非均质材料力学性能与失效分析的多尺度有限元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中存在的、以及工程应用中的大部分材料都具有多尺度特征,且当考察尺度小到一定程度后,都将表现为非均质性。对这类材料而言,其微观非均质特征对宏观行为影响非常大,实际上,材料在宏观尺度所表现出来的大部分物理力学现象大多是由微观非均质结构决定的。以航空航天工业中广泛使用的复合材料为例,其力学性能与各组分相的材料属性、尺寸、形状、空间分布及界面连接特性等细观特征密切相关。另一方面,材料的宏观失效通常是由微观缺陷、微观裂纹等引起并发展所致。所以,研究微观现象和宏观行为的相互影响已成为工程应用中的一个迫切需要解决的问题。当采用传统数值方法(如有限元法)直接求解这类多尺度特征问题时,常常因为需要大量的计算机存储和计算时间而遇到求解困难。多尺度计算方法作为求解这类问题的一种有效方法,已成为近年来的一个研究热点。
     本文首先提出了非均质材料弹性力学性能分析的扩展多尺度有限元法(EMsFEM)。基于多尺度有限元法(MsFEM)的思想,数值构造了能反映粗网格单元内部小尺度非均质信息的矢量场多尺度基函数。和标量场问题不同的是,在考虑固体变形的矢量场问题中材料内部会发生体积膨胀/收缩效应(泊松效应),从而导致材料各个方向的变形是相互耦合的。为了处理这种耦合关系,我们提出了一种新型的多尺度基函数构造方式,并在多尺度基函数中添加了耦合附加项。对不同构造方法下的多尺度基函数性能进行比较,结果表明,新型多尺度基函数能正确地反映粗网格单元内部的耦合变形,在相同的边界条件下可得到和常规精细有限元解完全一致的微观变形场,从而很大程度地提高了多尺度方法的计算精度。比较了不同边界条件下多尺度基函数的构造对多尺度方法精度的影响,并分析了尺度效应和误差产生的原因。所发展的方法实施方便,具有较好的数值精度。与传统均匀化方法相比,本文方法无尺度分离和周期性假设的限制,且易于进行降尺度计算以获得微观尺度的真实应力应变信息。
     其次,基于扩展多尺度有限元法基本思想,提出了一类新的平面矩形单元和空间长方体单元(广义单元)。通过弹性力学伽辽金方程,理论推导出单元内部位移场和节点值之间的函数关系,并应用于新单元形函数的构造中。新单元能更合理地考虑单元内部的耦合变形,在不增加计算自由度的情况下得到比传统单元更精确的结果,为构造精度更高的新型有限单元提供新的思路。
     进一步,发展了非均质材料小变形弹塑性分析的扩展多尺度有限元法。对于弹塑性材料的多尺度分析,随着微观物理变量的演化,微观尺度节点上将产生不平衡节点力。为了处理这些不平衡节点力产生的响应,我们提出了一种位移分解技术,将微观不平衡节点力响应等效成宏观等效力和微观扰动力的共同作用。其中宏观等效力用来驱动结构的宏观位移响应,而微观扰动力用来获得局部的微观位移扰动响应。在位移分解技术的基础上,进一步提出了两尺度协同迭代算法。在两尺度计算框架下,对宏微观非线性方程组进行协同增量迭代计算。最后,对方法的计算复杂度进行分析并与传统有限元法进行比较。数值结果表明,所发展的方法在模拟非均质材料弹塑性问题时具有很好的精度,且能显著地减少计算机存储需求和计算时间。
     此外,发展了周期性桁架材料应变局部化分析的自适应多尺度方法(AMM)。局部化现象是引起工程结构破坏的主要原因之一,传统基于体积平均思想的均匀化方法由于受到局部周期性假设和尺度分离假设的限制而不能很好地用于模拟这类问题。在计算过程中,AMM自适应地将整体计算域分解为两个部分,即细网格计算域和粗网格计算域,EMsFEM提供了多尺度框架。这样,变形剧烈的局部化域可采用有限元法在细尺度网格上直接求解,保证了算法的精度;而对于其它变形较缓和的域,则仍采用EMsFEM在粗网格尺度上进行非线性计算。同时,尺度连接通过建立在尺度界面上的主从节点约束方程完成。提出一种基于宏观单元位移梯度的网格识别器来自动更新细网格计算域。数值结果表明AMM具有较高的计算效率,能准确预测局部化问题的剪切带位置,且避免了宏观单元网格依赖性问题。
     最后,发展了一种模拟准静态裂纹扩展问题的自适应多尺度方法。采用扩展有限元法(XFEM)和水平集法(LSM)的组合对细尺度模型的不连续问题(包括强不连续和弱不连续问题)进行模拟,其中,XFEM用来计算不连续模型的应力应变场,而LSM用来对固定不连续界面(材料界面)和移动不连续界面(裂纹面)进行几何描述。这样,有限元网格可独立于不连续界面,模拟裂纹扩展问题时不需要对有限元网格重新剖分。而对于不需要精细分析的其它子域,采用EMsFEM在粗尺度网格上进行求解。提出一种基于距离参数的自适应网格识别技术来对求解域进行自适应分解,其距离参数可由水平集函数的演化方程自动获取。方法具有很好的精度,能准确地预测裂纹扩展路径,有效地减少裂纹扩展模拟所需的计算自由度和计算时间。
Almost all natural materials, as well as industrial and engineering materials, have multiple scale natures. At the same time, they are heterogeneous at a certain scale. For these materials, the heterogeneous nature can drastically impact on their macroscopic behaviors. In fact, most observed physical and mechanical properties of micro-heterogeneous materials depend on their heterogeneous micro-structures. Taking the composites which have been widely used in aerospace industry for example, the macroscopic mechanics properties of composites are closely related to the material properties, size, shape, and spatial distribution of the microstructural constituents and their respective interfaces. On the other hand, the macroscopic failures are usually induced by the microscopic defects and microscopic cracks. Studying the relations between the microscopic phenomena and macroscopic behavior has become an essentical problem in engineering applications. When the traditional numerical method (such as finite element method, FEM) is directly adopted for solving these multiscale problems, it will encounter difficulties due to the tremendous requirement of computer memory and computing time. Multiscale computational method servers as an effective approach for sovling these problems and has become a hot area of research in recent years.
