中西医结合治疗拇趾外翻生物力学机制的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景
     拇外翻是常见足部畸形,发病率约为10%,占足踝门诊病人数量一半以上。主要表现为足部红肿疼痛、行走困难,严重影响生活质量。目前拇外翻治疗已有200多种术式,存在损伤大、并发症多、疗效差的缺点。中西医结合微创技术治疗拇趾外翻畸形具有操作简单、患者痛苦小、合并症少、疗效确定等优点。十多年来经过导师的不断完善、创新与发展,已经形成了规范化的诊疗体系。目前该方法已治疗2万多例拇外翻患者,其优良率达98.5%。2002年获得国家科技进步二等奖。该方法技术要点为:①微创技术在中医足踝外科的应用;②采用第1跖骨头颈斜行截骨矫正畸形;③中医正骨手法纠正畸形及关节脱位;④依据小夹板纸夹垫原理及“筋束骨”理论,采用“8”字绷带固定截骨端。摒弃西医传统的钢板螺钉内固定和石膏外固定方法,术后患者即能下地负重。此方法一经提出,就受到了部分西医骨科学者的质疑。现代医学认为截骨的愈合需要截骨端间的稳定,截骨复位后必须保持相对稳定才能达到最佳愈合。人体在负重时足部负荷增大,尤其是在第1跖骨处压力较大。一些骨科医生认为在此处截骨不做内固定,又不制动,会影响截骨端稳定,可能会出现截骨端的延迟愈合,甚至不愈合。但事实是中西医结合治疗拇趾外翻方法,通过十多年的临床应用,并未出现截骨不愈合现象,而且术后发生转移性跖骨痛的患者也少。如何分析中西医结合治疗拇趾外翻疗法的科学之处,从生物力学角度研究中西医结合治疗拇趾外翻的机理,证实小夹板纸压垫原理、“筋束骨”理论的科学内涵,对中医骨伤科治疗骨折理论的发扬光大具有重大意义。
     拇外翻第1跖骨在何部位以何角度截骨最科学?截骨后根据小夹板纸压垫原理和“筋束骨”理论而采用“8”字绷带外固定是否稳定?第1跖骨截骨对前足的生物力学会产生什么影响?这些问题尚需做深入的研究。因此,十分必要对中西医结合治疗拇外翻相关生物力学机制进行研究。有限元分析为我们研究足部正常和病理状态下的生物力学情况提供十分有用的工具,它使我们能够全面了解足在不同状态下的应力分布,以及各种治疗措施对足部影响。目前,对拇外翻足进行有限元分析研究的报导很少,对第1跖骨截骨部位、截骨端稳定性及截骨愈合后足部生物力学变化情况等方面的研究未见报道。研究中西医结合治疗拇趾外翻截骨部位、截骨角度、“8”字绷带外固定的生物力学机制,阐述本疗法作用机理,进一步证实其科学性,已成当务之急。
     2.研究目的
     本研究拟通过建立拇外翻足有限元模型,分析中西医结合治疗拇外翻不同截骨角度截骨端位移和应力变化,明确最佳截骨角度。探讨“8”字绷带外固定方式对截骨端稳定和愈合的影响及其作用机理。提高对中西医结合治疗拇外翻科学内涵认识,为中西结合治疗拇外翻理论和方法的不断完善和发展提供实验依据。
     3.研究内容
     3.1拇外翻足的有限元模型建立与验证
     3.1.1材料与方法
     3.1.1.1足部相关组织材料参数测量
     45岁女性左小腿-足新鲜标本1具,解剖出拇长屈肌及其肌腱、拇短屈肌内外侧头、拇长伸肌及其肌腱、拇收肌横头及斜头、拇展肌,分别做成试样。测试前将试样进行预加载拉伸,消除试样的载荷蠕变。每个试样重复测量4次,加载速率设为0.0835cm/min。采集强度极限、最大载荷等数据以及载荷-位移曲线。将载荷-位移曲线转换为力-变形曲线,用力除以横截面积,位移除以试件长度,得到应力-应变曲线,拟合曲线中间直线段,得到其弹性模量(E)。
     3.1.1.2有限元图像数据的获得和存储
     选取拇趾外翻志愿者,青年女性,年龄28岁,身高168cm,体质量62 kg,其右足HAV角为24°,IM角为13°。足部无其它畸形,无跖骨头下痛性胼胝体,无足部手术和外伤史,无其他系统疾病引起的足部畸形。采用螺旋CT对患足进行扫描,层厚1mm,间隔1mm,扫描从足尖至足后跟,共获得512×512像素CT图像542张,图片以DCIOM格式输出并存储。
     3.1.1.3拇外翻有限元模型建立
     利用软件对足部CT图像进行分割和轮廓数据提取处理,辨别软组织、骨皮质、髓腔的界限,获得骨骼边缘轮廓曲线的矢量数据。根据自由曲面实体的建模规则,进行足部骨骼曲面重构,获得足部骨骼的三维实体模型并进行装配。出于简化模型减少计算量考虑,模型中仅考虑骨骼、软骨、肌腱、足内在肌四种组织材料。把足部三维模型输入有限元软件ANSYS12.0,定义材料特性并对材料参数赋值,进行网格划分,获得有限元模型。
     3.1.1.4模型载荷的加载和边界约束
     模拟一个体质量62kg拇外翻患者在双足平衡站立时,足部的受力情况;以及足跟在抬起趾背伸30°和70°时,第1跖骨应力分布和变化情况。设足底压力、跟腱力和足底摩擦力为作用载荷。支撑结构上表面和足底表面的相互作用定义为接触关系,摩擦系数为0.6。根据载荷和地面反作用力等效互换原理,以集中力向上通过支撑结构面施加在压力中心处,距骨上表面完全约束,踝关节处在平衡站立时的中立位。
     3.1.1.5拇外翻足的Foot scan足底压力测试
     采用比利时RSscan公司生产的Foot scan USB21米平板式足底压力测试系统,对同一患者进行测试。测试前根据受试者的体重对测力板进行校准。分别在静态和动态下测量受试者足底受力情况,观察足底6个区域的静态压力(P)以及动态最大压力(MP)。将测量数值与有限元分析结果对比,寻找两者之间的关系,检验有限元模型的可靠性。
     3.1.2结果
     1)通过测量和计算共获得了9个样本的相关数据,主要包括:长度、宽度、厚度、横截面积、最大载荷、强度极限和弹性模量。为足部有限元建模,提供较为确切的材料参数。
     2)建立了拇外翻足站立和步态周期站立相不同位置(0°、30°、45°和70°)三维有限元模型7个,模型重建了骨骼、软骨、肌腱、内在肌、皮肤等组织,共有67239个节点,69189个单元。
     3)有限元模型静态足底应力与Foot scan力板测量对比,两者压力集中部位大体一致,压力在第2、3、5跖骨头部位的数值非常接近。有限元模拟步态周期前足足底最大应力换算值与相应部位力板最大压力测量值比较,变化趋势相似。
     3.1.3结论
     本研究建立了包括骨骼、肌腱、内在肌和皮肤等组织在内的拇外翻足有限元模型,并对部分材料参数进行了实测,获得了相关数据。通过Foot scan力板测试对有限元模型进行了可靠性检验,证实有限元模型可靠,基本反映了拇外翻足的实际情况。
     3.2第1跖骨头颈部不同方向截骨截骨端稳定性的有限元分析
     3.2.1材料与方法
     3.2.1.1研究材料
     建立拇外翻有限元截骨模型,分别模拟截骨线与第1跖骨轴线在矢状面上成300、450、60°、75°、90°、105°、120°角7个截骨方向,共7种工况。
     3.2.1.2测试方法
     模拟体质量为62kg拇外翻患者第1跖骨截骨后,拇趾尽量跖屈站立时,不同截骨角度截骨端的应力和位移情况。截骨近端设为固定端,远端设为自由端,断端间设为肉芽组织填充。其它部位的约束同前。单足约承受310N的体重载荷,仅考虑屈拇长肌和屈拇短肌对截骨端的影响,肌力以载荷表示,约为319N,设肌力载荷与第1跖骨长轴平行。截骨端摩擦系数设为0.6。
     3.2.1.3观测项目
     观察在相同条件的负荷加载下,7种工况截骨断端边缘节点的最大M应力值(VonMises)和总位移量V值,并进行比较。
     3.2.2结果
     1)截骨端总位移从30°逐渐变小,至60°达到最小值,后逐渐增大,截骨角度超过90°后,位移有明显加大的趋势。最大位移发生在120°时,为0.6486mm;最小位移发生在60°时,为0.2833mm。
     2)截骨端Von Mises应力从30°逐渐增加,至75°达到第一个峰值,后应力走平并有逐渐减小趋势,至105°应力迅速增大。截骨端最大应力出现在120°时,为0.986Mpa;最小应力出现在30°时,为0.212Mpa。
     3.2.3结论
     通过有限元模型对第1跖骨矢状面不同角度截骨的模拟和计算,发现60°左右时截骨端最稳定。保持矢状面上从远端背侧到近端跖侧截骨线方向,截骨端才能维持稳定。矢状面上的最佳截骨角度要根据患者的不同情况适当调整,截骨不应采取固定的截骨角度。
     3.3中西医结合治疗拇外翻外固定方法对第1跖骨截骨端固定作用有限元分析
     3.3.1材料与方法
     3.3.1.1研究材料
     建立拇外翻足第1跖骨颈部截骨三维有限元模型,截骨线在矢状面与跖骨轴线的垂线成10°,水平面与跖骨轴线的垂线成15°,模拟第1、2趾蹼间放置分趾垫“8”字绷带包扎外固定站立时工况。模型各部分的材料特性和材料参数详见前两部分。
     3.3.1.2测试方法
     模拟体质量62kg拇外翻患者按要求截骨和固定后,拇趾尽量跖屈站立时,截骨端的应力和位移情况。将截骨近端设为固定端,远端为自由端,断端间设为肉芽组织填充。其它部位的约束同前。分趾垫和“8”字绷带的外固定力,经实验测量为24.84N,将其分解为与趾骨垂直和与第1跖骨平行的两个力,在分析时以载荷的方式表示。其它载荷和设置与前模型相同。
     3.3.1.3观测项目
     观测和计算截骨端的最大M应力值(VonMises)和总位移及X、Y、Z轴三个方向的位移情况。
     3.3.2结果
     1)截骨端位移情况:X轴上位移为0.261mm;Y轴位移为0.078mm;Z轴位移为-0.167mm;截骨端总位移为0.293mm。截骨端位移主要发生在X轴方向上,其它两个方向位移很小。
     2)截骨端Von Mises应力值为0.712Mpa,应力主要分布在截骨端的外侧边缘部位。
     3.3.3结论
     通过有限元法对中西医结合微创技术治疗拇外翻术后“8”字绷带弹性固定的模拟与计算,发现该固定方式可有效减小截骨端位移,应力适中,能促进截骨端以软骨成骨的方式愈合。
     4.总结
     1)本研究建立了拇外翻足有限元模型,通过Foot scan力板测试证实有限元模型可靠。
     2)第1跖骨矢状面截骨角度在60°左右时截骨端最稳定;截骨线方向从远端背侧到近端跖侧截骨端才能维持稳定;最佳截骨角度要根据患者的不同情况适当调整。
     3)中西医结合微创技术治疗拇外翻术后“8”字绷带弹性固定可有效减小截骨端位移,应力适中,截骨端以软骨成骨的方式愈合。
     该研究通过有限元法分析中西医结合治疗拇外翻截骨角度的选择和固定方式对截骨端稳定和愈合的影响,从生物力学角度阐释了截骨角度的确定方法,分析了分趾垫“8”字绷带外固定的作用机理,同时对“筋束骨”理论在拇外翻治疗中的作用作了深入的探讨。加深和提高了对中西医结合治疗拇外翻机理的认识,并证实了其科学内涵,对中西结合治疗拇趾外翻理论和方法的不断完善和发展产生深远的影响。
