. Experimental and Analytical Investigation of the LRFD Strength of TaperedMembers[D]. Virginia Polytechnic Institute and State University, Blacksburg VA,1995
    [1-77] Sheng-Jin Chen, C H Yeh, J M Chu. Ductile steel beam-to-column connection for seismicresistance[J]. Journal of Structural Engineering,1996,122(11):1292-1299
    [1-78] Karamanos S and SpyrosA Karamanos. Earthquake Effects on Low-Rise Steel Buildingsin High Seismicity Areas: a Designer’s View[J]. J Construct, Steel Res,1997,44(1-2):115-128
    [1-79] Heldt T J, Mahendran M. Full Scale Experiments of a Steel Portal Frame Building[J].Journal of the Australian Institute of Steel Construction, Australian Institute of SteelConstructions,1998,32(4):2-15
    [1-80] T Usami, H B Ge. Cyclic Behavior of Thin-Walled Steel Structures-numerical analysis[J].Thin-Walled Structures,1998,32:41-80
    [1-81] T Usami, Shengbin Gao, Hanbin Ge. Elastoplastic analysis of steel members and Framessubjected to cyclic loading[J]. Engineering Structures,2000,22:135-145
    [1-82] Antonio F Mateus, Joel A Wijtz. A parametric study of the Post-buckling behavior of steelPlates[J]. Engineering Structures,2001,23:172-185
    [1-83] Guo-qiang Li, Jin-jiu Li. A tapered Timoshenko-Euler beam element for analysis of steelportal frames[J]. Journal of constructional steel research,2002,58:1531-1544
    [1-84] Miller B S, Earls C J. Behavior of Web-Tapered Built-up I-Shaped Beams[R]. ReportCE/ST28, University of Pittsburgh, Pittsburgh, PA,2003
    [1-85] Miller B S, Earls C J. On Moment Capacity and Flexural Ductility in Doubly SymmetricWeb-Tapered I-Girders[J]. Engineering Journal, Third Quarter,2005,123-141
    [1-86] Chen Y, Wu X, Tian H, Zhao J, Ma Y. Experiment on Non-compact H-shaped Membersand Frames Subjected to Cyclic Loads and the Prediction of Capacities[J]. InternationalJournal of Steel Structures, Korean Society of Steel Construction,2006,6(3):215-226
    [1-87] Seung-Eock Kim, Dong-Ho Lee, Cuong Ngo-Huu. Shaking table tests of a two-storyunbraced Steel frame[J]. Journal of Constructional Steel Research,2007,63:412-421
    [1-88] Hong Jong-Kook. Development of a seismic design procedure for metal buildingsystems[D]. University of California, San Diego,2007
    [1-89]申林,胡天兵,蔡益燕.门式钢刚架结构抗震分析[J].建筑结构,2002,32(12):48-49
    [1-90]章军,王元清,陈宏,等.地震作用下门式刚架轻型房屋钢结构的设计与分析[J].四川建筑科学研究,2004,30(2):74-77
    [1-91]兰海龙.变截面门式刚架的抗震性能[D].西安:西安建筑科技大学,2004
    [1-92]林功丁.门式刚架风荷载与地震作用的探讨[J].工业建筑,2004,34(9):84-86
    [1-93]张雷明,张昌金.多点激励下结构地震响应计算拟静力位移法讨论[J].工程抗震与加固改造,2005,27(4):25-27
    [1-94]肖兵波.门式刚架结构在地震作用下的反应[D].上海:同济大学,2006
    [1-95]高轩能,李琨.变截面门式刚架地震反应研究进展[J].四川建筑科学研究,2008,34(3):141-145
    [1-96]王传奇,高轩能,李琨.变截面门式刚架的动力特性[J].华侨大学学报,2009,30(1):75-79
    [1-97]徐勇,林贤根,童乐为,等.轻型门式刚架静力性能试验研究[J].工业建筑,2010,40(9):115-120.