     Firstly, an extended multiscale finite element method (EMsFEM) is proposed for solving the mechanical problems of heterogeneous materials in elasticity. Based on the idea of multiscale finite element method (MsFEM), the multiscale base functions (MBFs) for vector field are constructed numerically which can reflect the small-scale heterogeneities within a coarse element. Unlike the scalar field problem, the bulk expansion/contraction phenomena (Poisson effect) have to be considered in the construction of MBFs in the vector field. In other words, the displacement fields in different directions in an element are coupled. To deal with this coupling relation, a new technique is proposed for the construction of MBFs, in which the additional coupling terms are considered. The performances of MBFs with different construction techniques are compared and the results show that the new type of MBFs can exactly reflect the coupling deformations within the coarse element and can obtain an identical micro-deformation field with the traditional FEM, thus, the EMsFEM can improve the computational accuracy dramatically. Several different kinds of boundary conditions are introduced for the construction of MBFs and their influences are investigated. Moreover, the reasons for the scale effect and error are discussed. The method proposed can be implemented conveniently and has a good precision. Comparing with the traditional homogenization method, the EMsFEM here does not need the assumptions of the scale separation and microstructural periodicity, and can perform the downscaling computations easily.
     Secondly, a new kind of rectangular elements (i.e., Generalized Elements) is proposed based on the idea of the EMsFEM. By means of the Galerkin equation in elastic mechanics, the relations between the displacement field inside the element and the displacements at nodal points of the element are deduced theoretically. The new element can consider the coupling effect of the displacements more reasonable and obtain more accuracy results then the traditional one. Thus, our research can provide ideas for constructing new kinds of elements, which have better precision.
     The EMsFEM is further extended for modeling the elasto-plastic behavior of heterogeneous materials under small deformation. When the material nonlinearity is considered in the multiscale analysis, it will induce unbalanced nodal forces at the small scales with the emergence of plastic deformation. To deal with the microscopic unbalanced nodal forces, a displacement decomposition technique is proposed. In this context, the microscopic unbalanced nodal forces can be treated as the combined effects of the macroscopic equivalent forces and microscopic perturbed forces, in which the macroscopic equivalent forces are used to solve the macroscopic displamcents and the microscopic perturbed forces are used to obtain the local perturebed displacement field in microscopic scale. Then, a two-scale concurrent computational modeling with successive iteration scheme is proposed. Lastly, we make an estimate of the computer memory and CPU time for the EMsFEM, and compare them with those of the traditional FEM. Extensive numerical experiments have shown that the method developed provides excellent precision of the nonlinear response for the heterogeneous materials and can reduce the comtational cost dramatically.
     Also, an adaptive multiscale method (AMM) is developed for strain localization analysis of periodic lattice truss materials. In terms of practical applications, localization phenomena can be recognized as the main reasons for structure failure. Volume average based homogenization methods have some limitations in simulating localization phenomena, stemming from their basic assumptions, i.e., scale separation and microstructural periodicity. During the computional processes, the overall computional region in the AMM is adaptively decomposed into two parts:i.e., fine-scale region and coarse-scale region. The EMsFEM serves as a multiscale framework. Since the direct fine-scale simulation is used to model the localized zone, the motion of the truss elements which have severe deformations can be accurately modeled. On the other hand, the EMsFEM is adopted to capture the macroscopic nonlinear response on the coarse region whose strains are moderate. The degrees of freedom on the two different scales are then bridged at the scale-interface by virtue of the master-slave constraints. A displacement gradient based mesh indicator is proposed for the adaptive scheme. The results of the AMM show insensitivity to the coarse-scale discrtization and can capture well the localization phenomena. Moreover, the computational cost is reduced dramatically.
     At last, a new multiscale method for simulating crack propagation is proposed based on the AMM. The combination of the extended finite element method (XFEM) and level set method (LSM) is employed to model the discontinuities (including strong and weak discontinuities), in which the XFEM is used for computing the stress and displacement fields necessary for determining the rate of crack growth, and the LSM is used for geometrical description of the discontinuities. In this way, the method allows the crack geometry to be represented independently of the finite element mesh, thus, remeshing is not needed. For the subregions which surround the refined zone, the EMsFEM is used and resolved on a coarse-scale mesh. A displacement parameters based mesh indicator is proposed to identify adaptively the fine-scale zone. The parameters can be obtained by the level set functions. The method developed can be well used for the simulation of evolving discontinuities and can reduce the computational cost dramatically.