     5.创新点
     1)建立拇趾外翻足不同方向截骨及“8”字绷带外固定三维有限元模型,为拇外翻手术方法的评价及预后研究开辟新的思路。
     2)模拟中西医结合治疗拇趾外翻截骨和固定方法,对截骨端应力、位移变化进行有限元分析,从生物力学机制方面证明中西医结合治疗拇趾外翻的科学性。
1. Background
     Integrated Traditional Chinese and Western medicine combined minimally invasive treatment of hallux valgus deformity has many good points such as simple operation, the patient less pain, fewer complications, and efficacy to determine and so on. More than 30 years after two generations of continuous improvement, innovation and development, it has formed a standardized system for the diagnosis and treatment. At present this method has been treated more than 2 million cases of hallux valgus patients, the excellent rate reaches to 98.5%. The main technique points of the method are 1) the application minimally invasive techniques in Traditional Chinese Medicine foot and ankle surgery.2) An oblique osteotomy is used at the first metatarsal head and neck to correct the deformity.3) Chinese bone-setting techniques to correct deformities and joint dislocation and 4) based on a small plywood and paper pad clip principles and the "muscle bundle bone" theory, a "8"-shaped bandage fixed osteotomy end. Abandon the Western tradition methods such as plate and screws internal fixation and plaster external fixation. Patients are able to weight-bearing after operation. As soon as this method has been made, some Western orthopedics experts questioned it. It was believed by modern medicine that the healing of osteotomy need for stability between the sides of osteotomy. In order to achieve optimal healing, the sides of osteotomy must remain relatively stable after reset. When the human body in the weight-bearing the feet load increased, especially in the first metatarsal. Some orthopedic surgeons believe that the osteotomy is not fixed in this part will affect the stability of osteotomy-side. The osteotomy may appear delayed healing or even nonunion. Nevertheless the fact is Integrated Traditional Chinese and Western medicine treatment of hallux valgus method, through 30 years of clinical applications, the phenomenon of osteotomy non-union does not occur. Moreover the patients with metastatic metatarsalgia postoperative are also less. How to analyze the science mechanism of Integrated Traditional Chinese and Western medicine treatment of hallux valgus, to study the mechanism of Integrated Traditional Chinese and Western medicine treatment of hallux valgus from the biomechanics, to confirm the scientific content of the small plywood and paper pad clip principles and the "muscle bundle bone" theory would have great significance for the development of Chinese medicine orthopedic treatment to bone fractures theory.
     Where the osteotomy was performed at the 1st metatarsal bone of the hallux valgus? Which angle of osteotomy is the most scientific? Wether or not the "8 "-shaped bandage for non-invasive biological fixation after the osteotomy according to the small plywood and paper pad clip principles and the "muscle bundle bone" theory is stable? What the effects to the biomechanics of forefoot effects after the 1st metatarsal osteotomy healed? These issues still need to do in-depth studies to answer. So, it is necessary to study the mechanism of Integrated Traditional Chinese and Western medicine treatment of hallux valgus. Finite element analysis provides a useful tool for studying normal and pathological state of foot biomechanics. It enables us to have a fully understand the stress distribution of foot under different conditions, as well as the impact of various therapeutic measures on the foot. At present, the reports on finite element analysis of hallux valgus foot are very few. There is no related research on the site the first metatarsal osteotomy, the stability of osteotomy and the biomechanical changes in the foot after the osteotomy healing. The purpose of this study is to establish finite element model of the hallux valgus foot including bone, part of the tendon and intrinsic muscles, to analyze the effects on the osteotomy side and forefoot stress change of Integrated Traditional Chinese and Western medicine treatment of hallux valgus osteotomy site selection and fixation methods. The study results will improve understanding of the treatment of hallux valgus. It will have a far-reaching impact in improving and perfecting Integrated Traditional Chinese and Western medicine treatment of hallux valgus. The research methods for the modernization of traditional Chinese medicine orthopedic research opened a new way.
