基于Perform-3D的钢筋混凝土剪力墙结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于抗震理论研究的深入,计算手段的不断进步和建筑结构的日趋复杂等因素,线弹性理论已经不能完全满足工程实际的需要,整体结构的非线性分析已成为复杂结构设计的迫切要求。但因非线性分析理论较为复杂、计算手段欠缺等原因的限制,现阶段非线性分析在实际工程中的应用常常仅限于构件分析上。基于宏观单元的有限元法应用于结构整体非线性分析,有自由度少,计算时间短等优势,其结果能否满足工程应用的需求,还需通过试验结果来验证。
     本文对一个足尺七层钢筋混凝土剪力墙结构振动台试验进行模拟分析,采用三维空间非线性分析程序Perform-3D的剪力墙单元进行非线性分析,比较分析结果,并与试验结果对比,以研究Perform-3D的剪力墙单元应用于钢筋混凝土剪力墙结构非线性分析的计算精度。
     首先阐述了剪力墙模型的研究现状和Perform-3D程序的特点;对在美国加利福尼亚大学圣地亚哥分校进行的足尺七层钢筋混凝土剪力墙结构振动台试验进行模拟,根据振动台试验前的材料试验结果建立材料的本构关系,确定了剪力墙单元的材料本构关系;建立整体结构模型,进行了模态分析和线性时程分析,并与ETABS程序分析结果进行对比,验证整体模型的合理性。然后,对钢筋混凝土剪力墙结构模型进行了4条不同强度等级地震波作用下的动力分析,并讨论了剪力墙单元模型截面纤维的划分和单元网格细分问题。
     最后在某大型结构工程中运用Perform-3D程序进行分析。在小震和中震弹性分析基础上,采用Perform-3D对整体结构进行大震作用下弹塑性时程分析。弹性分析以及弹塑性分析的计算结果表明分析结果合理,塔楼结构具有很好的抗侧性能;设置粘滞阻尼器以后,整体结构满足变形要求,验证了设置阻尼器对结构抗震性能有着显著的提高效果。
     结果表明,基于Perform-3D的整体结构弹塑性分析可以用较少的自由度,很好地反映结构在各阶段地震力作用下的弹塑性行为,高效地完成整体结构非线性分析。可以认为,Perform-3D程序的剪力墙单元用于计算我国规范规定的7度和8度地震作用下的多、高层钢筋混凝土剪力墙结构,其结果是真实可靠的。
Linear elastic analysis no longer meets the actual requirement of the fast development of seismic theory, architectural form, calculation means and so on. It is urgent to set up the inelastic analysis method in global structural analysis. Because of the complex and lack of tools, inelastic analysis is usually carried out on structural members only, but not for the global structure. Finite element method based on macro element,which has fewer degrees and effective computation, can be applied to global structural nonlinear analysis which has great prospect in engineering application. The results should be compared with tests to prove their accuracy.
     This paper presents the nonlinear analysis with shear wall element model by Perform-3D, which is a 3-dimensional nonlinear analysis software. The model is according to the full scale reinforced concrete shear wall structure shaking table test. Dynamic nonlinear analyses have been completed. Analysis results are compared with that of shaking table test to study the accuracy of nonlinear analysis of macro models.
     Firstly, the research situation of shear wall modals and characteristics of Perform-3D procedure are introduced. The process of the full scale reinforced concrete shear wall structure shaking table test is introduced, which was carried out in the University of California at San Diego. In order to build up the global model of the 7-story shear wall structure, material parameters are calibrated by simulating material tests, and element constitutions used in shear wall model are defined. Before the nonlinear time-history analysis is carried out, linear time-history analysis is conducted in both ETABS and Perform-3D to verify that Perform-3D models are reasonable. Secondly, dynamic nonlinear analysis model under 4 different intensity earthquakes are conducted respectively. Some issues about the number of fibers in element sections and the finite element mesh are discussed.
     Lastly, the practical application of Perform-3D procedure in an actual project is introduced. Based on the elastic analysis under frequent and moderate earthquake action, inelastic time history analysis under rare earthquake is carried out using Perform-3D. The analytical results are reasonable by comparing the analysis of elastic and elasto-plasticity., and indicate the adequate lateral performance of the towers. It can also be concluded that the damper can effectively improve the seismic performance of structures and reduce the nonlinear damage of the components.
     Compared with the experimental results, the analytical results confirm that the nonlinear analysis method based on shear wall element, which saves the computational costs due to fewer DOFs, can reflect inelastic behavior of structure. It is found that the shear wall element in Perform-3D procedure can be applied to global inelastic analysis for multiedstroy and high-rise reinforced concrete shear wall structures under earthquake actions in 7 and 8 degrees.
引文
[1]周云,陈存恩,黄镇梁,等.土木工程防灾减灾学[M].广州:华南理工大学出版社, 2005.
    [2] GBJ-2002,建筑抗震设计规范[S].北京:建设部, 2002
    [3]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社, 1993.
    [4]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社, 1998.
    [5]包世华,张铜生.高层建筑结构设计和计算[M].北京:清华大学出版社,2005.
    [6]陆新征,叶列平,缪志伟,等.建筑抗震弹塑性分析——原理、模型与在ABAQUS,MSC,MARC和SAP2000上的实践[M].北京:中国建筑工业出版社, 2009.
