建筑膜结构非线性振动及其预张力测量理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步和社会的发展,薄膜结构在许多领域,尤其是在建筑工程领域,得到了广泛的应用与发展。建筑膜结构是最近几十年才兴起的一种建筑结构体系,它被广泛应用于大型体育场馆、展览会场、娱乐场等建筑中。建筑膜结构自重轻、刚度较小,因而对外荷载的作用非常敏感,容易发生振动,甚至导致工程事故。因此,研究建筑膜结构在暴风雨、冰雹、风卷残物等作用下的振动特性,把握其一般规律,对合理地进行建筑膜结构的设计和施工,防止或减少建筑膜结构工程事故等,具有重要意义。另外,将建筑膜结构非线性振动的研究应用于建筑膜结构预张力测量方法的研究中,也具有较大的工程实践意义;通过所研究的方法测量建筑膜结构的预张力,控制实际张力值与设计值相符合,保证工程质量;并适时检测建筑膜结构在使用过程中的张力值是否变化,以采取有效的措施调整预张力,防止或减少工程事故。
     本论文主要对正交异性矩形薄膜结构的大挠度非线性自由振动及其在冲击荷载作用下的非线性受迫振动进行理论和应用研究。首先采用解析方法研究正交异性矩形膜结构几何非线性自由和受迫振动问题,求得其近似解析解;然后将理论研究应用于工程实际,提出测量建筑膜结构预张力的新方法——“弹射法”,推导出测量的理论公式,并进行数值分析和试验研究,验证“弹射法”测量建筑膜结构预张力的有效性。本文的具体研究内容如下:
     ①运用冯卡门大挠度理论结合达朗贝尔原理建立正交异性矩形薄膜结构无阻尼和有阻尼大挠度非线性自由振动偏微分控制方程组;采用直接积分法和L-P摄动法对无阻尼自由振动控制方程组进行求解,得到其振动频率和挠度函数的近似解析解;采用KBM摄动法对有阻尼自由振动控制方程组进行求解,得到其振动频率和挠度函数的近似解析解。
     ②以正交异性矩形薄膜结构大挠度非线性自由振动研究为基础,建立正交异性矩形薄膜结构在冲击荷载作用下的无阻尼和有阻尼受迫振动控制方程组;采用L-P摄动法对无阻尼受迫振动控制方程进行求解,得到其振动频率和挠度函数的近似解析解;采用KBM摄动法对有阻尼受迫振动控制方程进行求解得其振动频率和挠度函数的近似解析解;采用ANSYS/LS-DYNA有限元分析软件对正交异性矩形薄膜结构在冲击荷载作用下的受迫振动进行数值分析,并将数值分析结果与理论结果进行对比分析,分析结果表明理论计算和数值结果吻合较好。
     ③将正交异性矩形薄膜结构大挠度非线性振动的理论研究应用于建筑膜结构工程实际,提出测量建筑膜结构预张力的新方法——“弹射法”,建立测量的理论模型,并按照能量守恒原理推导出测量的理论公式;采用ANSYS/LS-DYNA有限元分析软件建立“弹射法”测量建筑膜结构预张力的有限元分析模型,进行数值分析;将数值分析结果与理论结果进行对比,从数值分析上佐证了“弹射法”测量建筑张拉膜结构预张力的有效性。
     ④根据“弹射法”的理论研究,制定“弹射法”测量建筑膜结构预张力的试验方案;按照试验方案研制了十字形螺杆式双轴张拉装置对膜材试件进行张拉;选用建筑工程中常用的三种膜材进行经纬等荷和经纬不等荷弹射试验;将获得的各组试验数据代入测量的理论公式求得膜材的试验计算预张力,并将试验计算预张力与膜材实际预张力进行对比分析;分析表明,膜材试验计算预张力与实际预张力比较吻合,从试验上验证了采用“弹射法”测量建筑膜结构预张力的有效性。
With the progress of science and technology and the development of society, themembrane structure has been widely applied in many areas, especially in the buildingengineering area. The building membrane structure is a new structure system, which hasbeen rising during the recent several dozens of years. It is widely applied in large-scalestadium, exhibition center, casino, and so on. Because the building membranestructure’s dead weight is light and the rigidity is small, it is very sensitive under theimpact load and easy to engender vibration, thus results in engineering accident.Therefore, it is quite necessary to study the vibration characteristics of the buildingmembrane structure under impact loading (such as rainstorm, hail, the waste picked upby the wind, and so on) to obtain the general laws of them. These studies haveimportant significance for the reasonable design and construction of building membranestructure, thus to prevent or reduce the engineering accident of building membranestructure. In addition, applying the theoretical studies of nonlinear vibration of buildingmembrane structure into the studies of pretension measurement method of buildingmembrane structure has a great significance for engineering practice. We can use thestudied measurement method to measure the actual pretension, thus to control the actualpretension accord with the design pretension and guarantee the construction quality.Meanwhile, we can use this method to detect whether the pretension has changed in theworking process, thus to adopt effective measures to adjust the pretension to prevent orreduce engineering accident.
