MIMU及其与GPS组合系统设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着 MEMS 技术和微光电技术的迅速发展,出现了微型惯性测量组合(MIMU),由于它们在体积重量、成本、可靠性等方面的优势,给惯性测量技术带来一次全新的变革和发展机遇。其不足之处是目前 MIMU 的测量精度还比较低,使其应用受到一定限制。因此,如何利用 MIMU 的优势来扩展其应用领域;克服不足之处来探索其应用的方式,成为该技术领域的研究重点。本文正是围绕这两个问题开展研究工作。
    首先,从典型 MIMU 器件入手,进行了实验研究。对其中主要器件VG941-3AM 微型光纤陀螺作了 ARMA 模型辨识,并设计了卡尔曼滤波器,减小其输出噪声,为提高系统精度提供了有效手段。MIMU 的设计采用内装式结构,外部具有六个正交基面;并建立了数学模型,采用正交最小二乘法处理实现在一个水平基准平面上翻滚进行快速标定。同时提出一种基于虚拟噪声的静基座捷联系统现场最优标定方法,同两位置或多位置方法相比,其结构简单、省时、易于实现,既能保持一定的姿态精度,又能大大降低导航和定位误差。
    然后,在上述研究工作基础上,完成了国内首枚弹射实验用模拟弹。采用参数化三维实体设计,精确模拟实际产品导弹的机械特性;模拟弹内部的微型惯性运动参数测量系统(MIMS)可自主的测量导弹弹射时的三维运动参数。经多次实验证明其工作可靠,测量精度高,动态性能好。
    最后,完成 MINS/GPS 组合系统实验样机。针对其组合方式的特点,分别采用状态与偏差去耦估计算法和 U-D 协方差分解与序贯处理算法,前者计算量小,后者不受可见星数目的限制。提出了一种姿态修正的方法,推导了利用姿态误差角估计修正姿态阵的公式,仿真和实验数据验证了该方法的有效性和可行性,特别适用于陀螺零偏较大和稳定性较差的场合。
    此外,对组合系统进行了多次车载实验。实验结果表明,系统工作正常,定位精度同 GPS 相当。通过实验,还仔细研究了两种组合方式以及修正间隔时间、GPS 失锁等对定位精度的影响。对于廉价性的 MINS/GPS 组合系统更适于采用位置、速度组合方式和状态偏差去耦估计算法,不仅具有较高的精度而且计算量小,易于工程实现。
With the rapid development of MEMS and micro optics and electronicstechnology, the Micro Inertial Measurement Unit (MIMU) came into being.Due to the advantages in size, weight, cost and reliability, they bringinnovation and opportunity in the field of inertial measurement. But the lowmeasurement precision is their major shortcoming and also is an obstacle toapplications. Therefore, how to expand their application field with theiradvantages and how to improve their work by overcoming disadvantages havebecome a research hotspot of this technical field. They are also the focuses ofthis dissertation.
     First, the experimental research on typical MIMU sensors was made.The ARMA model identification and Kalman filter design of VG941-3AM, aminiature fiber optic gyroscope, are presented to reduce the FOG's outputnoise and provide an effective way for improving system accuracy. A specialinside-placed structure is adopted in MIMU design to obtain six orthogonalstandard planes outside. After modeling the calibration procedure, theorthogonal least square algorithm is introduced to achieve a quick calibrationmethod which needs only a horizontal standard plane to roll on. An on-fieldstationary SINS optimal calibration method is also presented, which is basedon fictitious noise. Compared with two-position and multi-position calibrationmethod, this simple, fast and convenient method can not only maintain theattitude accuracy but also reduce the navigation and positioning errordramatically.
    Secondly, relying on the above fundamental research work, a simulatedmissile for ejection experiment was implemented firstly in China. Toprecisely simulate the actual missile's mechanical property, the parameterized3-D solid engineering method is used. The Micro-miniature InertialMeasurement System (MIMS) inside simulation missile can independentlymeasure the 3-D ejection movement parameters, and the reliability, accuracyand high dynamic measurement of the simulation missile has been proved byseveral ejection experiments.