     2. Purposes
     To Study of Integrated Traditional Chinese and Western medicine Treatment of hallux valgus osteotomy surgery site, osteotomy angle, biological fixation and postoperative biomechanical mechanism of plantar stress to explain the mechanism of this therapy, further confirm the scientific.
     3. Contents of study
     3.1 The establishment of finite element model of hallux valgus foot
     3.1.1 Materials and methods
     3.1.1.1 Measurement of material parameters of foot-related organizations
     A left calf-foot of fresh specimen of a 45-year-old woman was acquired. The flexor hallux longus muscle and it's tendon, internal and external side head of flexor hallux brevis, musculus extensor hallux longus and it's tendon, cross-head and oblique head of musculus adductor hallux, musculus abductor hallux were thumb abductor were dissected. And all the musles and tedon were made into samples. In order to removing the load creep deformation of the samples they were pre-loaded and stretched before testing. Repeated measurements for each sample 4 times, loading rate set 0.0835cm/min. Collection intensity limit, the maximum load load-displacement curve and other data. The load-displacement curve was transformed into force-deformation curve. The force divided by the cross sectional area, the displacement divided by specimen length, and the stress-strain curve was acquired. Fit the line segment of the curve and obtain the elastic modulus (E).
     3.1.1.2 Image data acquisition and storage
     A young women volunteer with hallux valgus was selected, aged 28 years old, height 168 cm, weight 62 kg. The HAV angle was 24°, IM angle was13°of her right foot. There no other foot deformity, no metatarsalgia under the metatarsal head, no history of foot surgery and trauma, no other foot deformity caused by other system diseases. Using spiral CT to scan the affected foot, slice thickness lmm, interval 1mm, scanned from toe to heel, which obtained 512×512 pixel CT image 542 pages. The pictures were outputted and storage in DCIOM format.
     3.1.1.3 The establishment of finite element model of hallux valgus
     Using the relative software to segment foot CT image and extract the contour data, to distinguish soft tissue, bone cortex, medullar cavity of the boundaries, and access to the edge of bone contour vector data. According to free-form surface entity modeling rule, to reconstruct surface of foot bone, obtain three-dimensional solid model of foot bone and assemble. In order to simplify the model reduce calculating amount, the model only took into account bone, cartilage, tendon, foot intrinsic muscles four kinds of organizational materials. Three-dimensional model of the foot was entered the finite element software ANSYS12.0, to definite material properties and assign material parameters, to carry out meshing, obtain finite element model.
     3.1.1.4 Load and boundary constraints of model
     Simulated the foot force conditions of a 62kg person standing balance in feet., and the 1st metatarsal stress distribution and variation when the heel in lift, toe dorsiflexion 30°and 70°. Set foot pressure, plantar tendon force and the foot friction was load. The interaction between the the surface of support structure and the plantar surface is defined as contact. The friction coefficient is 0.6. According the principle of loading and ground reaction force equivalent exchange, through the support structure surface a concentration force was exerted up to the pressure center. The upper surface of the talus was fully bound. The ankle joint is considered in the middle position.
     3.1.1.5 Foot scan plantar pressure test of hallux valgus
     A Foot scan USB21 meter flat plantar pressure measurement system was used, which produced by Belgian RSscan company. The same patient was tested. According to the patient body weight adjust the force plate before the test. The static and dynamic loading situations of foot were measured respectively. The static pressure (P) and the maximum dynamic pressure (MP) were observed in six regions of foot. Compare the measured value and finite element analysis results, to find the relationship between them and test the reliability of finite element model.
     3.1.2 Results
     i. By measuring and calculating 9 samples data were obtained, including:length, width, thickness, cross-sectional area, maximum load, ultimate strength and elastic modulus. Providerelative precise material parameters for the foot finite element model construct,
     ii. Established 7 three-dimensional finite element modeles of the hallux valgus foot standing and gait cycle standing phase with different positions (0°,30°,45°and 70°). The bone, cartilage, tendon, intrinsic muscles and skin of the Modeles were reconstruced, which include 67,239 nodes,69,189 units.
     iii. Compared the static plantar stress between finite element model and Foot scan foot force plate the two stress concentration was broadly consistent. Pressure values in the parts of the 2nd,3rd,5th metatarsal head were very close. Compared the maximum stress conversion value of Finite element in sole, which simulated a gait cycle with the maximum stress value of Foot scan force plate measured in corresponding parts, the trend of the maximum pressure was similar.
     3.1.3 Conclusions
     Finite element models of hallux valgus were established in this study, including bone, tendon, intrinsic muscles, and skin and so on. Parts of the material parameters were measured and some relevant data were obtained. The reliability of the finite element model was tested by Foot scan force plate. The results proved finite element models reliable and they basically reflected the actual situation of hallux valgus.
     3.2 The finite element analysis on the osteotomy end stability of 1st metatarsal in different directions osteotomy
     3.2.1 Materials and methods
     3.2.1.1 Research Materials
     Established finite element osteotomy models of hallux valgus and 7 kinds of working conditions were simulated which the osteotomy line and 1st metatarsal axis were angulated in 30°,45°,60°,75°,90°,105°,120°in sagittal plane.
     3.2.1.2 Test Methods
     Simulated a body weight 62kg hallux valgus patient who suffered from 1st metatarsal osteotomy stood toe plantar flexion as far as possible the osteotomy end conditions of the stress and displacement in different angle osteotomy. Set the proximal osteotomy end the fixed end and distal end the free end. Set the ends filled with granulation tissue.The constraints of other parts were similar with the former. One foot was beared about 310N weight load. Considered the effects of the flexor hallux longus muscle and flexor hallux brevis muscle only on the osteotomy end. Muscle strength was expressed with load. That was about 319N. Muscle load wre supposed parallel with the 1st metatarsal long axis. The friction coefficient in osteotomy faces was set to 0.6.
     3.2.1.3 Observation Project
     Observed the maximum Von Mises stress and the total value of the displacement in osteotomy ends of the seven kinds of conditions under the same load conditions, and compared.
     3.2.2 Results
     i. The total displacement of osteotomy end diminished gradually from 30°, reched to the minimum at 60°, and then gradually increased. The displacement increased significantly as osteotomy angle exceeds 90°. The maximum displacement occurred at 120°, which was 0.6486mm; the minimum displacement occurs at 60°, which was 0.2833mm.
     ii. The Von Mises stress of the osteotomy end gradually increased from 30°, reached to the first peak at 75°, and then flattened and reduced gradually. The stress increased rapidly at 105°. The maximum stress occurred at 120°, which was 0.986Mpa; the minimum stress occurred at 30°, which was 0.212Mpa.
     3.2.3 Conclusions
     Through simulation and calculation to the osteotomy in different angles of 1st metatarsal in the sagittal plane by finite element model it had found the osteotomy end was the most stable at about 60°. Only Maintain osteotomy line direction from the dorsal distal to plantar proximal lateral in the sagittal plane could the osteotomy ends maintain stability. According to factors that influencing the osteotomy stability, the best osteotomy angle in the sagittal plane should adjust appropriately according to the patients different situations. Osteotomy should not be taken fixed angle.
     3.3 The finite element analysis on the fixed action of Integrated Traditional Chinese and Western medicine treatment of hallux valgus external fixation methods in 1st metatarsal osteotomy end
     3.3.1 Materials and methods
     3.3.1.1 Research Materials
     Established finite element model of hallux valgus with osteotomy at 1st metatarsal neck. The osteotomy line was angled with the vertical of 1st metatarsal axis into 10°in the sagittal plane, with the vertical of 1st metatarsal axis into 15°in the horizontal plane. Simulated standing conditions with a pad in 1st toe web and "8"-shaped bandage fixation. The material properties and material parameters of parts of the Model could be found in the first two parts.