     This dissertation mainly studied the theory and application of the nonlinear freevibration of orthotropic rectangular membrane structure and its forced vibration underimpact loading. Firstly, analytical method was applied to study the large deflectiongeometrical nonlinear free and forced vibration problem of orthotropic rectangularmembrane structure and the general analytical solution was obtained. Then, we appliedthe theoretical studies into actual building membrane engineering to develop a newmethod—Ejection Method for monitoring the pretension of building membranestructure and the theoretical measurement formula was derived and obtained. Finally,the numerical analysis and ejection experiment were carried out for the EjectionMethod and the numerical and experiment results proved the Ejection Method is valid.The concrete study contents are as follows:
     ①The partial differential governing equations of damped and undamped nonlinear free vibration of orthotropic rectangular membrane were established bycombining the Von Kármán’s large deflection theory with the D’Alembert’s principle.The undamped free vibration governing equations were solved by direct integrationmethod and L-P perturbation method, and the approximate analytical solution of thefrequency and deflection function were obtained. The damped free vibration governingequations were solved by t KBM perturbation method, and the approximate analyticalsolution of the frequency and deflection function were obtained.
     ②Based on the studies of nonlinear free vibration of orthotropic rectangularmembrane structure, the governing equations of the damped and undamped forcedvibration of orthotropic rectangular membrane structure under concentrated impact loadwere established. The undamped forced vibration governing equations were solved byL-P perturbation method, and the approximate analytical solutions of the frequency anddeflection function of were obtained. The damped forced vibration governing equationswere solved by KBM perturbation method, and the approximate analytical solution ofthe frequency and deflection function were obtained. The ANSYS/LS-DYNA finiteelement analysis software was adopted to carry out the numerical analysis of the forcedvibration of orthotropic rectangular membrane structure under the impact load. Thecomparison and analysis of the theoretical and numerical results indicate that thetheoretical results coincide well with the numerical results.
     ③Applying the theoretical studies of this dissertation into actual buildingmembrane engineering, a new method—Ejection Method was developed for monitoringthe pretension of building membrane structure. The theoretical model of this methodwas established, and the theoretical measurement formula was derived and obtainedaccording to the principle of conservation of energy. The finite element analysis modelof Ejection Method was established and the numerical computation was carried out bythe ANSYS/LS-DYNA finite element analysis software. The theoretical and thenumerical results were compared and analyzed and the compared results prove that useEjection Method to measure the pretension of building membrane structure is feasibleand valid.
     ④The experimental scheme was constituted for measuring the pretension ofmembrane structure by Ejection Method according to the theoretical studies of EjectionMethod. According to the experimental scheme, the crisscross screw biaxial stretchingdevice was prepared for stretching the membrane test specimens. Three kinds ofmembrane material were selected to carry out the ejection experiment. The ejection experiments with equal loading and unequal loading in the warp and weft directionswere carried out and the experimental data was recorded. Put each group ofexperimental data into the theoretical measurement formula to obtain the experimentalcomputational pretensions, and compared the experimental computational pretensionsto the actual pretensions. The comparing analysis results indicate that the most ofexperimental computational pretensions tallied with the actual pretensions. This alsoproved that use Ejection Method to measure the pretension of building membranestructure is feasible and valid.
引文
[1]张其林著.索和膜结构[M].上海:同济大学出版社,2002.
    [2]田民波著.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.
    [3]陈务军著.膜结构工程设计[M].北京:中国建筑工业出版社,2004.