    Finally, an experimental prototype of the MINS/GPS integratednavigation system was implemented. Aimed at different integration modes,the state bias decoupled estimation and U-D covariance factorization withsequence processing algorithm are designed respectively, the first one ischaracterized by less computations and the second one is not influenced by thequantity of available satellites. An attitude updating method is also presented,and the equation to update attitude matrix with the attitude error anglesestimation is deduced. The computer simulation and experimental data testinghave proved the effectiveness and feasibility of this updating method. Theattitude updating method is especially suitable for integrated systems whichare composed by the gyroscopes with greater zero drift and worse stability.Furthermore, several on-vehicle experiments were made. The resultsshow that the integrated system works properly and the positioning accuracyis equivalent with GPS. By analyzing these experiments, the influences to thepositioning accuracy caused by the two different integrated modes, updatinginterval time and GPS unlock situation are also studied in details. The systemapplied with position/velocity integrated mode and state bias decoupledestimation algorithm is more becoming to low cost MINS/GPS integratedsystem, for its advantages in relatively high accuracy, less calculations andsimple structure.
引文
[1] 袁信, 俞济祥, 陈哲. 导航系统. 北京: 航空工业出版社, 1993
    [2] 孙立宁, 周兆英,龚振邦. MEMS 国内外发展状况及我国 MEMS 发展战略的思考. http://www.mie.gov.cn/paper/mems.html
    [3] 丁衡高. 微米/纳米技术-面向 21 世纪的军民两用技术. 仪器仪表学报, 1995, 16(1): 1-7
    [4] E. Mettler, F.Y. Hadaegh. Micro Guidance and Control synthesis: New Componets, Architectures, and Capabilities. Proceedings of the National Aeronautics and Space Administration, 1993. 289-304
    [5] J.H. Connelly, J.P. Gilmore, M.S. Weinberg. Micro-Electromechanical Instrument and Systems Development at the Charles Stark Draper Laboratory. Charles Stark Draper Lab., Inc., Cambridge, MA. 1995. 1-8
    [6] 孟军,茅投松. 微硅加速度传感器的发展. 电子器件,1999,V01(No.4):293~298
    [7] Kijin Kwon,Sekwang Park.A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer.Sensor and Actuators,1998,66:250~255
    [8] W. Kuehnel, S. Sherman. A Surface Micromachined Silicon Accelerometer with On-Chip Detection Circuitry. Sensors and Actuators, 1994, 45: 7-16
    [9] V.G. Peshekhonov. Integrated Navigation Systems Based on Miniature Inertial Modules. Proceedings of the 2nd International Symposium on Inertial Technology, 1998. 7-11
    [10] D.N. Bruce. Quartz Fork Technology May Replace INS Gyros. Aviation Week and Space Technology, 1994, 140(17): 50-51
    [11] J. Bernstein, S. Cho, A.T. King, etc. A Micromachined Comb-Drive Tuning Fork Rate Gyroscope. Proceedings of the IEEE Micro Electro Mechanical Systems. 1993. 143-148
    [12] R.H. Hulsing. MEMS Inertial Rate and Acceleration Sensor. Proceedings of the IEEE Position Location and Navigation Symposium, 1998. 169-176
    [13] Post E J. Sagnac effect. Rev.Mod.Phy5.1967,39(2):475~494
    [14] 张兴周.Sagnac 效应光纤陀螺.传感器技术.1998,17(1):59~62
    [15] Bergh R A,Leferre H C,Shaw H J. An overview of fiber optic gyroscopes. Journal of Light wire Technology.1984,2(2):91~107
    [16] Stephanus S J,Swart P L. Open loop fiber-optic gyroscope with wide dynamic range and source variation insensitivity. SPIE. 1991, 1585:215~224