     3.3.1.2 Test Methods
     Simulated a body weight 62kg hallux valgus patient who suffered from 1st metatarsal osteotomy and fixation stood toe plantar flexion as far as possible the osteotomy end conditions of the stress and displacement. Set the proximal osteotomy end the fixed end and distal end the free end. Set the ends filled with granulation tissue.The constraints of other parts were similar with the former. The force of the sub-toe pad and the "8"-shaped bandage external fixation was 24.84N by the experimental measurement. It cuold be divided into two powers; one was vertical with hallux the other parallel with 1st metatarsal. They were expressed with load in analysis. Other load and settings were same as the previous model.
     3.3.13 Observation Project
     Observed the maximum Von Mises stress and the total value of the displacement in osteotomy end and the displacements of X, Y, Z axises.
     3.3.2 Results
     i. Displacement of the osteotomy end:it was 0.261mm in X axis,0.078mm in Y axis,-0.167mm in Z axis. The total displacement in osteotomy end was 0.293mm. The main displacement occurred in X axis. The other two were very small.
     ii. The Von Mises stress of the osteotomy end was 0.712Mpa. The stress was mainly located in the lateral edge of the osteotomy end.
     3.3.3 Conclusions
     Through simulation and calculation to the "8"-shaped bandage external fixation of Integrated Traditional Chinese and Western medicine treatment of hallux valgus it had found the fixation can effectively reduce the displacement of the osteotomy end. The stress was moderate. It could promote osteotomy to healing in an approach of endochondral ossification.
     4. Summary
     The study analyzed the choice of osteotomy angles and effects of the fixation methods on the stability and healing of osteotomy by finite element in Integrated Traditional Chinese and Western medicine treatment of hallux valgus. It explained how to determin the osteotomy angles from the biomechanical viewpoint. It analyzed the mechanism of sub-toe pad and "8"-shaped bandage external fixation. At the same time a deep study had done on the role of "muscle bundle bone" theory in the treatment of hallux valgus. The understandings of the mechanism in Integrated Traditional Chinese and Western medicine treatment of hallux valgus were deepened and improved, and confirmed its scientific content. It will have a far-reaching impact on the constant improvement and development of the theories and methods in Integrated Traditional Chinese and Western medicine treatment of hallux valgus.
     5. Innovations
     i. The establishment of dimensional finite element model on hallux valgus osteotomy in different directions, and "8 "-shaped bandage external fixation open up a new way for evaluation of hallux valgus surgical methods and prognosis of the feasibility.
     ii. The finite element analyses were performed on stress and displacement of osteotomy ends by simulating osteotomy and fixation methods of Integrated Traditional Chinese and Western medicine treatment of hallux valgus, and proved the scientificity of Integrated Traditional Chinese and Western medicine treatment of hallux valgus from the biomechanical mechanisms.
引文
1.陈宝兴.拇外翻的治疗[J].中华骨科杂志,2001,21(3):133.
    2.周乙雄,张春雨,张洪,等.跖骨截骨术(Mitchell)治疗拇外翻[J].中华骨科杂志,1994,14(12):723-725.
    3.张建中,孙超,李海涛,等.改良Ludlof截骨术治疗严重拇外翻[J].中华骨科杂志,2002,22(1):578-582.
    4.孙俊英,洪天禄,唐天驷,等.Chevron手术治疗外翻畸形[J].中华骨科杂志,1998,18(9):532-534.
    5.文良元,黄公怡,张青勇,等.McBride手术治疗拇外翻疗效分析[J].中华骨科杂志,2002,22(10):586-589.
    6.鲁英,罗先正.ReVerdin截骨术治疗拇外翻疗效分析[J].中华骨科杂志,2000,20(9):566-568.
    7.温建民,桑志成,林新晓,等.小切口手法治疗拇外翻临床研究附535例(986足)研究报告[J].中国矫形外科杂志,2002,9(1):26-29.
    8.温建民,林新晓,蒋科卫,等.小切口翻修术治疗拇外翻术后复发畸形[J].中华骨科杂志,2001,3:143-144.
    9. Turner MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structures [J]. Aero Sci,1956,23:805-808.
    10.张德盛,宋跃明.L3-L5三维非线性有限元模型的建立及其临床意义[J].生物医学工程学杂志,2006,23(6):1250-1252.
    11. Chu TM, Reddy NP, Padovan J. Three dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis:static analysis [J]. Med Eng Phys,1995,17 (5):372-379.
    12. Chen WP, Tang FT, Ju CW. Stress distribution of the foot during mid stance to push2off in barefoot gait:a 3D finite element analysis [J]. Clin Biomech,2001,16 (7):614-620.
    13. Gefen A. Stress analysis of the standing foot following surgical plantar fascia release [J]. J Biomech,2002,35(5):629-631.
    14. Jacob S, Patil MK. Three-dimensional foot modeling and analysis of stresses in normal and early stage Hansen's disease with muscle paralysis [J]. Rehabil Res Dev,1999, 36:252
    15.郭松青.基于CT图像建立人体足部骨骼三维有限元模型的研究[D].合肥工业大学,2006,27-30.
    16. Buchler P, Ramaniraka NA, Rakotomanana LR, et al. A finite element model of the shoulder:application to the comparison of normal and osteoarthritic joints [J]. Clin Biomech,2002,17:630-639.
    17.孙艳霞,鲍旭东,蒋春涛.软组织建模中的有限元模型[J].生物医学工程研究,2004,23(3):137-140.
    18.陶凯,王冬梅,王成焘,等.韧带和跖腱膜在足部有限元分析中的力学作用[J].生物医学工程学杂志,2008,25(2):336-340.
    19.刘立峰,蔡锦方.不同步态位相跟、距骨应力分布的三维有限元分析[J].第二军医大学学报,2003,24(9):1006-1009.
    20. Kabel L, Rietbergen B. The role of an effective iso tropic tissue modulus in the elastic properties of cancellous bone [J].J of Biomechanies,1999; 32:673-680.
    21.胡小春,孙波,郭松青,等.足部复合模型建立及其应用[J].合肥工业大学学报(自然科学版),2007,30(9):1099-1102.
    22. Huiskes R.On the modeling of long bones in structural analyses [J]. J Biomech,1982, 15(1):65-69.
    23.杨云峰,俞光荣,牛文鑫,等.人体足主要骨-韧带结构三维有限元模型的建立及分析[J].中国运动医学杂志,2007,26(5):542-551.
    24. Clift S E.Finite-element analysis in cartilage biomechanics [J].J Biomed Eng,1992,14 (3):217-221.
    25. Fung Y C. Biomechanics-mechanical properties of living tissues [M].2nd Ed, Springer, 1993.
    26.董骧,樊瑜波,张明,等.人体足部生物力学的研究[J].生物医学工程学杂志,2002,19(1):148-153.
    27. Joseph A Buckwalter,Tomas A Einhorn,Sheldon R Simon,editor in chief.Orthopaedic Basic Science:Biology and Biomechanics of the Musculoskeletal System(2nd edition)[M]. American Academy of Orthopaedic Surgeons,USA,2000.
    28. Gefen A, Megido-Ravid M, Itzchak Y, et al. Biomechanical analysis of the three-dimensional foot structure during Gait:a basic tool for clinical applications [J]. J Biomech Eng,2000; 122(6):630-639.
    29. Athanasiou KA,Liu G T,Lavery LA,et al. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint [J].Clinical Orthopaedics,1998,348:269-281.
    30. Maganaris CN, Tensile properties of in vivo human tendinous tissue [J].J Biomech,2002, (35):1019
    31. Buchler P, Ramaniraka NA, Rakotomanana LR, et al.A finite element model of the shoulder:application to the comparison of normal and osteoarthritic joints [J].Clin Biomech,2002,17:630-639.