    [1-98]徐勇,陈以一,程欣,等.轻型门式刚架抗震性能试验研究[J].建筑结构学报,2010,31(10):76-82
    [1-99] CECS102:2002.门式刚架轻型房屋钢结构技术规程[S].北京:中国计划出版社,2003
    [2-1]完海鹰,周涛.半刚性节点研究综述及展望[J].钢结构,2006,21(84):37-40
    [2-2]02SG518-1.门式刚架轻型房屋钢结构(无吊车)图集[M].北京:中国标准出版社,2002
    [2-3] CECS102:2002.门式刚架轻型房屋钢结构技术规程[S].北京:中国计划出版社,2003
    [2-4] GB-T228-2010.金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002
    [2-5] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [2-6] CECS102:2002.门式刚架轻型房屋钢结构技术规程[S].北京:中国计划出版社,2003
    [2-7]02SG518-1.门式刚架轻型房屋钢结构(无吊车)图集[M].北京:中国标准出版社,2002
    [2-8]施刚,石永久,王元清,等.多层钢框架半刚性端板连接的试验研究[J].清华大学学报(自然科学版),2004,40(03):391-394
    [2-9]陆铁坚,贺子瑛,余志武,等.钢-混凝土组合梁与混凝土柱节点的抗震性能试验研究[J].建筑结构学报,2008,29(01):70-74
    [2-10]郭兵,顾强,柳峰,等.梁柱端板连接节点的滞回性能试验研究[J].建筑结构学报,2002,23(3):8-13
    [2-11]郝际平,郭宏超,解崎,等.半刚性连接钢框架-钢板剪力墙结构抗震性能试验研究[J].建筑结构学报,2011,32(2):33-39
    [2-12]王宇,刘永军,李豪邦.门式刚架半刚性节点的试验研究及有限元分析[J].建筑科学,2009,25(7):37-40
    [2-13] GB50009-2012.建筑结构荷载规范[S].北京:中国建筑工业出版社,2012
    [3-1] GB-T228-2010.金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002
    [3-2] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [3-3] CECS102:2002.门式刚架轻型房屋钢结构技术规程[S].北京:中国计划出版社,2003
    [3-4]02SG518-1.门式刚架轻型房屋钢结构(无吊车)图集[M].北京:中国标准出版社,2002
    [3-5] GB50009-2012.建筑结构荷载规范[S].北京:中国建筑工业出版社,2012
    [3-6] Hwang J S, Chang K C, Lee G C. Seismic behavior of gable frame consisting of taperedmembers[J]. Journal of Structural Engineering,1991,117(3):808-821.
    [3-7]徐勇,陈以一.轻型门式刚架抗震性能试验研究[J].建筑结构学报,2010,31(10):76-82
    [3-8]王乾.单层单跨门式刚架轻型钢结构房屋抗震性能振动台试验[D].西安:西安建筑科技大学,2008
    [3-9] Jong-Kook Hong. Development of A Seismic Design Procedure for Metal BuildingSystems[D]. University of California, San Diego,2007
    [3-10]郭彦林,潘湧.变截面门式钢刚架结构稳定承载力的试验与理论研究[J].建筑结构学报,2004,25(2):08-14
    [3-11] Hwang J S, Chang K C, Lee G C et al. Shaking table tests of Pinned-base steel gableframe[J]. Journal of Structural Engineering,1989,(12):3031-3043
    [3-12]苏明周,王振山,王乾,等.单层单跨变截面轻型门式刚架结构振动台试验研究[J].土木工程学报,2012,45(10):98-108
    [3-13]王振山,苏明周,李启才,等.单层单跨变截面轻型门式刚架拟静力试验研究[J].土木工程学报,2012,45(7):24-30
    [4-1]钟光路,赵东.有限单元法及程序设计[M].西安:陕西科学技术出版社,1997
    [4-2]庄茁,由小川.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009
    [4-3]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2012
    [4-4]陈绍蕃.轻型门式刚架梁柱连接如何设计成刚性节点[J].钢结构,2012,27(4):1-5
    [4-5]尹燕霞,张福俊,马云良.矩形钢管混凝土柱抗震性能有限元分析[J].四川建筑科学研究,2013,39(1):155-157
    [4-6]季明,高峰,廖孟柯.几种屈服准则的屈服应力的比较分析[J].塑性工程学报,2006,13(5):14-15
    [4-7]罗松南,刘腾喜.协调与非协调空间实体单元对桥梁应力计算的影响[J].土木工程学报,1994,27(6):45-49
    [4-8]王万祯,顾强.钢框架梁柱栓焊节点的有限元分析[J].建筑结构,2002,32(9):7-10
    [4-9] Mahin S A. Lessons from damage to steel buildings during the Northridge earthquake[J].Engineering Structures,1998,20:4-6
    [4-10]施刚,石永久,王元清,等.门式刚架轻型房屋钢结构端板连接的有限元与试验分析[J].土木工程学报,2004,37(7):6-12
    [4-11]02SG518-1.门式刚架轻型房屋钢结构(无吊车)图集[M].北京:中国标准出版社,2002
    [4-12] GB50009-2012.建筑结构荷载规范[S].北京:中国建筑工业出版社,2012
    [4-13]苏明周,王振山,王乾,等.单层单跨变截面轻型门式刚架结构振动台试验研究[J].土木工程学报,2012,45(10):98-108
    [5-1] Srouji R, Kukreti A R, Murray T M. Strength of two tension bolt flush end-plateconnections[R]. Research Report No. FSEL/MBMA83-03.Norman Fears StructuralEngineering Laboratory, School of Civil Engineering and Environmental Science,University of Oklahoma,1983
    [5-2] Yee Y L, Yee R E. Melchens. Moment-rotation curves for bolted connections[J]. Journal ofStructural Engineering,ASCE,1933,112(3):615-635
    [5-3] Tarpy T S, Cardinal J W. Behavior of semi-rigid beam-to-column end plate connection[C].Proceedings Conference, Joints in Structural Steelwork, Halsted Press, London,1996,315-328
    [5-4] Frye M J, Morris G A. Analysis of flexibly connected steel frames[J]. Canadian Journal ofCivil Engineers,1975,2:280-291
    [5-5] Jones S W, Kirby P A, Nethercot D A. Columns with semi-rigid joints[J]. Journal ofStructural Division,ASCE,1982,361-372