引文
[1]Kouznetsova V. Computational homogenization for the multi-scale analysis of multi-phase materials [D]. Eindhoven:Technical University of Eindhoven,2002.
    [2]Lake R. Materials with structural hierarchy[J]. Nature,1993,361:511-515.
    [3]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006:3-4.
    [4]尹洪峰,魏剑.复合材料[M].北京:冶金工业出版社,2010:1-2.
    [5]Hale J. BOEING 787 from the ground up [J/OL]. [2006]. http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
    [6]张卫红,汪雷,孙士平.基于导热性能的复合材料微结构拓扑优化设计[J].航空航天学报,2006,27(6):1229-1233.
    [7]刘岭,阎军,程耿东.考虑均一微结构的结构/材料两级协同优化[J].计算力学学报,2008,25(1):29-34.
    [8]Liu ST, Cheng GD, Gu Y, et al. Mapping method for sensitivity analysis of composite material property[J]. Structural and Multidisciplinary Optimization,2002,24(3):212-217.
    [9]Sigmund O. A new class of extrernal composites[J]. Journal of the Mechanics and Physics of Solids, 2000,48:597-428.
    [10]Sigmund O, Torquato S. Composites with extremal thermal expansion coefficients [J]. Applied Physics Letters,1996,69:3203-3205.
    [11]王勖成.有限单元法[M].北京:清华大学出版社,2003:1.
    [12]郑晓霞,郑锡涛,缑林虎.多尺度方法在复合材料力学分析中的研究进展[J].力学进展,2010,40(1):41-56.
    [13]Hashin Z. Analysis of composite materials. Journal of Applied Mechanics, Trans ASME,1983,50(3): 481-505.
    [14]Gitman IM. Representative Volumes and multi-scale modelling of quasi-brittle materials [D], Delft: Delft University of Technology,2006.
    [15]Gitman IM, Askes H, Sluys LJ. Representative volume:Existence and size determination [J]. Engineering Fracture Mechanics,2007,74(16):2518-2534.
    [16]Kanoute P, Boso DP, Chaboche JL, et al. Multiscale methods for composites:a review[J]. Archives of Computational Methods in Engineering,2009,16:31-75.
    [17]Unger JF, Eckardt S. Multiscale modeling of concrete-From Mesoscale to Macroscale [J]. Archives of Computational Methods in Engineering,2011,18:341-393.
    [18]吴林志,杜善义,石志飞.含夹杂复合材料宏观性能研究[J].力学进展,1995,25(3):410-423.
    [19]胡更开,郑泉水,黄筑平.复合材料有效弹性性能分析方法[J].力学进展,2001,31(3):361-392.
    [20]Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related field [J]. Proceedings of the Royal Society of London Series A,1957,241:376-396.
    [21]Hashin Z, Strikman S. A variational approach to the theory of the elastic behavior of multiphase materials[J]. Journal of the Mechanics and Physics of Solids,1963,11:127-140.
    [22]Mori T, Tanaka K. Average stress in the matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgica,1973,21:571-574.
    [23]Hill R. A self-consistent mechanics of composite materials [J]. Journal of the Mechanics and Physics of Solids,1965,13:213-222.
    [24]Budiansky B. On the elastic moduli of some heterogeneous materials [J]. Journal of the Mechanics and Physics of Solids,1965,13:223-227.
    [25]Aboudi J. Mechanics of composite materials-a unified micromechanical approach [M]. Amsterdam: Elsevier,1992.
    [26]Zohdi TI. Homogenization methods and multiscale modeling [M]//Encyclopedia of computational mechanics. Solids and Structures, vol 2, New York:Willey,2004.
    [27]Christensen RM, Lo KM. Solutions for effective shear properties in three phase sphere and cylinder models [J]. Journal of the Mechanics and Physics of Solids,1979,27:315-330.
    [28]Christensen RM. A critical evaluation for a class of micromechanics models [J]. Journal of the Mechanics and Physics of Solids,1990,38(3):379-404.
    [29]Oshima N, Nomura S. A method to calculate effective modulus of hybrid composite materials [J]. Journal of Composite Materials,1985,19:287-293.
    [30]Siboni G, Benveniste Y. A micromechanics model for the effective thermomechanical behaviour of multiphase composite media [J]. Mechanics of Materials,1991,11:107-122.
    [31]Huang Y, Hu KX, Chandra A. A generalized self-consistent mechanics method for composite material with multiphase inclusions [J]. Journal of the Mechanics and Physics of Solids.1994,42: 491-504.
    [32]Huang Y, Hwang KC, Hu KX, et al. A unified energy approach to a class of micromechanical model for composite materials [J]. Acta Mechanica Sinica,1995,11:59-75.
    [33]Hashin Z. Analysis of composite materials:a survey [J]. ASME Journal of Applied Mechanics,1983, 50:481-505.