    [4]张其林.膜结构体系的应用和发展[J].世界建筑,2009,(10):36-39.
    [5]张其林.膜结构技术研究和应用进展[J].施工技术,2010,39(5):1-5.
    [6]沈世钊.大跨空间结构的发展—回顾与展望[J].土木工程学报,1998,31(03),5-14.
    [7]董宇,刘德明.大跨建筑结构形态轻型化趋向的生态阐释[J].建筑设计研究,2009,27(6):37-39.
    [8]杨超,侯俊峰,闫烨.2008年我国工程塑料应用进展[J].工程塑料应用,2009,37(7):77-79.
    [9]周继承,石之杰. AlN电子薄膜材料的研究进展[J].材料导报,2007,21(5):14-16.
    [10]福斯特(英),莫莱尔特(比)著.杨庆山,姜忆南译.欧洲张力膜结构设计指南[M].北京:机械工业出版社,2006
    [11]勒内·莫特罗(法)著.薛素铎,刘迎春译.张拉整体—未来的结构体系[M].北京:中国建筑工业出版社,2007.
    [12]沈世钊,徐崇宝,赵臣著.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [13]《上海膜结构技术规程》[S](DGJ08-97-2002,J10209-2002).
    [14]陈志华.张拉膜结构[J].建筑知识,2000,1(6):33-38.
    [15] F. Otto, R. Trostel, Tensile Structures[M], Vol2, MIT Press,1967.
    [16] Tensile Membrane Structures[S], ASCE Standard,2002.
    [17] Oska, Shells, Membrane and space Frames[C], Vol.2. Proceedings IASS symposium,1986.
    [18] Oska, Membrane Structures[M]. Vol-1. Taiyo kogyo Corp. Japan,1991.
    [19] B.Forster. Cable and Membrane Roofs-A Historical Survey[J]. Structural Engineering Review,1994,6(3-5).
    [20] Tensioned Fabric Structures[C], An Practical Introduction. ASCE-1852.1996.
    [21]冯小明著.复合材料[M].重庆:重庆大学出版社,2007.
    [22]罗斌等.建筑织物膜材的单轴和双轴拉伸材性试验研究[J].建筑结构,2007,37(7):104-106,61.
    [23]陈务军等.建筑膜材力学性能与焊接缝合性能试验研究[J].空间结构,2007,13(1):37-44.
    [24]严慧,吕子正,韦国岐.膜结构的风损事故及防范[J].建筑结构,2008,38(7):113-116.
    [25]罗永赤.膜结构工程事故分析[J].特种结构,2006,23(1):26-29.
    [26]侯国勇,关富玲,俞军羽.膜结构的事故及常见质量通病分析[J].安徽建筑,2010:153-154.
    [27]胥传喜.膜结构的工程事故与质量通病防治[J].工业建筑,2005,35(2):83-87.
    [28]刘训良.某体育场看台钢膜结构工程质量事故分析[J].山西建筑,2011,37(32):33.
    [29]孙芳锦,殷志祥.风雪共同作用下膜结构雪压分布规律的数值模拟研究[J].防灾减灾工程学报,2005,30(1):83-87.
    [30]田珺,叶继红.张拉膜结构在雪荷载下的响应及分析方法研究[J].振动与冲击,2008,27(6):26-31.
    [31]周峰等.国家游泳中心钢膜结构雪荷载及其效应监测与分析[J].建筑钢结构进展,2011,13(2):33-42.
    [32]罗永赤.膜结构积水的事故与控制[J].建筑结构,2008,38(2):101-102.
    [33]李君.膜结构建筑[J].建材技术与应用,2003:25-29.
    [34]陈伟等.某膜结构因雪荷载破坏的事故原因分析[J].建筑施工,2010,32(7):710-714.
    [35]骆光林,朱慧.印刷包装材料[M].北京:中国轻工业出版社,2002.
    [36]向明,许文才,智文广.瓦楞纸板在运输包装中的新用途[J].中国包装工业.1998,44(2):14-15.
    [37]高德,刘壮,董静,常江.瓦楞纸板包装材料的性能及其发展前景[J].包装工程.2005,26(1):1-4.
    [38]高德,王振林,陈乃立,奚德昌. B楞双瓦楞纸板衬垫平压动态缓冲性能建模[J].振动工程学报.2001,14(2):172-178.
