汽车碰撞散落物多尺度运动行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通事故现场碰撞散落物因含有碰撞瞬间众多重要的事故信息,成为交通事故再现的重要依据和关键证据。论文按材料性能及几何参数对散落物进行广义分类,提出将散落体材料性能、几何参数及散落初始条件与碰撞散落体运动行为的相关性作为切入点来研究散落体的运动行为理论模型。
     论文采用Ansys/Ls-Dyna动态显示方法,深入分析材料性能、几何参数及散落初始条件等因素对散落体运动特性的影响规律;应用邓氏灰色关联分析法,计算各影响因素与散落距离的关联度及关联序,确定各因素对散落距离的影响度。
     在动态仿真基础上,揭示材料性能、几何参数及散落初始条件等因素对散落体反弹特性参数的影响规律,给出反弹特性参数随散落初始条件变化的非线性趋势曲线,对碰撞散落体存在的反弹突变异常现象进行阐述分析。
     根据散落体两阶段运动学模型,利用碰撞接触动力学理论,对不同材料性能和几何参数的散落体碰撞后的运动状态进行判别,建立汽车碰撞散落体非线性运动行为理论模型。
     研制散落物弹射试验装置,对事故现场不同材料性能、几何参数的散落体的运动特性,及各因素对散落距离的影响度及规律进行分析和验证。
Accident Reconstruction is an important means to judge responsibility or grasp the character of accident, which displayes the occurring process of accident in the form of dynamic simulation or description by on-looking person. The veracity of traffic reconstruction main depends on the evidence’s investigation at the scene of traffic accident, including all kinds of trace and evidence. Debris, as one of the most important evidence at the scene of traffic accident, contains much important information of accident. Then, debris is the key evidence for accident reconstruction.
     Early, the study on accident reconstruction using debris mostly focus on the analysis of kinetics in collision and the test of distributing fields based on statistics, etc. Being not considering the effect of different material nature, geometrical scale, and thrown condition of debris on the dynamic behavior, the early model’s application is limited in real accident case. In this paper, the influence on the rule of dynamic and rebound character of material nature, geometry parameters, thrown condition (altitude, speed and angle), of small-scale debris is analyzed deeply by combining crash simulated experiment and computer simulation with the friction of air and ground, which make up the shortcoming of practical collision. Based on the analysis of dynamic character, the dynamic behavior model is established using collision theory. To some extent, the model established in this paper is benefit for perfecting the dynamic model further. The practical value of using debris to perform accident reconstruction is improved. The main performance is studied as followed:
     (1) The status quo using debris to perform accident reconstruction at home and abroad is studied in detail. According to the actual needs of reconstruction, take the relativity between material nature, thrown condition and dynamic behavior of debris as the researching cut-in point to study the dynamic behavior theoretical model. Based on the debris meaning of evidence investigation and validation, and the needs of researching, debris is classified generally according to the material nature and geometrical scale respectively. Then, the technical project is proposed. Take the plastic and elastic-plastic small-scale debris as studying object, which can offer foundation for further studying on dynamic behavior rule of middle-scale or large-scale debris.
     (2) Based on Ansys/Ls-Dyna, the single kinetic simulation model of small-scale debris is set up to study the effect of material nature, geometry parameters, thrown condition, on dynamic behavior and rule with air drag and ground friction. According to the data obtained from simulation, the relation curves are given between thrown distance and the parameters like thrown condition, material nature, and the shape of debris respectively. The connect degrees between thrown distance and the factors of thrown condition just like height, angle, velocity are analyzed deeply by Deng’s grey connection analysis. The effect degree of factors on thrown distance is determined by connection order calculated by the method of grey connection analysis.
     (3) The dynamic rule of different material nature’s rebound parameters varies with thrown condition obtained from the kinetic simulation analysis by Ansys/Ls-Dyna. The rebound parameters indexes are vertical rebound coefficient, horizontal rebound coefficient, angle lost coefficient. The effect of rebound character on dynamic behavior after collision is discovered. Based on the meaning of rebound parameters, the nonlinear trend curve of different material nature varying with rebound parameters is given by combing qualitative analysis with quantitative calculation. The abnormal phenomena of debris’s motion just like breaking rebound, is expounded.