    [34]Dvorak G, Benveniste Y. On transformation strains and uniform fields in multiphase elastic media [J]. Proceedings of the Royal Society of London,1992, A437:291-310.
    [35]Dvorak G, Zhang J. Transformation field analysis of damage evolution in composite materials [J]. Journal of the Mechanics and Physics of Solids,2001,49:2517-2541.
    [36]吴林志.含夹杂和分布裂纹弹性介质的细观理论[D].哈尔滨:哈尔滨工业大学,1992.
    [37]杜善义,吴林志.含球夹杂复合材料的力学性能分析[J].复合材料学报,1994,11:105-111.
    [38]Norris AN. A differential scheme for the effective moduli of composites [J]. Mechanics of Materials, 1985,4:1-16.
    [39]杜善义,王彪.复合材料细观力学基础[M].北京:科学出版社,1999.
    [40]Zheng QS, Du DX. Closed-form interaction solutions for overall elastic moduli of composite materials with multi-phase inclusions. Holes and microcracks [J]. Key Engineering Materials,1998, 145-149:479-488.
    [41]Zheng QS, Du DX. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. Journal of the Mechanics and Physics of Solids,2001,49:2765-2788.
    [42]Suquet PM. Local and global aspects in the mathematical theory of plasticity [M]//Sawczuk A, Bianchi G. In Plasticity Today:Modelling, Methods and Applications. London:Elsevier Applied Science Publishers,1985:279-310.
    [43]Sun CT, Vaidya RS. Prediction of composite properties from a representative volume element [J]. Composites Science and Technology,1996,56(2):171-179.
    [44]Hazanov S, Huet C. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume [J]. Journal of the Mechanics and Physics of Solids,1994,42: 1995-2011.
    [45]Pecullan S, Gibiansky LV, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two dimensional composites. Journal of the Mechanics and Physics of Solids,1999,47: 1509-1542.
    [46]Drugan WJ, Willis JR. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites [J]. Journal of the Mechanics and Physics of Solids,1996,44(4):497-524.
    [47]Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites:statistical and numerical approach [J]. International Journal of Solids and Structures,2003,40(13-14):3647-3679.
    [48]Gusev AA. Representative volume element size for elastic composites:a numerical study [J]. Journal of the Mechanics and Physics of Solids,1997,45(9):1449-1459.
    [49]苏文政,刘书田,张永存.桁架板等效刚度分析[J].计算力学学报,2007,24(6):763-767.
    [50]刘岭,阎军,程耿东.考虑内部胞元能量等效的代表体元法[J].固体力学学报,2007,28(3):275-280.
    [51]Tandon GP, Weng GJ. A theory of particle reinforced plasticity[J]. Journal of Applied Mechanics, 1988,55:126-135.
    [52]Dvorak G, Babei-EI-din YA. Plasticity analysis of fibrous composites[J]. Journal of Applied Mechanics,1982,49:327-325.
    [53]Houtte PV. Heterogeneity of plastic strain around an ellipsoidal inclusion in an ideal plastic matrix [J]. Acta Metallurgica et Materialia.1995,43(7):2859-2879.
    [54]Kouddane R, Zouhal N, Molinari A, et al. Complex loading of viscoplastic materials:micro-macro modeling [J]. Materials Science and Engineering A,1994,175:31-36.
    [55]Doghri I, Ouaar A. Homogenization of two-phase elasto-plastic composite materials and structures study of tangent operators, cyclic plasticity and numerical algorithms[J]. International Journal of Solids and Structures,2003,40:1681-1712.
    [56]张洪武,王鲲鹏.材料非线性微-宏观分析的多尺度方法研究[J].力学学报,2004,36(3):359-363.
    [57]张洪武,余志兵,王鲲鹏.复合材料弹塑性多尺度分析模型与算法[J].固体力学学报,2007,28(1):7-12.
    [58]Babuska I. Homogenization approach in engineering [M]//Lions JL, Glowinski R. Computing Methods in Applied Science and Engineering, Lecture Note in Economics and Mathematical Systems, Berlin:Springer,1976:137-153.
    [59]Benssousan A, Lions JL, Papanicoulau G. Asymptotic analysis for periodic structures [M]. Amsterdam:North-Holland,1978.
    [60]Guedes JM, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods [J]. Computer Methods in Applied Mechanics and Engineering,1990,83:143-198.
    [61]Terada K, Kikuchi N. Nonlinear homogenization method for practical applications [M]//Ghosh S, Ostoja-Starzewski M. ASME Computational Methods in Micromechanics,1995:1-16.
    [62]Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media [J]. Computer Methods in Applied Mechanics and Engineering,2001,190:5427-64.
    [63]Matsui K, Terada K, K. Yuge. Two-scale finite element analysis of heterogeneous solids with periodic microstructures [J]. Computers & Structures,2004,82:593-606.
    [64]Terada K, Hori M, Kyoya T, et al. Simulation of the multi-scale convergence in computational homogenization approaches [J]. International Journal of Solids and Structures,2000,37:2285-2311.
    [65]Smit RJM, Brekelmans WAM, Meijer HEH. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling [J]. Computer Methods in Applied Mechanics and Engineering,1998,155(1-2):181-192.