    [39] F. Rousserie, J.Pouyet. Characterization of Corrugated Board Panels: An Experimental Study[J]. Journal of Pulp and Paper Science.1997,23(7):330-334.
    [40] SUN Zhan-jin, ZHANG Qi-lin. Simple and convenient membrane pretension measurementand testing experiments for measuring instrument [J]. Journal of Vibration, Measurement andDiagnosis,2005,25(4):280-284.
    [41] SUN Zhan-jin, ZHANG Qi-lin. A study on pre-tension measurement of membrane structures[J]. International Journal of Space Structures,2005,20(2):71-82.
    [42]孙战金.建筑膜材预张力值测试的理论和实验研究[D].博士学位论文.上海:同济大学,2004.
    [43]刘文彬.薄膜结构非线性分析和材料双轴拉伸试验[D].博士学位论文.天津:天津大学,1993.
    [44]邓长根.一种简便实用的膜张力测量装置[J].钢结构与建筑业,2002,2(4):50-53.
    [45]孙战金,张其林,杨宗林.采用数值计算进行膜材预张力测量方法初探[J].振动、测试与诊断,2005,25(1):31-35.
    [46]中国科学院自然科学史研究所近现代科学史研究室.二十世纪科学技术简史[M].北京:科学出版社,1985.
    [47]陈立群,刘延柱.振动力学发展历史概述[J].上海交通大学学报,1997,31(7):132-136.
    [48] S.Timoshenko, S.Woinowsky-Krieger: Theory Of Plates And Shells(second edition)[M].《板壳理论》翻译组翻译.第一版.北京:科学出版社,1977.
    [49]徐芝纶著.弹性力学(下)[M].第四版.北京:高等教育出版社,2006.
    [50]郑晓静著.圆薄板大挠度理论及应用[M].第一版.吉林:吉林科学技术出版社,1990.
    [51]曲庆璋等著.弹性板理论[M].北京:人民交通出版社,1999.
    [52] K. Sato. Free vibration analysis of a composite elliptical membrane consisting of confocalelliptical parts[J]. Journal of Sound and Vibration,1974,34(2):161-171.
    [53] D. A. Vega, S. A. Vera, and P. A. A. Laura. Fundamental frequency of vibration of rectangularmembranes with an internal oblique support[J]. Journal of Sound and Vibration,1999,224(4):780-783.
    [54] S. W. Kang and J. M. Lee. Free vibration analysis of composite rectangular membranes withan oblique interface[J]. Journal of Sound and Vibration,2002,251(3):505-517.
    [55] S. W. Kang. Free vibration analysis of composite rectangular membranes with a bentinterface[J]. Journal of Sound and Vibration,2004,272(1-2):39-53.
    [56] C. Shin, J. Chung, and W. Kim. Dynamic characteristics of the out-of-plane vibration for anaxially moving membrane[J]. Journal of Sound and Vibration,2005,286(4-5):1019-1031.
    [57] S. Yu. Reutskiy. Vibration analysis of arbitrarily shaped membranes[J]. CMES-ComputerModeling in Engineering&Sciences,2009,51(2):115-142.
    [58] F. Formosa. Nonlinear dynamics analysis of a membrane Stirling engine: starting and stableoperation[J]. Journal of Sound and Vibration,2009,326(3-5):794-808.
    [59] P. B. Goncalves, R. M. Soares, and D. Pamplona. Nonlinear vibrations of a radially stretchedcircular hyperelastic membrane[J]. Journal of Sound and Vibration,2009,327(1-2):231-248.
    [60]钱国祯.二向受力不等的平面薄膜自由振动问题解[J].应用数学和力学,1982,3(6):817-824.
    [61]张亿果,袁驷.四有限元线法求解非线性模型问题—Ⅲ.薄膜的固有振动[J].工程力学,1993,10(3):1-8.
    [62]潘钧俊,顾明.方形张拉膜自由振动的几何非线性影响[J].同济大学学报(自然科学版),2007,35(11):1450-1454.
    [63]罗吉,罗亮生.圆环膜自由振动的数学模型及其若干声学特性[J].数学杂志,2010,30(1):168-172.
    [64]林文静,陈树辉,张启明.圆环形薄膜自由振动的理论解[J].中山大学学报(自然科学版),2008,47:103-108.