    [7] Hibbitt, Karlson, Sorenson. ABAQUS Version 6.8: Theory manual. Users Munual. Verification manual and example problems manual[M]. Hibbitt. Karlson and Sorenson Inc, 2008.
    [8]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社, 2007
    [9]陈火红. Marc有限元分析实例教程[M].北京:清华大学出版社, 2005.
    [10]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程振动, 2004, 24(1): 76-81.
    [11]宋启根,单炳梓.钢筋混凝土力学[M].南京工学院出版社, 1986.
    [12]宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法[M] .大连理工大学出版社, 1993.
    [13]吴晓涵,吕西林.反复荷载下混凝土剪力墙非线性有限元分析.同济大学学报. 1996, 24(2): 117-123.
    [14] Zienkiewiez, O. C. ,Owen , D. R. H. , Phillips , D. V. and Nyak G. C. , Finite Element Method in Analysis of Reactor Vessels[A] . Nuclear Engineering and Design[C]. 20(1972).
    [15] Hiraishi H. & Kawashima T., Deformation Behavior of Shear Walls after Flexural Yielding [A], 9th WCEE, Tokyo, Kyoto, Vol.8 P.653~658. Tokyo, 1988.
    [16] Kabeyaawa T et al. U. S.- Japan cooperative research on R/C full -scale building test, Part 5 :Discussion of dynamic response system[A] . Proc.8thof WCEE[C]. 627 - 634.
    [17] Vulcano, A. and Bertero, V.V., Analytical Models for Predicating the Lateral Response of RC Shear Walls; Evaluation of Their Reliability, EERC-87/19.
    [18]王长新,沈蒲生,易伟建.剪力墙结构在地震作用下的非线性分析[J].湖南大学学报. 1994, 21(6): 94-100.
    [19]韩小雷,陈学伟,吴培烽,等. OpenSEES的剪力墙宏观单元的研究[J].世界地震工程, 2008, 24(4): 76-81.
    [20] Mc Kenna F, Fenves GL. The OpenSEES Command Language Primer[Z]. PEER, University of California, Berkeley.
    [21]韩小雷,季静.广州花园酒店西塔“白金五星级酒店”改造结构抗震试验研究报告[R].广州:华南理工大学建筑学院, 2006.
    [22] Milev J I. Two dimensional analytical model of reinforced concrete shear walls [A] . Proc. of 11thWCEE[C]. 1996.
    [23] COLOTTI V. Shear behavior of R/C structural walls [J]. Journal of Structural Engineering, ASCE, 1993, 119(3).
    [24] Vulcano, A. and Bertero, V.V., Analytical Models for Predicating the Lateral Response of RC Shear Walls; Evaluation of Their Reliability, EERC-87/19.
    [25]孙景江,江近仁.框架-剪力墙型结构的非线性随机地震和可靠度分析[J].地震工程与工程振动,1992,12(2):59-67.
    [26] Linda P. Bachmann H. Dynamic modeling and design of earthquake - resistant walls [J ] Earthquake Engineering and Structural Dynamics, 1994, 23:1331 - 1350.
    [27]宋亚新.考虑土-桩-结构相互作用的框剪结构弹塑性地震反应分析[D] .同济大学博士论文, 1998.
    [28] Computer And Structures. Perform-3D Nonlinear Analysis and Performance Assessment for 3D Structures User Guide[M]. Computer and Structures, 2006.
    [29] Computer And Structures. Perform Components and Elements for Perform-3D and Perform-Collapse[M]. Computer and Structures, 2006.
    [30]唐剑秋.钢框架结构不同的非线性分析模型的研究[D].广州:华南理工大学, 2009.
    [31] Graham H. Dr. Powell. A State of the Art Educational Event Performance Based Design Using Nonlinear Analysis——An Intense and Practical Seminar on Nonlinear Modeling and Analysis with an Emphasis on the Use of CSI's Perform-3D Software[R]. Computer and Structures, 2007.
    [32] Mander J. B. , Priestley M. J. N. , Park R. Theoretical Stress Strain Model for Confined Concrete[J]. ASCE Journal of Structural Engineering. 1988, 114(8): 1804-1826.
    [33]韩小雷,郑宜,何伟球,等.中洲二期工程观光门架结构可行性报告[R].广州:华南理工大学高层建筑结构研究所, 2009.
    [34] GB 50011-2001建筑抗震设计规范[S].
    [35] GB 50011-2002混凝土结构设计规范[S].
    [36] JGJ101-96建筑抗震试验方法规程[S].
    [37] GB5015-92混凝土结构试验方法标准[S].
    [38] JGJ3-2002高层建筑混凝土结构技术规程[S].
    [39] GB50017-2003钢结构设计规范[S].
    [40] JGJ138-2001型钢混凝土组合结构技术规程[S].
    [41] JGJ99-98高层民用建筑钢结构技术规程[S].
    [42] JGJ3-91钢筋混凝土高层建筑结构设计与施工规程[S].
    [43] GB50003-2002砌体结构设计规范[S].
    [44] JG3-2002高层建筑混凝土结构技术规程[S].
    [45]广州大学工程抗震研究中心.中洲中心二期项目模型模拟地震振动台试验研究报告[R].广州:广州大学工程抗震研究中心, 2008.
    [46]广东省地震工程实验中心.广州市中洲广场二期工程场地地震安全性评估报告[R].广州:广东省地震工程实验中心, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700