    [17] Sheem S K. Fiber optic gyroscope with [3×3] directional coupler. Applied Phys. Lett, 1980, 37(5):869~875
    [18] Hotate K, Okuma N. Rotation detection by optical heterodyne fiber gyro with frequency output. Opt. Lett. 1982, 7(7):331~335
    [19] Nishiura Y, Ono K. Development of compact phase-modulated fiber-optic gyroscope with stabilized scal factor. OFS'85. 1985, PDS6-1
    [20] Vali V, Shorthill R W. Fiber ring interferometer. Appl. Opt, 1976,15:1099~1100
    [21] 胡卫东.光纤陀螺发展评述.红外技术, 2001, 23(5):29~31
    [22] 谭宇.光纤陀螺的发展与应用前景.光电子技术与信息,1995,8(3):1~5
    [23] 曾桂林.光纤陀螺技术发展及军需分析.应用光学.2001,22(1):1~4
    [24] Kajioka H, Humagai T, Nakai H. Commercial applications of mass-produced fiber optic gyros. SPIE.1996, 2837:18~37
    [25] Sakuma K. Application of fiber optic gyros at JAE. SPIE.1996,2837:72~79
    [26] VG941-3AM. http://www.fizoptika.ru//products/catalog/ vg941-3am.html
    [27] Wang S W.Development of fiber optic gyro at Shang Hai precision instrument institute.Proc.SPIE.1993,2070:70~76
    [28] 高精度闭环光纤陀螺. http://yqgdxy.buaa.edu.cn/index.php?tree_id=1000013& display_id=11
    [29] 三轴光纤陀螺组合. http://yqgdxy.buaa.edu.cn/index.php?tree_id=1000013& display_id=15
    [30] 北航光电技术研究所 http://news.buaa.edu.cn/dispnews.php?type=2&nid=715& s_table=news_txt
    [31] 邓正隆. 惯性导航原理. 哈尔滨: 哈尔滨工业大学出版社, 1994
    [32] 张树侠, 孙静. 捷联式惯性导航系统. 北京: 国防工业出版社, 1992
    [33] 以光衢. 惯性导航原理. 北京: 航空工业出版社, 1987
    [34] K.R. Inertial Navigation System Analysis. New York: Wiley-Interscience, 1971
    [35] 惯导系统与中国精确战术指导武器.http://news.beelink.com.cn/20021120/ 1246591.shtml,2002
    [36] 陈哲. 捷联惯导系统原理. 北京: 宇航出版社, 1986
    [37] 顾启泰, 刘学斌. 近代制导、导航和控制系统的进展. 导航, 1998, 34(1): 1-8
    [38] 航空电子技术突飞猛进.http://www.china-airforce.org//llzf/hdjs3.htm,2003
    [39] 21 世纪的精确制导武器技术.http://www.redfox88.com/u744.htm,2003
    [40] John D. Missile vie for CASOM prize. Aviation Week & Space Technology, 1996, 4: 31~34
    [41] Laviolette K D, Bossler F B. Phase modulation control for an interferometric fiber optic gyroscope. IEEE PLANS, 1990:29
    [42] Bramson M, Iwamoto N, Mcnair F,et al. Buffer-induced bias effect in the fiber optic gyro. IEEE PLANS,1994:158
    [43] 周世勤.光纤陀螺技术的发展.飞航导弹,2002,2: 42~45
    [44] E. John. Progress on Micromechanical Inertial Instruments. AIAA-91-2765-CP, 1482-1485
    [45] Y.E. Jiang, Y.P. Lin. Improved Strapdown coning Algorithms. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 484-489
    [46] R.B. Miller. A New Strapdown Attitude Algorithm. Journal of Guidance, Control, and Dynamics, 1983, 6(4): 287-291
    [47] V.Z. Gusinsky, V.M. Lesyuchevsky, Y.A. Litmanovich. New Procedure for Deriving Optimized Strapdown Attitude Algorithms. Journal of Guidance, Control, and Dynamics, 1997, 20 (4): 673-680
    [48] J.G. Lee, Y.J. Yoon, J.G. Mark, etc. Extension of Strapdown Attitude Algorithm for High-frequency Base Motion. Journal of Guidance, Control, and Dymamics, 1990, 13(4): 738-743
    [49] M.B. Ignagni. Optimal Strapdown Attitude Integration Algotrithms. Journal of Guidance, Control, and Dynamics, 1990, 13(2): 363-369
    [50] H. Musoff, J.H. Murphy. Study of Strapdown Navigation Algorithms. Journal of Guidance, Control, and Dynamics, 1995, 18(2): 287-290
    [51] Z. Berman. On Range and Attitude Estimation. Proceedings of the IEEE Position, Location and Navigation Symposium, 1994. 344-347