    32. Zhang M, Mak AFT.In vivoskin friction properties. Prosthet Orthot Int,1999; 23:135.
    33. Simkin A. Structural analysis of the human foot in standing posture [D].Tel Aviv University, Tel Aviv, Israel,1982.
    34. Buckwalter J A, Einhorn T A., Simon S R.Orthopaedic Basic Science:Biology and Biomechanics of the Musculoskeletal System (2nd edition) [M].American Academy of Orthopaedic Surgeons, Rosemont, Illinois, USA,2000.
    35. Seireg A, Arvikar R J.The prediction of muscular load sharing and joint forces in the lower extremities during walking [J]. J Biomech,1975,8(1):89-102.
    36.蔡凌丽,潘慧炬.走、跑、跳动作足底压力分布特征研究[J].吉林体育学院学报,2009,25(1):57-59.
    37.闫松华,谢楠,刘志成.肥胖儿童平地自然行走时的步态研究[J].中国运动医学杂志,2007,26(3):286-290.
    38.张庆来,孟站领.正常青年人左右足底压力分布特征的对比分析[J].中国组织工程研究与康复,2007,11(5):889-892.
    39.陶凯,王冬梅,王成焘,等.基于三维有限元静态分析的人体足部生物力学研究[J].中国生物医学工程学报,2007,26(5):763-767.
    40.余嘉,张明.足部三维有限元分析及临床应用[J].中华创伤骨科杂志,2008, 10(2):113-115.
    41.汤荣光.正常人足底静态和动态压力分布测定[J].中国生物医学工程学报,1994,13(2):175-177.
    42.张致媛.跖骨远端截骨术治疗拇外翻的X线测量、前足底压力改变及有限元分析[D].中国医学科学院,2009,15.
    43.张德盛,宋跃明.L3-L5三维非线性有限元模型的建立及其临床意义.生物医学工程学杂志,2006,23(6):1250-1252.
    44.傅栋,靳安民.应用CT断层图像快速构建人体骨骼有限元几何模型的方法[J].中国组织工程研究与临床康复,2007,2(9):1620-1623.
    45.李玲.上下颌三维重建及有限元建模[D].上海:上海第二医科大学,2001.
    46.陆莎,张欣.基于数字图像的足部骨骼建模研究[J].西安工程大学学报,2008,22(2)187-191.
    47.牛文鑫,丁祖泉.三种三维有限元建模方法在跟骨模型建立中的应用比较[J].医用生物力学,2007,22(4):345-350.
    48.孙艳霞,鲍旭东,蒋春涛.软组织建模中的有限元模型[J].生物医学工程研究,2004,23(3):137-140.
    49. Lewis G, Shaw km.Modeling the tensile behavior of human Achilles tendon. [J] Biomed Mater Eng,1997,7:231.
    50. Clift S E.Finite-element analysis in cartilage biomechanics [J].J Biomed Eng,1992,14 (3):217-221.
    51. Gefen A,Elad D,Shiner R J,Analysis of stress distribution in the alveolar septa of normal and simulated emphysematiclungs [J] J Biomech,1999,32(9):891-897.
    52.牛刚,林晓梅,白昱,等.基于VTK的医学图像三维重建系统设计与实现[J].长春工业大学学报:自然科学版,2005,26(1):42-44.
    53.祁俐娜,罗述谦.基于VTK的医学图像三维重建[J].北京生物医学工程,2006,25(1):1-5.
    54.施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1994.
    55. Gefen A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot [J]. Medical Engineering& Physics,2003,25(6):491-499.
    56. Elftman HO. A cinematic study of the distribution of pressure in the human foot [J]. Anat.Record,1934,59:48-490.
    57.李建设,王立平.足底压力测量技术在生物力学研究中的应用与进展[J].北京体育大学学报,2005,28(2):191-193.
    58.王明鑫.正常人足底压力分析的研究进展[J].中国矫形外科杂志,2006,14(22):1722-1724.
    59.励建安,孟殿怀.步态分析的临床应用[J].中华物理学与康复杂志,2006,28(7):500-503.
    60.胥少汀,郭丹竹.正常步态与步态分析的临床应用[J].中华外科杂志,1992,30(11):693-697.
    61.毛宾尧,贾学文,郑菲蓉,等.行走好站立时足底压力分布研究[J].中国矫形外科杂志,2002,10(12):1211-1213.
    62. West S. A comparative study of methods of obtaining foot loading data during walking[J].Chiropodist,1987,42:84.
    63. Aharanson Z, et al.Normal foot-ground pressure pattern in children [J].Clin Orthop Rel Res,1980,150:220.
    64. Betts RP, Franks CI, and Duckworth T. Analysis of pressures and loads under the foot. Part 1:Quantification of the static distribution using the PET computer [J]. Clin Phys PhysiolMeas,1980,1,101-112.
    65.温建民,钟红刚,蒋科卫,等.正常足与拇外翻足的足底压力研究[J].中华骨科杂志,1999,19:346-348.
    66. Ghosh AK, Tibarewala DN, Mukherjee P, et al. Preliminary study on static weight distribution under the human foot as a measure of lower extremity disability [J]. Med Biol Eng Comput,1979,17,737-741
    67.王明鑫,俞光荣,陈雁西,等.正常中国成年人足底压力分析[J].中国矫形外科杂志,2008,16(9):687-690.
    68. Arvikar R and Seireg. A Pressure distributon under the foot during static activities [J]. Eng. in Med,1980,9,99-103.
    69.毛宾尧,主编.足外科学[M].第2版.北京:人民卫生出版社,1992,48-59.
    70. Leduc A, Reyns I, Liegois E,et al.The repartition of pressure within the forefoot[J].Acta Orthop Belg,1980,46:566-571.
    71.温建民,胡海威,孙永生,等.拇外翻合并第二跖骨头下疼痛的生物力学定量研究[J].中华骨科杂志,2006,26(2):95-99.
    72. Hughes J,Clark P,Klenerman L:The importance of the toes in walking[J].J Bone Joint Surg(Br),1990,72:245-251.
    73. Morton, DJ. The Human Foot [M]. Columbia University Press, Columbia, USA,1935.
    74.洪水棕.拇外翻病理足及其手术方案的物力学探讨[J].中国生物医学工程学报,1988,7(2):86-92.
    75.汤荣光,Wallace WA.正常人足底静态和动态压力分布的测定[J].中国生物医学工程学报,1994,13:175-177.
    76. Martinez NA, Pascual HJ, Sanchez RR. Cadence, age and weight as determinants of forefoot plantar pressures using the Biofoot in-shoe system [J].J Am Podiatric Med Assoc,2008,98(4):302-310.
    77.袁刚,张木勋,王中琴.正常人足底压力分布及其影响因素分析[J].中华物理医学与康复杂志,2004,26(3):651-658.
    78. Minns RJ, Craxlord AD. Pressure under the forefoot in rheumatoid arthritis [J]. Clin Orthop,1984,187,235-242.
    79.蒋知节,顾相杰.拇外翻的病因、病理和治疗[J].国外医学外科分册,1983,1:27-30.
    80.张伟,黄耀添,王军等.拇外翻病人的静、动态前足底压力测定[J].武警医学院学报,2001,10(2):128-130.
    81.汤荣光,Wallace WA.拇外翻患者前足底压力分布的研究[J].中华外科杂志,1993,31:689-691.
    82.温建民,桑志成,钟红刚,等.正常足与拇外翻足前足承重比例与跖骨头下压力的研究[J].中国骨伤,2003,16:641-643.
    83.桑志成,温建民,钟红刚,等.正常足与拇外翻足跖骨头下压力与足部负重比例变化的关系[J].中国矫形外科杂志,2003,11(7):474-476.
    84. Stroke AF, Hutton WC, Stott JR. Force under the hallux valgus foot before and after surgery [J]. Clinical orthopedics and related research,1979,142:64-72.