    [65]林文静,陈树辉,李森.圆形薄膜自由振动的理论解[J].振动与冲击,2009,28(5):84-86.
    [66]林文静,陈树辉.平面薄膜自由振动的有限元分析[J].动力学与控制学报,2010,8(3):202-206.
    [67] Kimoto E, Kawamura S. Aerodynamic criteria of hanging roofs for structural design[J]. Osaka:Shells, Membranes and Space Frames, Proceedings IASS Symposium,1986,2:249-256.
    [68] Matsumoto T. Self-excited oscillation of a pretensioned cable roof with single curvature insmooth flow [J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):303-304.
    [69] Minami H, Okuda Y, Kawamura S. Experimental studies on the flutter behavior of membranesin a wind tunnel [J]. Space Structures4, London: Thomas Telford,1993:935-945.
    [70] Irwin HPAH, Wardlaw R L. A wind tunnel investigation of a retractable fabric roof for theMontreal Olympic stadium [J]. Proceedings of5th International Conference on WindEngineering, Colorado,1979:925-938.
    [71] Buchholdt H A. An introduction to cable roof structures (2nded). Thomas Telford,1999.
    [72] Yasui H, Marukawa H, Katagiri J, et al. Study of wind-induced response of long-span structure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [73] Glück M, Breuer M, Durst F, et al. Computation of wind-induced vibrations of flexible shellsand membranous structures [J]. Journal of Fluids and Structures,2003,17(5):739-765.
    [74] Glück M, Breuer M, Durst F, et al. Computation of fluid-structure interaction on lightweightstructures [J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89:1351-1368.
    [75]向阳,沈世钊,赵臣.张拉式薄膜结构的弹性模型风洞实验研究[J].空间结构,1998,4(3):31-36.
    [76]向阳,沈世钊,李君.薄膜结构的非线性风振响应分析[J].建筑结构学报,1999,20(6):38-46.
    [77]武岳,沈世钊.膜结构风振分析的数值风洞方法[J].空间结构,2003,9(2):38-43.
    [78]武岳,杨庆山,沈世钊.索膜结构风振气弹效应的风洞实验研究.工程力学,2008,25(1):8-15.
    [79]周骥,张其林,殷惠君等.预张力膜片风振反应的试验研究[J].振动、测试与诊断,2007,27(1):71-76.
    [80]周骥,张其林,殷惠君.底裙开敞伞形膜结构风荷载的数值模拟[C].第十二届空间结构学术会议,北京,2008.
    [81]杨庆山.薄膜结构的风致动力效应初探.空间结构,2002,8(4):3-10.
    [82]刘瑞霞,杨庆山,李作为等.小垂度薄膜屋盖的气弹动力耦合作用方程[J].工程力学,2004,21(6):41-44.
    [83]刘瑞霞,杨庆山,李作为.矩形平面双曲抛物面薄膜屋盖的动力失稳临界风速[J].工程力学,2005,22(5):105-110.
    [84]杨庆山,刘瑞霞.薄膜结构气弹动力稳定性研究[J].工程力学,2006,23(9):18-24.
    [85]毛国栋,孙炳楠,楼文娟等.膜结构风振响应计算中的流固耦合因素研究[J].振动工程学报,2004,17(2):228-232.
    [86]顾明,黄鹏,杨伟,汪大绥等.上海铁路南站平均风荷载的风洞试验和数值模拟[J].建筑结构学报,2004,25(5):43-47.
    [87]黄鹏,戴银桃,顾明.倒伞形群膜结构风荷载试验研究[C].第十四届全国结构风工程学术会议,北京,2009.
    [88]张华,单建.索膜结构的抖振动力特性研究[J].工程力学,2004,21(3):61-65.
    [89]胡伟鹏,邓子辰,李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1061.
    [90]胡伟鹏,邓子辰,李文成.膜受迫振动方程的多辛格式及其守恒律[J].动力学与控制学报,2008,6(4):289-293.
    [91]汪大绥,卢旦,李承铭.世博轴索膜结构风振响应数值模拟[J].建筑结构学报,2010,31(5):49-53.
    [92]汪大绥,卢旦,李承铭等.世博轴索膜结构抗风设计中等效风荷载研究[J].建筑结构,2010,40(6):53-55,84.