    [52] L.W. Stimac, T.A. Kennedy. Sensor Alignment Kalman Filters For Inertial Stabilization Systems. Proceedings of the IEEE Position, Location and Navigation Symposium, 1992. 321-334
    [53] N.A. Carlson, R.T. Kelley. Differential Inertial Filter for Dynamic Sensor Alignment. Proceedings of the National Technical Meeting, 1994. 341-351
    [54] Y. Wu, R. Ornedo. Kalman Filter Formulation for Transfer Alignment of Inertial Reference Units. Proceedings of the AIAA Guidance, Navigation and Control Conference, 1990. 446
    [55] J.G. Lee, C.G. Park. Multiposition Alignment of Strapdown Inertial Navigation System. IEEE Transations on Aerospace and Electronic Systems, 1993, 29(4): 1323-1328
    [56] C.C. Ross, T.F. Elbert. A Transfer Alignment Algorithm Study Base on Actual Flight Test Data from a Tactical Air-to-ground Weapon Launch. Proceedings of the IEEE Position, Location, and Navigation Symposium, 1994. 431-438
    [57] J. Chen, S. Lee, D.B. Debra. Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers. Journal of Guidance, Control, and Dynamics, 1994, 17(2): 286-290
    [58] V. A. Subramanian, C.P. Vendhan. An Efficient Algorithm for Strapdown Acelerometer-based Motion Measurement. Ocean Engineering, 1993, 20(4): 421-432
    [59] C.R. Bolduc, M.F. vinnins, D.A. Staley. Design and Implementation of the DREO Heading Reference Unit Self-Alignment and Navigation Algorithms. Canadian Aeronautics and Space Journal, 1997, 43(2): 111-122
    [60] D. Chung, J. Lee, C.G. Park, etc. Strapdown INS Error Model for Multiposition Alignment. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1362-1366
    [61] 周忠谟, 易杰军. GPS 卫星测量原理与应用. 北京: 测绘出版社, 1992
    [62] 王荣,张守信,牛晓华. GPS 在航天科技中的应用及前景. 中国航天,1998,2:23~25
    [63] B.Hofmann-Wellenhof, H.Lichtenegger, and J.Collins. GPS Theory and Practice. New York: Springer-Verla Wien New York, 1994
    [64] 黄凤钊. GPS/SINS 伪距组合技术研究: [博士学位论文]. 北京: 中国运载火箭技术研究院, 1997
    [65] 毛刚. 微型惯性测量系统的设计与应用研究: [博士学位论文]. 北京: 清华大学, 2001
    [66] 朱文峰, 庄逢辰. GPS 政策分析. 导航, 1994, 30(2): 1-7
    [67] 赵龙.惯性/卫星组合导航系统的鲁棒滤波与融合方法研究: [博士学位论文]. 北京: 北京航空航天大学, 2001
    [68] 不受控于美国的全球导航卫星系统 GNSS.http://thesis.139.com.cn/second/2/2/ 3.htm, 2002
    [69] 廖春发.欧洲出台“伽利略”导航卫星计划.国际太空,1999,(7):13~16
    [70] 欧门专家来华商讨伽利略计划—将于美国 GPS 竞争.http://news.sina.com.cn /c/2004-02-23/04161868842s.shtml,2004
    [71] 邢佩旭.世界主要几种卫星导航定位系统的现状与发展.港工技术,2003,(1):52~55
    [72] 高路.双星定位导航系统.现代通信,1997,(10):20~24
    [73] 关于北斗双星系统的一些参考资料.http://www.nrscc.gor.cn/subject/wxdh/ zowxdhjj-003.asp, 2003
    [74] 关于北斗系统的工作原理以及精度. http://www.nrscc.gor.cn/subject/wxdh/ zowxdhjj-002.asp, 2003
    [75] 我国第三颗北斗一号导航定位卫星发射升空.http://asp3.6to23.com/zllongyi/ survery/weixing.htm, 2003
    [76] 欧洲力求打造全新伽利略计划.http://tech.enorth.com.cn/system/2003/10/28/ 000657789.shtml, 2003
    [77] 董绪荣, 张守信, 华仲春. GPS/INS 组合导航定位及其应用. 长沙: 国防科技大学出版社, 1998
    [78] Randolph G.Hartman. An Integration GPS/IRS Design Approach. Navigation, 1988, 35(1): 121-134
    [79] G. Hyslop, D. Gerth. GPS/INS Integration on the Standoff Land Attack Missle (SLAM). Proceedings of the IEEE Position, Location, and Navigation Symposium, 1990. 399-406
    [80] Harold A K, Charles B D. GPS-Aided Navigation and Unaided Navigation on the Joint Direct Attack Munition. IEEE 0.7803-4330-1/98,1998
    [81] Scott S, Larry T, Paul T, Sanjai K. INS/GPS operational concept demonstration (OCD) high gear program. IEEE 0-7803-1435-2/94,1994.