    85.戴克戎,汤荣光.平地常速行走时的步态观察[J],中国生物医学工程学报,1982,l(1):16-21.
    86.石凯,刘志刚.“跖袖”的解剖学特点及临床意义.中国临床解剖学杂志,2007,25(3):266-268.
    87.柴本甫.内固定骨折愈合的生物力学概念[J].国际骨科学杂志,1980,2:20-26.
    88.尚天裕.中国接骨学[M].天津:天津科学技术出版社,1995,12-15.
    89.孙之镐.中西医治疗骨折的理论与实践的差异与交融[J].中国骨伤,2009,22(3):208-211.
    90.孙之镐,孙树椿.努力创立中国特色骨伤科学[J].中国骨伤,2005,18(2):3-4.
    91.孙之镐.从现代医学模式的转变看中医学的发展[J].湖南中医药导报,2003,9(3):1-3.
    92.孙之镐.加快中国接骨学理论和技术的创新[J].中国骨伤,2007,20(1):1-3.
    93.杨明辉,武勇.微动与骨折愈合[J].国外医学.骨科学分册,2003,24(4):201-204.
    94. Aro HT, Chao EY. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression [J]. Clin Orthop Relat Res,1993,293:8-17.
    95.狄勋元,张跃旋.骨折愈合研究的新进展.骨与关节损伤杂志[J],1996,11(6):375-376.
    96. Goodship AE, Kenwright J. The influence of induced micro movement upon the healing of experimental tibial fracture [J].J Bone and Joint Surg,1978,65B:150.
    97. Foux A, Yeadon AJ, Uhtoff HK.Improved fracture healing with less rigid plates. A biomechanical study in dogs [J].Clin Orthop,1997; (339):232-245.
    98.苏佳灿,任可,张春才.应力对骨折愈合的影响及其作用机制[J].第二军医大学学报2001,22(10):988-990.
    99. Eggers GW. Internal contact splint [J].J Bone Joint Surg Am,1948,30A (1):40-52.
    100.李可心,尚天裕,董福慧.“动静结合”骨折治疗原则生物力学基础研究[J].中国中医骨伤科杂志,1998,6(1):9-12.
    101. Claes LE, Heigele CA, Neidlinger-Wilke C, et al.Effect of mechanical factors on the fracture healing process [J]. Clin orthop,1998,355:132-147.
    102. Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surface predicts the course and type of fracture healing [J]. J Biomech,1999,32(3):255-266.
    103. GardnerTN, StollT, MarksL. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture an FEM study [J]. J Biomech,2000, 33(4):415-425.
    104. Jepsen KJ, Davy DT, Krzypow DJ. The role of the lamellar interface during torsional yielding of human cortical bone [J] J Biomech,1999,32(3):303-310.
    105. Augat P, Burger J, Schorlemmer S, et al Shear movement at the fracture site delays healing in a diaphyseal fracture model [J]. J Orthop Res,2003,21(6):1011-1017
    106.狄勋元,江建民,刘焕义,等.细微运动对长骨干骨折愈合的作用-动物实验系列研究初步总结.骨与关节损伤杂志,1998,13(1):28-31.
    107. Richards M, Goulet JA, Weiss JA, et al. Bone regeneration and fracture healing.Experience with distraction osteogenesis model [J]. Clin Orthop,1998, (355, Suppl):S191-S204.
    108. Park SH, O'Connor K, McKellop H, et al. The influence of active shear or compressive motion on fracture healing [J]. J Bone Joint Surg Am.1998,80(6):868-878.
    109.袁凌伟,夏亚一,鲁茂森,等.骨折愈合应力机制研究进展[J].国际骨科学杂志,2007,25(2):84-86.
    110. Larsson S, Kim W, Caja VL, et al. Effect of early axial dynamization on tibial bone healing:a study in dogs [J]. Clin Orthop Relat Res,2001,388:240.
    111. Kenwright J, Richardson JB, Cunningham JL, et al. Axial movement and tibial fractures: A controlled randomised trial of trertment [J].J Bone Jiont Surg Br,1991,73(4):654.
    112. Lean JM, Jagger CJ, Chambers TJ, et al. Increased insulin-like growth factor-mRNA expression in osteocytes precedes the increase in bone formation in response to mechanical stimulation [J]. J Bone Min Res,1994,9:142-148.
    113. Goodship AE, Norrodin N, Francis M. The stimulation of prostaglandin synthesis by micromovement in fracture healing. Micromovement in orthopaedics [J]. London: Oxford,1992.31-34.
    114. Wallace AL, Draper ERC, Strachen RK, et al. The vascular response to micromovement in experimental fracture. Micromovement in orthopaedics [J]. London:Oxford, 1992.40-44.
    115. Dallas SL, Zaman G, Pead MJ, et al. Early strain-related changes in culatured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo [J]. J Bone Min Res,1993,8:251-259.
    116. Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures [J]. Clin Orthop Relat Res.1989,241:36-47.
    117. Kristen KH, Berger K, Berger C, et al. The FirstMetatarsal Bone under Loading Conditions:A Finite Element Analysis [J]. Foot Ankle Clin N Am,2005,10:1-14.
    118.柴本甫.内固定骨折愈合的生物力学概念[J].国际骨科学杂志,1980,2:20-26.
    119.王正国.微创外科刍议[J].解放军医学杂志,2002,27(2):104-105.
    120.温建民,孙卫东.“骨离缝、筋出槽”对拇外翻诊疗的指导意义[J].中医杂志,2007,48(10):877-878.
    121.赵勇,尚天裕,钟红刚.骨折愈合的应力适应性研究-功能活动时兔胫骨断端应力状态的动态观察[J].中国骨伤,1994,7(3):16-18.
    122. Sarmiento A. Fracture healing in rat femora as affected by functional weight-bearing [J]. J Bone and Joint Surg,1977,59A:369.
    123. Markel MD. Formation of bone in tibial defects in a canine model [J]. J Bone Joint Surg, 1991,73A:914-916.
    124. Chao YS, Aro HT, Lewallen DG, et al. The effect of rigidity on fracture healing in external fixation [J]. Clin Orthop,1989,241:24-25.
    125.张恒.影响骨折愈合的因素-应力和微动[J].海南医学,2010,21(1):112-115.
    126. Brighton CT, Fisher JRS Jr, Levine SE, et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus [J].J Bone Joint Surg Am, 1996,78:1337-1347.
    127. Athanasiou KA, Zhu C, Lanctot DR, et al. Fundamentals of biomechanics in tissue engineering of bone [J].Tissue Eng,2000,6:361-381.
    128. Joseph A,Buckwalter,MD,MS,Thomas A,et al.陈启明,梁国德,秦岭,主译.骨科基础科学-骨关节肌肉系统生物学和生物力学[M].第二版.北京:人民卫生出版社,2001,330.
    129.于力牛,尚鹏,王成焘,等.适用于口腔修复学的模块化牙列有限元建模[J].上海交通大学学报,2002,36(8):1071-1074.
    1.李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].西安交通大学出版社,1992,1-3.
    2. Turner MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structures [J]. Aero Sci,1956,23:805-808.
    3. Weinraub GM, Heilala MA. Adult flatfoot posterior tibia tendon dysfunction outcomes analysis of surgical treatment utilizing an algorithmic approach [J]. Foot Ankle Surg, 2000, (6):359-64.
    4.赵京涛,樊粤光.有限元方法在临床骨科生物力学研究中的应用[J].中医正骨,2003,(4):41-53.
    5. Brekelmans Wam, Rybicki EF, Burdeaux BD. A new method to analyze the mechanical behavior of skeletal parts [J]. Acta Ortho Scand,1972,43:301-305.
    6.张美超,钟世镇.国内生物力学中有限元应用[J].解剖科学进展,2003,9(1):53-56.