    [93]魏德敏,水渊,姜正荣.索膜结构风速时程数值模拟[C].庆祝刘锡良教授八十华诞暨第八届全国现代结构工程学术研讨会,天津,2008.
    [94]魏德敏,水渊.索膜结构的非线性风振响应[J].华南理工大学学报(自然科学版),2008,36(12):1-6.
    [95]罗俊杰,韩大建.大跨度索-膜屋盖结构风振响应分析[J].土木工程学报,2009,42(10):15-21.
    [96]沈世钊,武岳.大跨度张拉结构风致动力响应研究进展[J].同济大学学报,2002,30(5):534-538.
    [97]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(1):1-9.
    [98]刘瑞霞,杨庆山.薄膜结构风致振动研究进展[J].中国安全科学学报,2003,13(9):27-31.
    [99]顾明,陆海峰.膜结构风荷载和风致响应研究进展[J].振动与冲击,2006,25(3):25-28.
    [100]邓梁波,叶天麒.圆板在物体撞击下的非线性动力响应[J].力学学报,1990,22(4):420-428.
    [101] Z.S.Liu, H.P.Lee, and C.Lu. Structural intensity study of plates under low-velocity impact.International Journal of Impact Engineering,2005,31(8):957-975.
    [102] Hitesh Kapoor, Sangeon Chun, Rakesh K. Kapania, et al. Nonlinear Response of HighlyFlexible Structures to Air Blast Loads: Application Shelters. AIAA JOURNAL,2006,44(9):20-34.
    [103] J.W. Fox, N.C. Goulbourne. On the dynamic electromechanical loading of dielectric elastomermembranes. Journal of the Mechanics and Physics of Solids,2008,56:2669-2686.
    [104] J.W. Fox, N.C. Goulbourne. Electric field-induced surface transformations and experimentaldynamic characteristics of dielectric elastomer membranes. Journal of the Mechanics andPhysics of Solids,2009,57:1417-1435.
    [105] E. Suhir, M. Vujosevic, T.Reinikainen. Nonlinear dynamic response of a “flexible-and-heavy”printed circuit board (PCB) to an impact load applied to its support contour. J. Phys. D: Appl.Phys,2009,42:1-9.
    [106] S. Nemat-Nasser, W.J. Kang, J.D. McGee, et al. Experimental investigation of energy-absorption characteristics of components of sandwich structures. International Journal ofImpact Engineering,2007,34:1119-1146.
    [107] Y. P. Zhao. Suggestion of a new dimensionless number for dynamic plastic response of beamsand plates. Archive of Applied Mechanics,1998,68:524-538.
    [108] Miao Yu, Xinhua Long, B. Balachandran. Sensor diaphragm under initial tension: Nonlinearresponses and design implications. Journal of Sound and Vibration,2008,312:39-54.
    [109] H. L. Dai, X. Wang. Non-Linear dynamic response of a single wall carbon nanotube subjectedto radial impulse. Arch Appl Mech,2006,76:145-158.
    [110] J.L. Yang, X.H. Liu, S.R. Reid. Dynamic plastic behavior of a free–free beam striking the mid-span of a clamped beam with shear and membrane. International Journal of MechanicalSciences,2003,45:915-940.
    [111] Q.M. Li, Q. Dong, J.Y. Zheng. Strain growth of the in-plane response in an elastic cylindricalshell. International Journal of Impact Engineering,2008,35:1130-1153.
    [112]王心田.在冲击荷载作用下弹塑性薄板的非线性动力响应[J].固体力学学报,1985,3:282-294.
    [113]魏德敏,杨桂通.冲击荷载下弹粘塑性矩形薄板的动力响应[J].工程力学,1986,3(3):20-32.
    [114]黄伟,邹毅达.粘弹性地基上弹性板受刚体撞击的动力响应分析[J].工程力学,1993,10(1):112-118.
    [115]尹邦信.弹性板受撞击的动力响应分析[J].应用数学和力学,1996,17(7):639-644.
    [116]江松青,李永池.横向冲击荷载下加筋板的非线性动力响应[J].中国科技大学学报,2000,30(4):406-413.
    [117]岳建军,刘土光等.受横向撞击弹性板的动力响应分析[J].船舰科学技术,2005,27(2):27-32.