    [66]Kouznetsova V, Brekelmans WAM, Baaijens. An approach to micro-macro modeling of heterogeneous materials [J]. Computational Mechanics,2001,27(1):37-48.
    [67]Miehe C, Koch A. Computational micro-to-macro transitions of discretized microstructures undergoing small strains [J]. Archive of Applied Mechanics,2002,72(4-5):300-327.
    [68]Fish J, Shek K, Pandheradi M, Shephard MS. Computational plasticity for composite structures based on mathematical homogenization:Theory and practice [J]. Computer Methods in Applied Mechanics and Engineering,1997,148:53-73.
    [69]Feyel F, Chaboche JL. FE2 multiscale approach for modeling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials [J]. Computer Methods in Applied Mechanics and Engineering, 2000,183:309-330.
    [70]Lee K, Moorthy S, Ghosh S, Multiple scale computational model for damage in composite materials [J]. Computer Methods in Applied Mechanics and Engineering,1999,172:175-201.
    [71]Nezamabadi S, Zahrouni H, Yvonnet J, et al. A multiscale finite element approach for buckling analysis of elastoplastic long fiber composites [J]. International Journal for Multiscale Computational Engineering,2010,8:287-301.
    [72]Yuan Z, Fish J. Towards realization of computational homogenization in practice [J]. International Journal for Numerical Methods in Engineering,2008,73:361-380.
    [73]Miehe C, Bayreuther CG. On multiscale FE analyses of heterogeneous structures:From homogenization to multigrid solvers [J]. International Journal for Numerical Methods in Engineering, 2007,71:1135-1180.
    [74]Nezamabadi S, Yvonnet J, Zahrouni H, et al. A multilevel computational strategy for handling microscopic and macroscopic instabilities [J]. Computer Methods in Applied Mechanics and Engineering,2009,198:2099-2110.
    [75]Ghosh S, Lee K, Raghavan P. A multi-level computational model for multi-scale damage analysis in composite and porous materials [J]. International Journal of Solids and Structures,2001,38: 2335-2385.
    [76]Yvonnet J, He QC. The reduced model multiscale method (R3M) for the nonlinear homogenization of hyperelastic media at finite strains [J]. Journal of Computational Physics,2007,223:341-368.
    [77]Temizer I, Zohdi TI. A numerical method for homogenization in non-linear elasticity[J]. Computational Mechanics,2007,40:281-298.
    [78]Hain M, Wriggers P. Computational homogenization of micro-structural damage due to frost in hardened cement paste [J]. Finite Elements in Analysis and Design,2008,44:233-244.
    [79]Ghosh S, Lee Kyunghoon, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model [J]. Computer Methods in Applied Mechanics and Engineering,1996,132:63-116.
    [80]Ghosh S, Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method [J]. Computer Methods in Applied Mechanics and Engineering,1995, 121:373-409.
    [81]Miehe C, Schotte J, Schroder J. Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains[J]. Computational Materials Science,1999,16:372-382.
    [82]Miehe C, Schroder J, Schotte J.Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials[J]. Computer Methods in Applied Mechanics and Engineering,1999,171:387-418.
    [83]Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure:a computational approach [J]. Computer Methods in Applied Mechanics and Engineering,1999,172:109-143.
    [84]Moulinec H, Suquet P. A numerical method for computing the overall response of non-linear composites with complex microstructure [J]. Computer Methods in Applied Mechanics and Engineering,1998,157:69-94.
    [85]Cui JZ, Yu XG. A two-scale method for identifying mechanical parameters of composite materials with periodic configuration [J]. Acta Mechanica Sinica,2006,22:581-594.
    [86]Zhang HW, Zhang S, Bi JY et al. Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach[J]. International Journal for Numerical Methods in Engineering,2007,69:87-113.
    [87]刘涛,邓子辰.材料弹塑性性能数值模拟的多尺度方法[J].固体力学学报,2007,28(1):97-101.
    [88]宋士仓,崔俊芝,刘红生.复合材料稳态热传导问题多尺度计算的一个数学模型[J].应用数学,2005,18(4):560-566.
    [89]刘岭,阎军,程耿东.二维类桁架材料结构弹塑性分析[J].力学学报,2007,39(1):54-62.
    [90]张洪武,王辉.基于参数变分原理的含夹杂Voronoi单元法及非均质材料弹塑性计算[J].复合材料学报,2007,24(4):145-153.
    [91]Geers MGD, Kouzenetsova V, Brekelmans WAM. Gradient-enhanced computational homogenization for the micro-macroscale transition[J]. Journal Physics Ⅳ,2001,11:145-152.
    [92]Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale second-order computational homogenization of multi-phase materials:a nested finite element solution strategy [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:5525-5550.
    [93]Geers MGD, Kouznetsova V, Brekelmans WAM. Multiscale first-order and second-order computational homogenization of microstructures towards continua [J]. International Journal for Multiscale Computational Engineering,2003,1:371-386.
    [94]Nezamabadi S, Zahrouni H, Yvonnet J et al. Multiscale second order homogenization asymptotic numerical method [C]. Fourth European Conference on Computational Mechanics,2010.
    [95]Kaczmarczyk L, Pearce CJ, Bicanic N. Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization [J]. International Journal for Numerical Methods in Engineering,2008,74:506-522.