    7. Graham R S, Oberlander E K, Stewart J E, et al. Validation and use of a finite element model of C2 for detern ination of stress and fracture patterns of anterior odontoid loads [J]. Neurosurg,2000,93(Supply 1):117-125.
    8. Puttlitz C M,Goel V K, Clark C R, et al. Pathomechanisms of failure of the odontoid[J]. Spine,2000,25(22):2868-2876.
    9.周学军,赵志河,赵美英,等.包括下颌骨的颞下颌关节三维有限元模型的建立[J].实用口腔医学杂志,2000,16(1):17-19.
    10.芦俊鹏,张建国.人体颅脑三维有限元模型构建[J].微计算机信息(测控自动化),2006,22(8-1):211-213.
    11.程黎明,贾连顺,黄本才,等.下颈椎三维有限元模型的建立[J].第二军医大学学,2003,24(3):338-340.
    12.张德盛,宋跃明.L3-L5三维非线性有限元模型的建立及其临床意义[J].生物医学工程学杂志,2006,23(6):1250-1252.
    13.傅栋,靳安民.应用CT断层图像快速构建人体骨骼有限元几何模型的方法[J].中国组织工程研究与临床康复,2007,2(9):1620-1623.
    14.王剑利,潘朝晖,袁勇,等.足骨三维有限元模型对足跖骨缺损重建的指导意义[J].实用手外科杂志,2007,(21):6-8.
    15.陈琼.三维有限元建模方法的研究现状[J].口腔医学,2006,26(2):154-155.
    16.李安安,刘谦,龚辉,等.“虚拟中国人男性一号”高精度骨骼系统的三维建模[J].中国临床解剖学杂志,2006,24(3):292-294
    17.吴立军,丁自海,钟世镇,等.足弓第2与第5跖列的肌骨系统有限元模型及其临床意义[J].中国临床解剖学杂志,2006,24(6):691-694.
    18. Jacob S, Patil MK. Three-dimensional foot modeling and analysis of stresses in normal and early stage Hansen's disease with muscle paralysis [J]. Rehabil Res Dev,1999, 36:252.
    19.董骧,樊瑜波,张明,等.人体足部生物力学的研究[J].生物医学工程学杂志,2002,19(1):148-153.
    20. Gefen A, Megido-Ravid M, Itzchak Y,et al. Biomechanical analysis of the three-dimensional foot structure during Gait:a basic tool for clinical applications[J].J Biomech Eng,2000; 122(6):630-639.
    21.顾耀东,李建设,陆毅琛,等.提踵状态下足纵弓应力分布有限元分析[J].体育科学2005,25(11):85-87
    22. Mattingly B, Talwalkar V, Tylkowskic, et al, Three-dimensional in vivo motion of adult hind foot bones [J].Biomech,2006,39(4):726-733.
    23.张明,张德文,余嘉,等.足部三维有限元建模方法及其生物力学应用[J].医用生物力学,2007,22(4):339-344.
    24.陶凯,王冬梅,王成焘,等.韧带和跖腱膜在足部有限元分析中的力学作用[J].生物医学工程学杂志,2008,25(2):336-340.
    25.刘立峰,蔡锦方.不同步态位相跟、距骨应力分布的三维有限元分析.第二军医大学学报,2003,24(9):1006-1009.
    26.杨云峰,俞光荣,牛文鑫,等.人体足主要骨-韧带结构三维有限元模型的建立及分析[J].中国运动医学杂志,2007,26(5):542-551.
    27.李玲.上下颌三维重建及有限元建模[D].上海:上海第二医科大学,2001.
    28.陆莎,张欣.基于数字图像的足部骨骼建模研究[J].西安工程大学学报,2008,22(2)187-191.
    29.胡小春,孙波,郭松青,等.足部复合模型建立及其应用[J].合肥工业大学学报(自然科学
    版),2007,30(9):1099-1102.
    30.陶凯,王冬梅,王成焘,等.基于三维有限元静态分析的人体足部生物力学研究[J].中国生物医学工程学报,2007,26(5):763-767.
    31.王旭,马昕,陶凯,等.足踝有限元模型的建立与初步临床应用[J].中国生物医学工程学报,2008,27(2):287-292.
    32.牛文鑫,丁祖泉.三种三维有限元建模方法在跟骨模型建立中的应用比较[J].医用生物力学,2007,22(4):345-350.
    33.孙艳霞,鲍旭东,蒋春涛.软组织建模中的有限元模型[J].生物医学工程研究,2004,23(3):137-140.
    34. Huiskes R.On the modeling of long bones in structural analyses [J].J Biomech,1982,15 (1):65-69.
    35. Clift S E.Finite-element analysis in cartilage biomechanics [J].J Biomed Eng,1992,14 (3):217-221.
    36. Gefen A.Stress analysis of the standing foot following surgical plantar fascia release [J].J Biomech,2002,35:629-637.
    37. Buchler P, Ramaniraka NA, Rakotomanana LR, et al.A finite element model of the shoulder:application to the comparison of normal and osteoarthritic joints [J].Clin Biomech,2002,17:630-639.
    38. Fung Y C. Biomechanics-mechanical properties of living tissues [M].2nd Ed, Springer, 1993.
    39. Joseph A Buckwalter,Tomas A Einhorn,Sheldon R Simon,editor in chief.Orthopaedic Basic Science:Biology and Biomechanics of the Musculoskeletal System(2nd edition)[M].American Academy of Orthopaedic Surgeons,USA,2000.
    40. Buchler P, Ramaniraka NA, Rakotomanana LR, et al.A finite element model of the shoulder:application to the comparison of normal and osteoarthritic joints [JJ.Clin Biomech,2002,17:630-639.
    41. Cheung JT,Zhang M,An KN.Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex[J].Clin Biomech,2004,19:839-846.
    42.李建设,顾耀东,Mark Lake,等.踏跳瞬间足后部骨骼的三维有限元分析[J],医用生物力 学,2008,23(2):127-130.
    43. Huiskes R.On the modeling of long bones in structural analyses [J].J Biomech,1982, 15(1):65-69.
    44. Athanasiou KA,Liu G T,Lavery LA,et al. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint[J].Clinical Orthopaedics,1998,348:269-281.
    45. Rice J C, Cowin S C, Bowman J A. On the dependence of the elasticity and strength of cancellous bone on apparent density [J]. J Biomech,1988,21(2):155-168.
    46. Carter D R, Hayes W C.The compressive behavior of bone as a two-phase porous structure [J]. Journal of Bone and Joint Surgery,1977,59A:594-562.
    47. Siegler S, Block J, Schneck CD.The mechanical characteristics of the collateral ligaments of the human ankle joint [J].Foot and Ankle,1988,8:234-242.
    48. Wright D,Rennels D.A study of the elastic properties of plantar fascia[J]. Journal of Bone and Joint Surgery,American,1964,46:482-492.
    49. Race A, Amis A.The Mechanical Properties of the Two Bundles of theHuman Posterior Cruciate Ligament [J].J Biomech,1994,27:13-24.
    50. Nakamura S, Crowninshield R D, Cooper R R. An Analysis of Soft Tissue Loading in the Foot:A Preliminary Report. Bull Prosthet Res,1981,18:27-34.
    51.顾耀东,李建设.有限元分析在步态生物力学研究中的应用进展[J].北京体育大学学报,2007,30(8):1080-1082.
    52. Lemmon D, Shiang T Y, Hashmi A, et al.The effect of shoe insoles in the rapeutic footwear-a finite element approach [J].J Biomech,1997,30(6):615-620.
    53. Gefen A,Elad D,Shiner R J,Analysis of stress distribution in the alveolar septa of normal and simulated emphysematiclungs[J].J Biomech,1999,32(9):891-897.
    54. Gefen A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot [J]. Med Eng Phys,2003,25(6):491-499.
    55. Jacob S, Patil M K. Stress analysis in three-dimensional foot models of normal and diabetic neuropathy [J].Front Med Biol Eng,1999,9(3):211-227.