    [5-6] Jones S W, Kirby P A, Nethercot D A. Effect of semi-rigid connection on steel columnstrength[J], Journal of Steel Construction research,1980,1:38-46
    [5-7] Krishnamurthy N. A fresh look at bolted end-plate behavior and design[J]. EngineeringJournal,AISC,1978,15:39-49
    [5-8] Krishnamurthy N, Huang H T, Jeffrey P K, et al. Analytical M-R curves for end-platedconnection[J]. Journal of Structural Division,ASCE,1979,105:133-145
    [5-9] Krishnamurthy N, Graddy D E. Correlation between2-and3-dimensional finite elementanalysis of steel bolted and plate behavior and design[J]. Computers and Structures,1976,6:381-389
    [5-10] Kishi N, Chen W F. Moment-rotation relation of semi-rigid connection with angles[J].Journal of Structural Engineering,ASCE,1990,116:1813-1834
    [5-11] Ang K M, Morris G A. Analysis of three-dimensional frames with flexible beam-columnconnections[J]. Canadian Journal of Civil Engineering,1984,11:245-254
    [5-12] Lui E M, Chen W F. Analysis and behavior flexibility-jointed frames[J]. EngineeringStructures,1986,8:107-118
    [5-13] Kishi N, Chen W F. Data base of steel beam-to-column connection[R]. StructuralEngineering Report NO.CE-STR-86-26, School of Civil Engineering, Purdue University,West Lafayette, IN.1986
    [5-14] Wu F H, Chen W F. A design model for semi-rigid connection[J]. Engineering Structures,1990,12(2):88-97
    [5-15]陈林,崔佳,吴惠弼.半刚性连接钢框架M-θ曲线的自适应函数法[J].重庆建筑工程学院学报,1992,14(01):48-55
    [5-16] Eurocode3. Design of steel structures[S]. European Committee for Standar-Dization,1992
    [5-17]丁洁民,沈祖炎.节点半刚性对钢框架结构内力和位移的影响[J].建筑结构,1991,12:56-59
    [5-18]陈绍蕃.轻型门式刚架梁柱连接如何设计成刚性节点[J].钢结构,2012,27(4):1-5
    [5-19]严剑松,童根树.变截面梁对框架柱无侧移失稳时的约束[J].工业建筑,2005,35(9):94-96
    [5-20]施刚,石永久,王元清.多层钢框架半刚性端板连接的试验研究[J].清华大学学报(自然科学版),2004,44(3):391-394
    [6-1]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51
    [6-2] Bauschinger J. Variations in the elastic limit of iron and steel[J]. Iron and SteelInst,1887, l:442-444
    [6-3] Restrepo-Posada J I, Dodd L L, et al. Variables affecting cyclic behavior of reinforcingsteel [J]. Journal of Structural Engineering,ASCE,1994,120(11):3178-3196
    [6-4] Ramberg W, Osgood W R. Description of steel strain curve by three parameters[R]. Tech.Note902, NationalAdvisory Committee forAeronautics, July,1943
    [6-5] Penizen J. Dynamic response of elasto-plastic frames[J]. Journal of Structural Division,ASCE,1962,88(ST7):1322-1340
    [6-6]吴成材,姚大云.冷处理钢筋的抗压性能与包辛格效应[J].土木工程学报,1963,6:28-33
    [6-7]朱伯龙.钢筋混凝土构件恢复力特性的试验研究-国外建筑抗震评述之十一[R].中国建筑科学研究院情报所,1978.
    [6-8]朱伯龙,吴明舜,张琨联.在周期荷载作用下钢筋混凝土构件滞回曲线考虑裂面接触效应的研究[J].同济大学学报,1980,1:18-24
    [6-9]过镇海,张秀琴.反复荷载下混凝土的应力应变全曲线的试验研究[J].清华大学抗震抗爆工程研究室科学研究报告集(第三集),北京:清华大学出版社,1981,38-53
    [6-10]李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研究[J].建筑结构学报,2008,29(4):73-80
    [6-11]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [6-12]陈亚亮.钢纤维预应力混凝土扁梁框架抗震性能研究[D].福建:福州大学,2005
    [6-13] Clough R W, Johnson S B. Effect of stiffness degradation on earthquake ductilityrequirements[C]. Proceedings of the2nd Japan National conference on EarthquakeEngineering,1966,227-232
    [6-14]严剑松,童根树.变截面梁对框架无侧移失稳时的约束[J].工业建筑,2005,35(09):94-96
    [6-15] ZHENG Wenzhong, JI Jing. Dynamic performance of Angle-steel concrete columns underlow cyclic loading-II: Parametric study[J]. Earthquake Engineering and EngineeringVibration,2008,7(1):67-75.
    [6-16] WATSONS, ZAHNFA, PARKR. Confined reinforcement for concrete columns[J]. Journalof Structural Engineering,1994,120(6):1798-1824.
    [6-17] WATSONS, PARKR. Simulated seismic load tests on reinforced concrete columns[J].Journal of Structural Engineering,1994,120(6):1825-1849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700