    [96]Forest S, Pradel F, Sab K. Asymptotic analysis of heterogeneous Cosserat media [J]. International Journal of Solids and Structures,2001,38:4585-4608.
    [97]Vernerey FJ, Liu WK, Moran B. Multi-scale micromorphic theory for hierarchical materials [J]. Journal of the Mechanics and Physics of Solids,2007,55:2603-2651.
    [98]Sab K, Pradel F. Homogenisation of periodic Cosserat media [J]. International Journal of Computer Applications in Technology,2009,34:60-71.
    [99]Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua [J]. Computer Methods in Applied Mechanics and Engineering, 2003,3233-3244.
    [100]Fish J, Kuznetsov S. Computational continua [J]. International Journal for Numerical Methods in Engineering,2010,84:774-802.
    [101]Yuan Z, Fish J. Multiple scale eigendeformation-based reduced order homogenization [J]. Computer Methods in Applied Mechanics and Engineering,2009,198:2016-2038.
    [102]Oskay C, Fish J. Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials [J]. Computer Methods in Applied Mechanics and Engineering,2007,196: 1216-1243.
    [103]Yuan Z, Fish J. Hierarchical model reduction at multiple scales [J]. International Journal for Numerical Methods in Engineering,2009,79:314-339.
    [104]Somer DD, de Souza Neto EA, Dettmer WG, et al. A sub-stepping scheme for multi-scale analysis of solids [J]. Computer Methods in Applied Mechanics and Engineering,2009,198:1006-1016.
    [105]Asada T, Ohno N. Full implicit formulation of elastoplastic homogenization problem for two-scale analysis[J]. International Journal of Solids and Structures,2007,44:7261-7275.
    [106]Hughes TJR. Multiscale phenomena:Green's function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized method [J]. Computer Methods in Applied Mechanics and Engineering,1995,127:387-401.
    [107]Hughes TJR, Feijoo GR, Mazzei L, et al. The variational multiscale method-a paradigm for computational mechanics [J]. Computer Methods in Applied Mechanics and Engineering,1998,166: 3-24.
    [108]Garikipati K, Hughes TJR. A study of strain localization in a multiple scale framework--the one-dimensional problem [J]. Computer Methods in Applied Mechanics and Engineering,2000,159: 193-222.
    [109]Garikipati K, Hughes TJR. A variational multiscale approach to strain localization-formulation for multidimensional problems [J]. Computer Methods in Applied Mechanics and Engineering,2000, 188:39-60.
    [110]Yeon JH, Youn SK. Meshfree analysis of softening elastoplastic solids using variational multiscale method[J]. International Journal of Solids and Structures,2005,42:4030-4057.
    [111]Mergheim J. A variational multiscale method to model crack propagation at finite strains[J]. International Journal for Numerical Methods in Engineering,2009,80:269-289.
    [112]Hettich T, Hund A, Ramm E. Modeling of failure in composites by X-FEM and level sets within a multiscale framework [J]. Computer Methods in Applied Mechanics and Engineering 2008,197: 414-424.
    [113]Creighton SL, Regueiro RA, Garikipati K, et al. A variational multiscale method to incorporate strain gradients in a phenomenological plasticity model [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:5453-5475.
    [114]Ibrahimbegovic A, Markovic D. Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures[J]. Computer Methods in Applied Mechanics and Engineering,2003,192:3089-3107.
    [115]Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour [J]. International Journal for Numerical Methods in Engineering,2007,70(13):1613-1632.
    [116]Ghosh S, Lee K, Raghavan P. A multi-level computational model for multi-scale damage analysis in composite and porous materials[J]. International Journal of Solids and Structures,2001,38: 2335-2385.
    [117]Ghosh S, Bai J, Raghavan P. Concurrent multi-level model for damage evolution in microstructurally debonding composites [J]. Mechanics of Materials,2007,39:241-266.
    [118]Kadowaki H, Liu WK. Bridging multi-scale method for localization problems [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:3267-3302.
    [119]Karpov EG, Wagner GJ, Liu WK. A Green's function approach to deriving non-reflecting boundary conditions in molecular dynamics simulations [J], International Journal for Numerical Methods in Engineering,2005,62(9):1250-1262.
    [120]Wagner GJ, Liu WK. Coupling of atomistic and continuum simulations using a bridging scale decomposition [J]. Journal of Computational Physics,2003,190:249-274.
    [121]Park HS, Liu WK. An introduction and tutorial on multiple-scale analysis in solids[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:1733-1772.
    [122]Fish J, Yuan Z. Multiscale enrichment based on partition of unity[J]. International Journal for Numerical Methods in Engineering,2005,62:1341-1359.
    [123]Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour [J]. International Journal for Numerical Methods in Engineering,2007,70:1613-1632.
    [124]Lloberas-Valls O, Rixen DJ, Simone A, et al. Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials [J]. International Journal for Numerical Methods in Engineering,2011,200:1577-1590.
    [125]Germain N, Besson J, Feyel F, et al. High-performance parallel simulation of structure degradation using non-local damage models [J]. International Journal for Numerical Methods in Engineering, 2007,27(3):253-276.