     (4) According to the two-phase kinetic model of debris, the dynamic states of different material nature (elastic, elastic-plastic, plastic), different shape (sphere, rectangle, abnormity) after impact are analyzed by referencing the theory of tangent dynamics. Then, the distinguish condition of glide and bounce is established when the debris collision with ground. When distinguish condition is satisfied, the nonlinear multi-factors model is established, applying different material nature, shape, crash velocity, and thrown distance, for accident reconstruction. The practical root can be solved by Matlab.
     (5) In accordance with the motion mechanism of debris in vehicle collision, the ejecting device is developed for satisfying the need of investigation. The effect degree and the dynamic rule of different material nature, geometry parameters of debris are analyzed and validated by the ejecting test device. The validity of behavior model is verified by comparing the results of simulation with test.
     The results of this paper enrich the application value of using debris, and offer a new method to calculate and analyze crash velocity for accident reconstruction in real case, which is significant on theory guidance for the department of police and judiciary.
引文
[1] 中华人民共和国道路交通安全法.全国人民代表大会常务委员会.2004
    [2] 中华人民共和国公安部.2007 年全国道路交通事故统计数据情况[EB/OL].
    [3] 中华人民共和国道路交通事故统计年报.公安部交通管理局.2007.05
    [4] 许洪国,何彪.道路交通事故分析与再现[M].北京:警官教育出版社,1996
    [5] 许洪国.汽车事故工程[M].北京:人民交通出版社,2004
    [6] GA41-2005,交通事故痕迹物证勘验[S]
    [7] 江守一郎.汽车事故工程[M].北京:人民交通出版社,1987
    [8] 李洪才.汽车事故鉴定方法[M].长春:吉林科学出版社,1990
    [9] 赵恩棠,刘晞柏.道路交通安全[M].北京:人民交通出版社,1990
    [10] 宋景禄.交通事故分析[M].长春:吉林工业大学,1983
    [11] L?hle. U. Bestimmung des Zusammensto?ortes bei Verkehrsunf?llen[J]. der Verkehrsunfall. 1975,10
    [12] Severy, D.M. Auto-pedestrian collision experiments[J], SAE660080, 1966
    [13] Eltzholz, J. Verh?ltnis von Wurfweiten und Anfahrgeschwindigkeiten bei Fu?g?ngerunf?llen[J], Zeitschrift Information, Heft 69, 1969
    [14] Kühnel, A. Vehicle-pedestrian experiments with the use of a moving dummy[C], Proc. AAAM Conf., 1974
    [15] Baker, J. S. Traffic Accident Investigation Manual[M]. The traffic Institute, Northwestern University,Ⅱ., 1975
    [16] Appel, H., Stürtz, G., Gotzen, L. Influence of impact speed and vehicle parameter on injuries of children and adults in pedestrian accidents[C], Proc.2ndIRCOBI Conf, 1975
    [17] Schmidt, D. N. and Nagel, D. A. Pedistrian impact case study[C]. Proceedings 15th conference Association for Automobile Medicine
    [18] Stcherbatcheff, G., Tarriere, C., Duclos, P. , Got, C. , Patel, A. Simulation of collisions between pedestrians and vehicles using adult and child dummies[J], SAE751167, 1975
    [19] Collins, J.C. Accident Reconstruction [M], Charles C. Thomas Publisher, Springfield, Illinois. 1979
    [20] Cromack, J. R. Parametric analysis in pedestrian, bicycle and motorcycle accident reconstruction[C]. Proceedings Twenty Fifty Annual Conference, American Association for Automotive Medicine, Morton Grove, Ⅱ., 1981