    [118]傅衣铭,高正强,杨金花.轴对称横观各向同性浅球壳受物体撞击的非线性动力响应分析[J].应用力学学报,2008,25(1):6-10.
    [119]刘锋,吕西林.冲击载荷作用下框架结构的非线性动力响应[J].振动工程学报,2008,21(2):107-114.
    [120]顾璆林.在均布荷载作用下受有预加张力的弹性圆薄膜大挠度问题[J].物理学报,1956,12(4):319-338.
    [121]钱伟长,叶开沅.圆板的大挠度问题[J].物理学报,1954,10(4):383-392.
    [122]陈山林,郑周练.圆薄膜在集中力作用下的大变形[J].应用数学和力学,2003,24(1):25-28.
    [123]戴世强.关于圆薄板大挠度问题的正交条件解法[J].应用数学与力学,1991,12(7):579-586.
    [124]钱伟长,王志忠,徐尹格,陈山林.圆薄膜中心部分受均布载荷产生的对称变形[J].应用数学和力学,1981,2(6):599-612.
    [125]郝际平,颜心力.圆薄膜在集中力作用下大变形基本方程的精确解[J].应用数学和力学,2006,27(10):1169-1172.
    [126]张伟,陈立群.轴向运动弦线横向振动的控制:能量方法[J].机械强度,2006,28(2):201-204.
    [127]周叮.附着了任意个弹性质量的任意形状的膜的振动[J].上海力学,1989,10(4):10–17.
    [128] D.CHEN and S.CHENG. Non-liner analysis of prestretched circular membrane and a modifiediteration technique [J]. Solids structures,1996,33(4):545-553.
    [129] A. Dadeppo, R. Schmidt. New analysis of an unprestretched annular membrane withrestrained edges [J]. Indus Math Soc,1972,24(1):49-58.
    [130] M.R. Barnes. Formfinding and analysis of tension structures by dynamic relaxation [J]. Int,Journal of Space Structure,1988,30(3).
    [131] A. N. Sherbourne, W. C. lennox. Elastic large deflections of annular membranes [J]. J EngngMech Divis, Proc ASCE,1966,92(EM2):75-99.
    [132] R. Kao, N. Perrone. Large deflections of axisymmetric circular membranes [J]. Internat JSolids Structures,1971,12(7):1601-1612.
    [133]曹志远著.板壳振动理论[M].北京:中国铁道出版社,1989.
    [134]钟炜辉,郝际平等.非线性弹性矩形板的自由振动精确解研究[J].振动与冲击,2008,27(1):46–48,60.
    [135]张涛,刘土光.加筋板弹性大挠度的冲击响应分析[J].爆炸与冲击,2002,22(4):301-307.
    [136]张涛,刘土光.低速冲击载荷下加筋板弹塑动力响应分析[J].应用力学学报,2004,21(4):301-307.
    [137] C. Shin, J. T. Chung, H. H. Yoo. Dynamic responses of the in-plane and out-of-planevibrations for an axially moving membrane [J]. Journal of Sound and Vibration,2006,297:794-809.
    [138] B. Kh. Eshmatov. Nonlinear vibrations and dynamic stability of viscoelastic orthotropicrectangular plates [J]. Journal of Sound and Vibration,2007,300:709-726.
    [139] J. T. Katsikadelis. Dynamic analysis of nonlinear membranes by the analog equation method:a boundary-only solution [J]. Computational Mechanics,2002,29:170-177.
    [140] C. Shin, W. Kim and J. Chung. Free in-plane vibration of an axially moving membrane [J].Journal of Sound and Vibration,2004,272:137-54.
    [141]韩强.非线性弹性矩形板的自由振动[J].华南理工大学学报(自然科学版),2000,28(7):78-82.
    [142]王京.大挠度圆板的非线性自由振动[J].华南理工大学学报(自然科学版),2001,29(8):4-6.
    [143]苏耘,王春红.椭圆积分的一种新型计算法[J].长春大学学报,1999,9(3):17-22.
    [144] X.-T. He and S.-L. Chen. Perturbation solution to large deflection problem of cantileverbeams[J]. Journal of Chongqing Jianzhu University,2003,25(6):46-51.
    [145] X.-T.He and S.-L. Chen. Biparametric perturbation solutions of large deflection problemofcantilever beams[J]. Applied Mathematics and Mechanics,2006,27(4):404-410.