    56. Cheung Jason Tak-Man, Zhang Ming, Leung Aaron Kam-Lun,et al.Three-dimensional finite element analysis of the foot during standing-a material sensitivity study [J].J of Biomechanics,2005,38(25):1045-1054.
    57. Ahmet Erdemir,Meredith L. Viveirosb,Jan S. Ulbrecht,Peter R. Cavanagh, An inverse finite element model of heel pad indentation[J] Journal of biomechanics,2005, 38(6):1213-1219.
    58. Cheung JT, An KN, Zhang M.Consequences of partial and total plantar fascia release:a finite element study [J].Foot Ankle Int,2006,27(2):125-132.
    59.王正义,张建中,俞光荣.足踝外科学.第2版[M].北京:人民卫生出版社,2006:538-541.
    60. Cheung JasonTak-Man, Zhang Ming, AnKN. Effects of achilles tendon loading on plantar fascia tension in the standing foot [J].ClinicalBiomechanics,2006,21:194-203.
    61.吴立军,钟世镇,李义凯,等.扁平足第二跖纵弓疲劳损伤的生物力学机制[J].中华医学杂志,2004,84(12):1000-1004.
    62. Kristen KH, Berger K, Berger C, et al. The first metatarsal bone under loading conditions: a finite element analysis [J].Foot ankle clin Am,2005,10:1-14.
    63. Sachin P. Budhabhatti, Ahmet Erdemir, Marc Petre, et al. Finite element modeling of the first ray of the foot:A tool for the design of interventions [J]. Journal of Biomechanical Engineering,2007,129:750-756.
    64. ErdemirAhmet, Saucerman Jeffrey J, Lemmon David,et al. Local plantar pressure relief in therapeutic footwear:design guidelines from finite element models[J]. Journal of Biomechanics,2005,38:1798-1806.
    65. Gu yaodong, Li jianshe, Lu yichen.Finite element analysis of first metatarsus arch of the foot in high-heel gait.In:International symposium on biomechanics in sports, Beijing, China,2005.
    66. Xiao-Qun Dai, Yi Li, Ming Zhang, Jason Tak-Man Cheung. Effect of sock on biomechanical responses of foot during walking [J]. Clinical Biomechanics,2006,21: 314-321.
    67. ShiangTY.The nonlinear finite element analysis and plantar pressure measurement for various shoe soles in heel region. Proc Natl Sci Counc Repub China B,1997,21(4):168-174.
    68. Chen WP, Tang FT, Ju CW. Stress distribution of the foot during midstance to push-off in barefoot gait:a 3-D finite element analysis[J].Clin Biomech,2001,16(7):614-620.
    69. Goskea Steven, Erdemir Ahmet, Petre Marc, et al. Reduction of plantar heel pressures: Insole design using finite element analysis [J], Journal of Biomechanics,2006,39:2363-2370.
    70. Abu-Hasaballah KS, Nowak MD, Cooper PD. Enhanced solid ankle foot orthosis design: real time contact pressures evaluation and finite element analysis. In:Bioengineering division advances in bioengineering proceedings of the 1997 ASME International mechanical engineering congress and exposition, Dallas, USA,1997:285.
    71. Syngellakis S, Arnold Ma, Rassoulian H. Assessment of the nonlinear behavior of plastic ankle foot orthoses by the finite element method [J].Proc Inst Mech Eng,2000, 214(5):527-539.
    72. Saunders M M, Schwentker E P, Kay D B, et al. Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot [J].Comput Methods Biomech Biomed Engin,2003, 6(1):75-87.
    73.蔡茂蓉,林茂松.基于Java 3D的医学图像三维重建系统[J].微计算机信息,2007,23(3):306-308.
    74.于力牛,尚鹏,王成焘,等.适用于口腔修复学的模块化牙列有限元建模[J].上海交通大学学报,2002,36(8):1071-1074.
    75.温建民,孙卫东.论“骨离缝、筋出槽”对拇趾外翻诊疗的指导意义[J].中医杂志,2007,10(48):877-878.
    76.温建民,梁朝,佟云,等.遗传因素与拇外翻相关性的临床研究[J].中国矫形外科杂志.2006,14(7):516-518.
    77.马昕,顾湘杰.拇外翻的基础研究进展[J].国外医学创伤和外科基本问题分册,1996,17(3):158-161.
    78.顾湘杰,桂鉴超,马昕,等.跖趾关系与拇外翻[J].中国矫形外科杂志.1995,6(5):325-327.
    79.温建民,桑志成,林新晓,等.小切口手法治疗拇外翻临床研究-附535例(986足)研究报告[J].中国矫形外科杂志,2002,9(1):26-29.
    80.温建民.中医理念在拇趾外翻临床中的运用[J].医学与哲学(临床决策论坛版).2007,28(5):22-23.
    81.郭世绂.性激素和细胞因子与骨关节炎及骨质疏松的关系[J].国外医学内分泌分册,2003,23(2):98.
    82.何勇.IL-6、TNF-α与绝经后骨质疏松[J].国外医学内分泌分册,2003,23(2):130-131.
    83.赵红燕,朱汉民,刘建民等.绝经后妇女白介素1受体拮抗物基因多态性与骨密度的关系[J].中华分泌代谢杂志,2002,18(6):432-434.
    84.张国安,刘小明,施水兰等.围绝经及绝经后妇女血清IL-6、E2与骨密度关系的研究[J].上海免疫学杂志.1999,19(1):35-36.
    85. Ersher WB, Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1[J]. JAmGeriatr Sol,1993,41(2):176-181.
    86.丁桂芝,刘忠厚,周勇.中西医结合防止骨质疏松的基础于临床研究进展[J].中国骨质疏松杂志,1997,3:81-84.
    87.温建民,佟云,韩凤岳,等.拇外翻第1跖骨头内侧骨赘及其附着组织的病理组织学观察[J].中国骨伤2008,12:883-885.
    88.徐世杰,吕爱平,张春英,等切除卵巢所致肾虚对Ⅱ型胶原诱导的关节炎小鼠IL-2和IL-6含量的影响[J].中国中医基础医学杂志,1998,4(10):33-35.
    89.尹秋霞,罗南萍,王瑞山等.IL-6以及骨代谢生化指标对骨吸收和骨形成的影响[J].放射免疫学杂志,2003,16(1):33-34.
    90.李永明,林珠.白细胞介素-6对破骨细胞骨吸收效应及MMP-3表达影响的实验研究[J].口腔医学研究杂志,2002,18(3):155-157.
    91.施桂英编著.关节炎概要[M].北京:中国医药科技出版社,2000,331.
    92.王洪图主编.黄帝内经研究大成·黄帝内经理论研究[M].北京:北京出版社,1997.
    93.骆书彦,马帅,崔瑾.十二经筋理论探析[J].江苏中医药,2004,25(1):42-44.
    94.刘金洪.《灵枢经筋》探讨[J].南京中医药大学学报,1997,13(4):228-22.
    95.张军.十二经筋理论探讨[J].北京中医药大学学报,1997,20(1):22-23.
    96.孟锋.论“骨错缝”“筋出槽”理论的临床应用[J].北京中医,1997,1:31.
    97.张铁刚,章艳霞,王剑辉等.试述“筋出槽、骨错缝”理论及其伤科临床应用[J].中国中医药信息杂志,1999,6(1):54.
    98.孙树椿,孙之镐主编.中医筋伤学[M].北京:人民卫生出版社,1990:9-10.
    99.韦以宗主编.中国骨伤科学辞典[M].北京:中国中医药出版社,2001:478.
    100.丁继华,吴诚德.中医骨伤科基础[M].北京:中医古籍出版社,1987:43.
    101.张铁刚,杜宝林.“骨错缝、筋出糟”理论临床应用初探[J].中西医结合临床杂志,1992,2(1):33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700