    [21] German, A., Nowak, E.S. and Green, R. N. Vehicle dynamics: Free-flight trajectory analysis[C]. Proceedings Twenty Fifth Annual Conference, American Association for Automotive Medicine, Morton Grove, Ⅱ., 1981
    [22] John, A. Searle., Angela, Searle. The Trajectories of Pedestrians, Motorcycles, Motorcyclists, etc, Following a Road Accident[J], SAE831622, 1983
    [23] Becke, M, Golder, U. Rutschversuche mit Zweir?dern auf nasser Stra?e und auf Gras[J], Verkehrsunfall und Fahrzeugtechnik, Heft 4, 1986, 91~97
    [24] Wood, D.P. Impact and Movement of pedestrians in frontal collisions [J], Proc. Mech.Eng. 1988, Vol. 202, 101~110
    [25] Fricke, L.B., Riley, W.W. Reconstruction of Motorcycle Traffic Accidents, Topic 874 of Fricke, L.B. ed. Traffic Accident Reconstruction, Evanston, III: Northwestern University Traffic Institute, 1990, 12~14
    [26] Thomas A. Bratten, P.E., Development of a tumble number for use in accident reconstruction [J]. SAE 831622, 1983
    [27] Eubanks, J.J., Haight, W.R. Pedestrian Involved Traffic Collision Reconstruction Methodology[J], SAE921591, 1992
    [28] Searle, J.A. The Physics of Throw Distance in Accident Reconstruction[J], SAE930659, 1993
    [29] Aronberg, R., Airborne trajectory analysis derivation for use in accident reconstruction [J]. SAE Paper 900367, SP 814, Society of Automotive Engineers, Warrendale Pa., 1990, 135~142
    [30] Janssen, E. EEVC Working Group 17 Report, Improved Test Methods to evaluate Pedestrian Protection afforded by Passenger Cars[J], December, 1998
    [31] Rau, H., Otte, D. Car to pedestrian collisions with high impact speed[J], Journal Verkehrsunfall und Fahrzeugtechnik, 2001
    [32] Toor, A., Araszewski, M., Johal, R., Overgaard, R., Happer, A., Revision and Validation of Vehicle/Pedestrian Collision Analysis Method [J], SAE 2002-01-0550, 2002
    [33] Toor, A., Araszewski, M. Theoretical versus empirical solutions for vehicle pedestrian collisions [J], SAE2003-01-0883, 2003
    [34] Happer, A., Araszewski, M., Toor, A., Overgaard, Johal, R. Comprehensive Analysis Method for Vehicle/Pedestrian Collisions [J]. SAE, paper 2000-01-0846, 2000
    [35] Eubanks, J.J. Pedestrian Accident Reconstruction [M], Lawyers & Judges Publishing Company, USA, 1994
    [36] Han, I., Brach, R.M., Throw Model for Frontal Pedestrian Collisions [A], SAE, paper .2001-01-0898, 2001
    [37] Becke, M., Schimmelpfennig, K.H. Rutschweite von Fu?g?ngern[J], Verkehrsunfall und Fahrzeugtechnik, Heft 10-191ff, Heft 12-239ff, 1981
    [38] Becke, M. Zweiradrutschverz?gerungen bei hohen Geschwindigkeiten (Deceleration at high speed of twowheelers)[J], Verkehrsunfall und Fahrzeugtechnik, Heft 2, 1985, 37~40
    [39] Kühnel, A. Vehicle-pedestrian experiments with the use of a moving dummy[C], Proc. AAAM Conf. 1974
    [40] Otte, D. Use of thrown distance of pedestrians and bicyclists as part of a scientific accident reconstruction method[J], SAE 2004-01-1216
    [41] Lambourn, R.F. The calculation of motorcycle speeds from sliding distances[J], SAE910125, 1991: 77~90