    [126]Xiao SP, Belytschko T. A bridging domain method for coupling continua with molecular dynamics [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(17-20):1645-1669.
    [127]Loehnert S, Belytschko T. A multiscale projection method for macro/microcrack similations [J]. International Journal for Numerical Methods in Engineering,2007,71:1466-1482.
    [128]Guidault PA, Allix O, Champaney L, et al. A multiscale extended finite element method for crack propagation [J]. Computer Methods in Applied Mechanics and Engineering,2008,197:381-399.
    [129]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J]. SIAM Journal on Numerical Analysis,1983,20:510-536.
    [130]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM Journal on Numerical Analysis,1994,31:945-981.
    [131]Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of Computational Physics,1997,134:169-89.
    [132]Hou TY. Multiscale modelling and computation of fluid flow [J]. International Journal for Numerical Methods in Fluids,2005,47:707-719.
    [133]Efendiev Y, Ginting V, Hou TY, et al. Accurate multiscale finite element methods for two-phase flow simulations [J]. Journal of Computational Physics,2006,220:155-174.
    [134]Aarnes JE. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation [J]. Multiscale Modeling and Simulation,2004,2:421-439.
    [135]Aarnes JE, Krogstad S, Lie KA. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids [J]. Multiscale Modeling and Simulation,2006,2: 337-363.
    [136]Wu JC, Shi XQ, Ye SJ, et al. Numerical simulation of land subsidence induced by groundwater overexploitation in Su-Xi-Chang area, China [J]. Environmental Geology,2009,57:1409-1421.
    [137]Efendiev Y, Hou T, Ginting V. Multiscale finite element methods for nonlinear problems and their applications [J]. Communications in Mathematical Sciences,2004,2:553-589.
    [138]Efendiev Y, Pankov. Numerical homogenization and correctors for random elliptic equations [J]. SIAM Journal on Applied Mathematics,2004,65(1):43-68.
    [139]Dostert P, Efendiev Y, Hou TY. Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification [J]. Computer Methods in Applied Mechanics and Engineering,197(43-44):3445-3455,2008.
    [140]Dostert P, Efendiev Y, Hou TY, et al. Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification [J]. Journal of Computational Physics,2007,217(1): 123-142.
    [141]薛禹群,叶淑君,谢春红,等.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,7:7-13.
    [142]贺新光,任理.求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法——-Ⅰ.数值格式[J].水利学报,2009,40(1):38-51.
    [143]周强.基于离散元方法的颗粒材料热传导研究[D].大连:大连理工大学,2010.
    [144]He X, Ren L. Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media[J]. Water Resources. Research,2005,41(10), W10417, doi:10.1029/2004WR003934.
    [145]Jenny P, Lee SH, Tchelepi HA. Multi-scale finite volume method for elliptic problems in subsurface flow simulation [J]. Journal of Computational Physics,2003,187:47-67.
    [146]Zhang HW, Fu Zhendong, Wu JK. Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media [J]. Advances in Water Resources,2009,32: 268-279.
    [147]付振东.非均质饱和多孔介质准静态行为分析的耦合多尺度及耦合升尺度有限元法[D].大连:大连理工大学,2010.
    [148]Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material [J]. Journal of the Mechanics and Physics of Solids,2001,49:1747-69.
    [149]Timoshenko SP, Goodier JN. Theory of elasticity [M]. New York:Mcgraw-Hill Book Company Inc, 1953.
    [150]Wilson EL, Taylor RL, Doherty WP, et al. Incompatible Displacement Models [M]//Fenves SJ et al. Numerical and Computer Methods in Structural Mechanics. New York:Academic Press,1973: 43-57.
    [151]Zhang HW, Lv J, Zheng YG. A new multiscale computational method for mechanical analysis of closed liquid cell materials[J]. Computer Modeling in Engineering & Science,2010,68(1):55-93.
    [152]Zhang HW, Lv J. A multiscale method for numerical analysis of active response characterization of 3D nastic structures[J]. Smart Materials and Structures,2012,21:085009.
    [153]Lv J, Zhang HW, Yang DS. Multiscale method for mechanical analysis of heterogeneous materials with polygonal microstructures [J]. Mechanics of materials,2013,56:38-52.
    [154]钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1996,13:1-8.
    [155]纪峥,钟万勰.平面理性四节点及五节点四边形有限元[J].计算力学学报,1997,14:19-27.
    [156]Taylor RL, Beresford PJ, Wilson EL. Non-conforming element for stress analysis[J]. International Journal for Numerical Methods in Engineering,1976,10(6):1211-1219.
    [157]Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes [J]. International Journal for Numerical Methods in Engineering,1990,29(8):1595-1638.
    [158]Malkus DS, Hughes TJR. Mixed finite-element methods-reduced and selective integration techniques-unification of concepts [J]. Computer Methods in Applied Mechanics and Engineering, 1978,15(1):63-81.
    [159]徐芝纶.弹性力学[M].第四版,北京:高等教育出版社,1990:264-271.
    [160]张洪武,刘辉,吴敬凯,等.平面4节点广义等参单元[J].计算力学学报,2010,27(3):397-402.
    [161]马海涛,高伟.关于广义等参有限单元的讨论[J].计算力学学报,2010,27(6):1107-1110.