    [146] S. T. Mohyud-Din and M. A. Noor. Homotopy perturbation method for solving fourth-orderboundary value problems[J]. Mathematical Problems in Engineering,2007, Article ID98602,15pages.
    [147] E. Montano, M. Salas, and R. L. Soto. Nonnegativity preservation under singular valuesperturbation[J]. Mathematical Problems in Engineering, vol.2009, Article ID301582,25pages,2009.
    [148] F. Shakeri and M. Dehghan. Solution of delay diferential equations via a homotopyperturbation method[J]. Mathematical and Computer Modelling,2008,48(3-4):486-498.
    [149] A. Yildirim. Application of He’s homotopy perturbation method for solving the Cauchyreaction-difusion problem[J]. Computers and Mathematics with Applications,2009,57(4):612-618.
    [150] E. L. Jansen. A perturbation method for nonlinear vibrations of imperfect structures:application to cylindrical shell vibrations[J]. International Journal of Solids and Structures,2008,45(3-4):1124-1145.
    [151] M. Mitra, S. Gopalakrishnan, M. Ruzzene, et al.. Perturbation technique for wave propagationanalysis in a notched beam using wavelet spectral element modeling[J]. Journal of mechanicsof materials and structure,2008,3(4):659-673.
    [152]郑周练,孙铂琦,李彬,陈山林.碟形扁壳在均布荷载作用下的非线性局部稳定[J].重庆大学学报(自然科学版),2007,30(12):55-58.
    [153]陈山林,李其中.轴对称圆薄板大挠度问题的自由参数摄动法解[J].重庆建筑大学学报,2003,25(2):32-36.
    [154]陈山林,李其中.圆底扁球壳非线性稳定问题的自由参数摄动法解[J].应用数学和力学,2004,25(9):881-888.
    [155]顾德淦.摄动方法[M].北京:高等教育出版社,1993.
    [156]王嘉新,刘杰.弹性地基上正交各向异性变厚度圆薄板的大挠度问题[J].应用数学和力学,1996,17(5):455-463.
    [157]程昌钧,杨骁.极正交各向异性圆薄膜大挠度问题[J].应用数学与计算数学学报,1987,1(1):38-47.
    [158]赵海鸥. LS-DYNA动力分析指南[M].兵器工业出版社,2003.
    [159]尚晓江,苏建宇著. ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005.
    [160]时党勇,李裕春,张胜民著.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社,2005.
    [161] Ted Belytschko, Wing Kam Liu, Brian Moran著.庄茁译.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [162]李开泰等著.有限元方法及其应用[M].北京:科学出版社,2006.
    [163] ANSYS用户使用手册——ANSYS非线性分析指南[Z],1999.
    [164]方同,薛璞著.振动理论及应用[M].西安:西北工业大学出版社,2000.
    [165]胡少伟,苗同臣著.结构振动理论及其应用[M].北京:中国建筑工业出版社,2005.
    [166]刘晶波,杜修力著.结构动力学[M].北京:机械工业出版社,2005.
    [167]杨桂通.结构在冲击载荷作用下的实验研究[J].力学学报,1995,22(3):374-379.
    [168]吴广明等.某柴油机基座结构抗冲击计算[J].中国舰船研究,2006,1(4):41-43.
    [169]李继光,蔡子亮.冲击压实机冲击力及冲击能量的计算.许昌学院学报,2004,23(5):25-27.
    [170]孙仁博,王天明著.材料力学[M].北京:中国建筑工业出版社,1995.
    [171] Wang Chang-Guo, Du Xing-Wen, He Xiao-Dong. Wrinkling analysis of square spacemembrane structure under corner tension forces. Journal of Harbin Institute of Technology(New Series),2008,15(4):513-517.
    [172] Xcortech Corp.: BB弹测速器使用说明书.
    [173]无锡市大箕山工仪设备有限公司: LK-2型拉力计说明书.
    [174]俞磊. Visual Basic完全自学手册[M].北京:机械工业出版社,2009.
    [175]李勇帆. Visual Basic程序设计上机指导与测试[M].北京:人民邮电出版社,2009.
    [176]邱李华,郭全. Visual Basic程序设计教程[M].北京:人民邮电出版社,2009.
    [177]李立宗. VB程序设计教程[M].天津:南开大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700