    [42] [日]林洋 著,黄永和 译.张正智 审校.实用汽车事故鉴定学[M].北京:人民交通出版社,2001
    [43] Braun, H. Splitterwurfweiten: Eine experimentelle Untersuchung[J], Der Verkehrsunfall, 1980 (2):37~43
    [44] Strobl, H. Betrachung zum Thema Steinschlag[J], Verkehrsunfall und Fahrzeugtechnik, 1996 (9)
    [45] Hong-guo Xu, Theoretische und Empirische Modelle von Glassplitter Wurfweiten[C], Vortrag bei IFT TU Berlin, 1992
    [46] 许洪国,高延龄,陈礼璠.用玻璃碎片抛距推算交通事故碰撞速度的理论和应用[J].中国公路学报,1994,7(2):75~80
    [47] Searle, J.A. The Physics of Throw Distance in Accident Reconstruction [J], SAE930659, 1993
    [48] 王利芳.汽车碰撞事故大灯玻璃碎片分布规律的研究[D].长春:吉林大学硕士学位论文,2002
    [49] 林庆峰.基于神经网络的汽车事故散落物抛距模型的建立及仿真[D].长春:吉林大学硕士学位论文,2003
    [50] 许洪国,王利芳,任有等.交通事故抛物广义抛距建模[J].吉林大学学报(工学版),2002,32(3):10~14
    [51] 许洪国,任有,王利芳等.硬路面碎块抛物运动模型[J].交通运输工程,2002,2 (3):63~67
    [52] 许洪国,任有,王利芳等.大灯碎片运动力学参数的试验研究[J].山东交通学院学报,2002,10(2):15~20
    [53] 许洪国,任有,王利芳等.交通事故抛物地面碰撞力学参数的确定[J].公路交通科技,2003,20(2):100~107
    [54] 许洪国.交通事故分析与处理[M].北京:人民交通出版社,2002
    [55] 王国强.实用工程数值模拟技术及其在 ANSYS 上的实践[M].西安:西北工业大学出版社,2000
    [56] 白金泽.LS-DYNA3D 理论基础与实例分析[M].北京:科学出版社,2005
    [57] 尚晓江,苏建宇.Ansys/Ls-Dyna 动力分析方法与工程实例[M].北京:中国水利水电出版社,2005
    [58] 贾光政,曹玮,聂志亮等.气动喷砂喷嘴内颗粒运动特性分析[J].大庆石油学院学报,2006,30(1):63~66
    [59] 雷正保,钟志华等.受冲薄壁结构动力效应的显示有限元析[J],力学学报,2000,32(1):70~77
    [60] 张文明,王涛,张华兵,张海龙.基于 ANSYS/LS-DYNA 的船桥碰撞分析[J].中国水运(学术版),2006,6(11):21~23
    [61] 许亮,胡宁,杨辉.基于 LS—DYNA 的汽车保险杠仿真优化[J].机械与电子,2007,4(05):17~20
    [62] 曹银锋,李光耀,钟志华.汽车碰撞过程并行有限元仿真技术[J].机械工程学报,2005,41(02):153~157
    [63] 万小朋,龚伦,赵美英,侯赤.基于 ANSYS/LS-DYNA 的飞机机翼前缘抗鸟撞分析[J].西北工业大学学报,2007,25(02):285~289
    [64] 彭海成.LS-DYNA 在工程抗震中的应用[J].建筑,2003,28(09):61~63
    [65] 林庆峰.汽车碰撞散落物动力学仿真及试验研究[D].长春:吉林大学博士学位论文,2006
    [66] 浦发.外弹道学[M].南京:南京理工大学,1979
    [67] 金栋平,胡海岩.碰撞振动与控制[M].北京:科学出版社,2005
    [68] 梁亮,韩立强等.车身碰撞模拟技术的应用及材料性能的影响[J].金属热处理,2006,31(4):31~35
    [69] 刘思峰,郭天榜等.灰色系统理论及其应用[M].北京:科学出版,1999
    [70] 邓聚龙.灰理论基础[M].武汉:华中理工大学出版社,2002
    [71] 罗庆成.灰色关联分析与应用[M].南京:江苏科学技术出版杜,1989
    [72] 邓聚龙.灰色系统(社会经济)[M].北京:国防工业出版社,1985
    [73] 傅立.灰色系统理论及其应用[M].北京:国防工业出版社,1992
    [74] 张 绍 良 . 灰 色 关 联 度 计 算 方 法 比 较 及 其 存 在 问 题 分 析 [J]. 系 统程,1996,14(3):45~49
    [75] 肖新平.关于灰色关联度量化模型的理论研究和评论[J].系统工程理论与实践,1997,13(8):76~81
    [76] 陈予恕,唐云.非线性动力学中的现代分析方法[M].北京:科学技术出版社,1991
    [77] 朱育权,马保吉,姜凌彦.粗糙表面接触的弹性、弹塑性、塑性分形模型[J].西安工业学院学报,2001,21(2):150~157
    [78] 贾书惠.刚体动力学[M].北京:高等教育出版社,1987
    [79] Konstqandopoulos, A. G. Particle sticking/rebound criteria at oblique impact [J]. Aerosol Science, 2006, 37: 292~304
    [80] Maw, N., Barber, J. R. & Fawcett, J. N. The oblique impact of elastic spheres [J]. Wear, 1976, 38: 101~114
    [81] Jean, M. and Moreau, J. J., Unilaterality and dry friction in the dynamics of rigid body collections [J]. Proc.Contact Mechanics InternationalSymposium, Lausanne, 1992, 31~48
    [82] Wang, Y. and Mason, M.T., Two-dimensitonal rigid-body collision with friction [J]. Journal of Applied Mechanics59, 1992, 635~642
    [83] 刘才山,陈滨,多体系统碰撞动力学研究综述[J].力学进展,2000,30 (1):7~1