    [82] 童雄辉.“灵巧”炸弹杰达姆. 中国航天,2004,(5): 42~44
    [83] 田亚军,徐晖,姜文利.GPS/INS 组合导航算法对比性研究.空间电子技术,2003,(2):18~25
    [84] 林敏敏,房建成,高国江.GPS/SINS 组合导航系统混合校正卡尔曼滤波方法.中国惯性技术学报,2003,11(3):29~33
    [85] 慕德俊,佟明安,戴冠中. GPS/惯性组合导航系统的并行算法研究. 西北工业大学学报,2000,18(2):208~211
    [86] 郑 利 龙 , 曹 志 刚 .GPS 组 合 导 航 系 统 的 数 据 融 合 . 电 子 学 报 , 2002 ,30(9):1384~1386
    [87] 游文虎,姜复兴.INS/GPS 组合导航系统的数据同步技术研究. 中国惯性技术学报,2003,11(4):20~23
    [88] 杨艳娟,金志华,田蔚风,钱 峰. MIMU/GPS 组合导航系统研究. 中国惯性技术学报,2003,11(5):1~4
    [89] 黄 继 勋 ,王 艳 东 ,范 跃 祖 .改 进 的 GPS/INS 组 合 导 航 选 星 算 法 . 航 空 学报,2001,22(3):286~288
    [90] 王 海. 光纤陀螺与 GPS 组合定姿技术在航天器上的应用研究. 中国惯性技术学报,2004,12(1):49~54
    [91] 薛年喜. MATLAB 在数字信号处理中的应用. 北京: 清华大学出版社, 2003
    [92] 杨位钦,顾岚.时间序列分析与动态数据建模.北京:北京工业学院出版社, 1986
    [93] 顾启泰. LAC 准则及其在 ARMA 模型辨识中的应用. 清华大学学报(自然科学版),1989, 29(1): 29~37
    [94] 顾启泰. 具有有色噪声系统辨识的新方法. 控制理论与应用, 1990, 7(3): 56-62
    [95] 顾启泰.应用仿真技术.北京:国防工业出版社,1995,242~263
    [96] Lee J G. Multiposition alignment of strapdown inertial navigation system. IEEE Trans. On AES, 1993, 29(4): 1323~1328
    [97] Dohyouhg Chung, Lee J G. Strapdown INS error model for multiposition alignment. IEEE Trans. On AES, 1996, 32(4):1361~1366
    [98] Jiang Cheng Fang, De Jun Wan. A fast inertial alignment method for strapdown inertial navigation system on stationary base. IEEE Trans. On AES, 1996, 32(4):1501~1505
    [99] Broxmeyer C. Inertial navigation system. New York: McGraw-Hill Book Company, 1964
    [100] Friedland B. Treatment of bias in recursive filtering [J]. IEEE Trans. On Automatic Control, 1969, AC-14:359-367
    [101] Ignagni M B. An alternate derivation and extension of Friedland's two-state Kalman estimator . IEEE Trans. on Automatic Control, 1981, AC-26:746-750
    [102] 谭雪松.Pro/Engineer 中文版典型实例.北京:人民邮电出版社,2002
    [103] Thornton C L, Bierman G J. Filtering and Error Analysis via the UDUT covariance factorization. IEEE Trans. On Automatic Control, 1978, AC-23: 901~906
    [104] Tyler J,Brown J. The estimation of inertial guidance errors. AIAA Control and Flight Mechanics Conference .,1968,No.68-885
    [105] 徐士良. C 常用算法程序集. 北京: 清华大学出版社,1996
    [106] 袁涛,李月香,杨胜利. 单片机 C 高级语言程序设计及其应用. 北京: 北京航空航天出版社,2001
    [107] 王沫然.MATLAB6.0 与科学计算.北京: 电子工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700