    [162]Belytschko T, Liu WK, Moran B.连续体和结构的非线性有限元[M].庄茁译.北京:清华大学出版社,2002:241-247.
    [163]Golub G, Loan CFV. Matrix computations [M].3rd ed. Baltimore and London:The Johns Hopkins University Press,1996:139.
    [164]Li XK, Tang HX. A consistent return mappling algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization [J]. Computers and Structures,2005,83:1-10.
    [165]Pommier S, Gravouil A, Combescure A, et al. Extended finite element method for crack propagation [M]. New York:John Wiley & Sons, Inc,2011:8-19.
    [166]Miehe C, Gurses E. A robust algorithm for configurational force driven brittle crack propagation with R adaptive mesh alignment [J]. International Journal for Numerical Methods in Engineering, 2007,72(2):127-155.
    [167]Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering,1999,45:601-620.
    [168]Melenk JM, Babuska I. The partition of unity finite element method:basic theory and applications [J]. Computer Methods in Applied Mechanics and Engineering,1996,139:289-314.
    [169]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering,1999,46:131-150.
    [170]Stolarska M, Chopp DL, Moes N, et al. Modelling crack growth by level sets in the extended finite element method [J]. International Journal for Numerical Methods in Engineering,2001,51:943-960.
    [171]Sukumar, N, Chopp D, Moes N, et al. Modeling holes and inclusions by level sets in the extended finite-element method [J]. Computer Methods in Applied Mechanics and Engineering,2001,190: 6183-6200.
    [172]Belytschko T, Moes N, Usui S, Parimi C. Arbitrary discontinuities in finite elements [J]. International Journal for Numerical Methods in Engineering,2001,50:993-1013.
    [173]Sukumar N, Moes N,Boran B, et al. Extended finite element method for three dimensional crack modeling [J]. International Journal for Numerical Methods in Engineering,2000,48(11):1549-1570.
    [174]Areias P, Belytschko T. Analysis of three-dimensional crack initiation and propagation using the extended finite element method [J]. International Journal for Numerical Methods in Engineering, 2005,63(5):760-788.
    [175]Areias P, Belytschko T. Nonlinear analysis of shells with arbitrary evolving cracks using XFEM [J]. International Journal for Numerical Methods in Engineering,2005,62(3):384-415.
    [176]Zhuang Z, Cheng BB. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes [J]. SCIENCE CHINA Physics, Mechanics & Astronomy,2011,54(8):1520-1531.
    [177]庄茁,柳占立,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012:62-91.
    [178]Gracie R, Oswald J, Belytschko T. On a new extended finite element method for discontinuities: Core enrichment and nonlinear formulation [J]. Journal of the Mechanics and Physics of Solids,2008, 56(1):200-214.
    [179]Samaniego E, Belytschko T. Continuum-discontinuum modelling of shear bands [J]. International Journal for Numerical Methods in Engineering,2005,62(13):1857-1872.
    [180]Karihaloo BL, Xiao QZ. Modelling of stationary and growing cracks in FE framework without remeshing:a state-of-the-art review [J]. Computers and Structures,2003,81:119-129.
    [181]Abdelaziz Y, Hamouine A. A survey of the extended finite element[J]. Computers and structures, 2008,86:1141-1151.
    [182]Fries TP, Belytschko T. The extended/generalized finite element method:An overview of the method and its applications [J]. International Journal for Numerical Methods in Engineering,2010,84: 253-304.
    [183]Pais M. MATLAB Extended Finite Element (MXFEM) Code, Version 1.2 [CP/OL].2010, http://www.matthewpais.com/2Dcodes.
    [184]Sukumar N, Prevost JH. Modeling quasi-static crack growth with the extended finite element method Part Ⅰ:Computer implementation [J]. International Journal of Solids and Structures,2003,40: 7513-7537.
    [185]Bordas S, Nguyen PV, Dunant C, et al. An extended finite element library [J]. International Journal for Numerical Methods in Engineering,2007,71:703-732.
    [186]Dhia HB, Jamond O. On the use of XFEM within the Arlequin framework for the simulation of crack propagation [J]. Computer Methods in Applied Mechanics and Engineering,2010,199:1403-1414.
    [187]程靳,赵树山.断裂力学[M].北京:科学出版社,2006:9-96.
    [188]Pais P, Gomez M, Anderson W. A rational analytic theory of fatigue [J]. The Trend in Engineering, 1961,13:9-14.
    [189]Rice J. A path integral and the approximate analysis of strain concentration by notches and crack [J]. Journal of Applied Mechanics,1968,35:379-386.
    [190]Legay A, Wang HW, Belytschko T. Strong and weak arbitrary discontinuities in spectral finite elements [J]. International Journal for Numerical Methods in Engineering,2005,64:991-1008.
    [191]Fries TP. A corrected XFEM approximation without problems in blending elements[J]. International Journal for Numerical Methods in Engineering,2008,75(5):503-532.
    [192]Osher S, Sethian J. Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics,1988,79:12-49.
    [193]Moes N, Cloirec M, Cartraud P, Remacle J. A computational approach to handle complex microstructure geometries[J]. Computer Methods in Applied Mechanics and Engineering,2003,192: 3163-3177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700