    [84] Y Wang and M. T., Mason, Modeling impact dynamic for robotic operations [A], Proc. 1987 IEEE Inter. Conf. On Robotics and Auto [C], Raleigh, USA, 1997
    [85] Hu B., Eberhard P., Schiehlen W., Solving wave propagation problems symbolically using computer algebra [J]. In: Babitsky Ⅵ. Dynamics of Vibro-Impact Systems, Proceedings EUROMECH 386. Berlin:Springer,1999, 231~240
    [86] Hu B, Eberhard P. Response bounds for linear damped systems [J]. Journal of applied Mechancis, 1999,66 (4):997~1004
    [87] K.LJohns0n 著,徐炳业 译.接触力学[M].北京:高等教育出版社,1992
    [88] Hayakawa, S. H., Kuninaka, H. Simulation and theory of the impact of two-dimensional elastic disks [J]. Chemicla Engineering Science, 2002, 57: 239~252
    [89] 彼得.艾伯哈特,胡斌集 著.现代接触动力学[M].南京:东南大学出版社,2003
    [90] Glcocker, CH. Pfeiffer, F. Mutiple Impacts with Friction in Rigid Multibody Systems [J]. Nonlinear Dynamics, 1995, 7: 471~497
    [91] Glcocker, CH. Pfeiffer, F. Mutiple Contact Problems in Multibody Dynamics a Review [M]. Netherlands: Kluwer Academic Publishers, 2001
    [92] Ratner S B and Styller E E, Characteristics of impact friction and wear of polymeric materials [J], Wear, 1981,73: 213~234
    [93] Hayakawa, S. H., Kuninaka, H. Simulation and theory of the impact oftwo-dimensional elastic disks [J]. Chemicla Engineering Science, 2002, 57:239~252
    [94] Michel Y. L, Michael E. A. Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate [J]. Phys. Rev. E 65, 2002
    [95] T. R 凯恩, D. A 列文松 著.贾书惠,薛克宗 译.动力学理论与应用[M].北京:清华大学出版社,1985
    [96] 李维.斜碰撞振动系统动力学研究[D].南京:南京航空航天大学博士学位论文,2003
    [97] Magnus K, Müller H H. Grundlagern der Technischen Mechanik[J]. Stuttgart: B G Teubner, 1982
    [98] Stronge W J. Planar impact of rough compliant bodies [J]. International Journal of impact Engineering, 1994, 15 (4):435~450
    [99] Stronge W J. Rigid body collisions with friction [J]. Proceedings of the Royal Society of London A,1990, 431: 169~181
    [100] 苏金明,阮沈勇.Matlab 实用教程[M].北京:电子工业出版社,2005
    [101] 苏金明,王永利.Matlab7.0 实用指南[M].北京:电子工业出版社,2004
    [102] 苏金明,刘宏,刘波.Matlab 高级编程[M].北京:电子工业出版社,2005
    [103] Jim Ledin 著.焦宗夏,王少萍 译.仿真工程[M].北京:机械工业出版社,2003
    [104] Klarbing A., A mathematical programming approach to three-dimensional contact problems with friction [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 58:175~200
    [105] Haug E J. Computer-Aided Kinematics and Dynamics of Mechanical Systems. Vol.Ⅰ: Basic methods[C]. Boston: Allyn & Bacon, 1989
    [106] Haughes, J. R. Talor, R. L. Sackman, J. L. Curnier A, Kanoknukulchai W.A Fimite Element Method for a Class of Contact Problems [J]. Computer Methods in Applied Mechanics and Engineering, 1976, 8: 249~276
    [107] Irons B., A frontal solution program for finite element analysis [J]. International Journal of Numerical Methods in Engineering, 1970, 2: 5~32
    [108] 杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版 社,2005
    [109] 李裕春,时党勇,赵远. Ansys/Ls-Dyna 基础理论与工程实践[M].北京:中国水利水电出版社,2006
    [110] 汪曾祥,魏先英,刘祥至.弹簧设计手册[M].上海:上海科学技术文献出版社,1985
    [111] GB/T1239.6—1992, 圆柱螺旋弹簧设计计算[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700