甲醇制低碳烯烃流化床反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由甲醇制低碳烯烃是最有希望替代石油路线的新工艺,甲醇制低碳烯烃流化床反应器的研究对于其工艺的开发与完善具有重要的指导意义。论文在反应-再生流化床热模装置中对甲醇制低碳烯烃反应-再生过程,催化剂的微观结构进行研究;建立了甲醇制低碳烯烃循环流化床大型冷模实验装置,研究了循环流化床中的流体力学行为;建立了气固流化床计算流体力学(CFD)模型,改进了传统的曳力模型,采用FLUENT对气固流态化过程进行了数值模拟;结合循环流化床大型冷模实验、反应动力学和传递过程原理,建立了甲醇制低碳烯烃流化床反应器数学模型,并采用MATLAB软件编制成通用程序。
     建立了反应-再生流化床热模装置,并在该装置上对甲醇制低碳烯烃反应-再生过程进行研究,获得了较佳的反应-再生过程操作条件。在密相段为φ30x320mm及稀相段为φ68×160mmm的流化床反应器中,采用SAPO-34为主要活性成分的催化剂,研究了反应温度、空速(WHSV)、进料组成随反应时间对产物中低碳烯烃(乙烯和丙烯)含量及甲醇转化率的影响,同时在流化床中对失活催化剂进行再生实验,考察了再生催化剂的催化性能,并用XRD、SEM、BET、NH3-TPD、TGA等手段对催化剂进行表征。实验结果表明,在450℃,空速为3h+1,精甲醇(99.5mo1%)进料时,产物中低碳烯烃(乙烯和丙烯)含量高达92.06%;再生催化剂的催化性能良好,微观结构没有发生明显变化,可以循环使用。TGA表征结果表明,600℃是较适宜的再生温度。
     采用PV6 D光导纤维颗粒速度测量仪和PC6 D光导纤维固体浓度测量仪,在甲醇制低碳烯烃循环流化床大型冷模实验装置上研究了循环流化床中的流体力学行为。在表观气速为0.3930-0.7860m/s,静床高分别取600-1200mm的情况下,以粒径为154~180μm的砂子为固体颗粒,采用PC6 D颗粒速度测量仪与PV6 D固体浓度测量仪对冷模装置中可测量区域的固体浓度分布与颗粒速度分布。考察了不同径向位置(r/R=0,0.1-0.8,0.9),不同轴向位置(500~600mm),不同表观气速(0.3930,0.4912,0.5895,0.6877,0.7860m/s),不同静床高(600mm,800mm,1000mm,1200mm)的条件下冷模装置中固体浓度分布与颗粒速度分布。考察了采用不同形状的气体分布器(环形和枝条型)与不同分布器开孔率(2.5%o和5‰)时冷模装置中颗粒浓度分布与颗粒速度分布。考察了静床高为600mm与800 mm时,枝条型分布器(5‰),表观气速为0.3930-0.6877m/s,颗粒循环通量随表观气速与静床高的变化关系,得出了反应-再生系统物料循环的操作条件。
     通过对气固流化床流动特性和气固两相流理论分析,建立了气固流化床的计算流体力学(CFD)模型。采用双流体模型,三维非稳态算法在计算流体力学软件FLUENT软件平台上对气固流化床内的流体流动进行了数值模拟。基于最小流态化速度,改进了传统的Syamlal & O'Brien模型,并用C语言编制模型程序嵌入了FLUENT平台中。考察不同条件下气固流化床内流体流动形态的变化;在流动达到稳定后,将模拟值与实验值进行比较。考察网格划分、曳力模型,颗粒剪切粘度、颗粒弹性恢复系数和虚拟质量力等对模型预测能力的影响。同时考察了不同颗粒粒径情况下的流动状况。模拟结果表明:双流体模型可以较好的预测气固流化床中的流动行为,使用改进后的Syamlal & O'Brien曳力模型使模拟计算值与实验值的误差更小,采用三维计算网格、Syamlal固体剪切粘度模型、考虑虚拟质量力可以更好的模拟气固流化床中的流动行为。颗粒弹性恢复系数对计算结果影响较小。
     结合反应动力学、热力学、大型冷模实验和传递过程原理,建立了甲醇制低碳烯烃流化床反应器数学模型,对采用SAPO-34流化床催化剂的甲醇制低碳烯烃反应结果进行了数学模拟,考察了不同的操作条件对反应产物分布和反应床层压降的影响。计算结果表明:反应温度的升高有助于提高甲醇转化率和产物中乙烯的含量,降低产物中丙烯的含量,增大催化床层的压降;操作压力的升高有助于提高甲醇转化率,降低催化床层的压降;随着空速增大,甲醇转化率降低,床层压降增大;氮气的添加并未对反应结果起到明显的改善作用。
Methanol-to-olefins process is the most hopeful new process instead of petroleum route process, so research of fluidized bed reactor for methanol-to-olefins process is of importance for continuous development and improvement of the process. The dissertation gives some results about reaction-regeneration process of methanol-to-olefins in fluidized bed and micro-structure of catalysis. Cold model experimental facility of gas-solid circulating fluidized bed for methanol-to-olefins process is established and flow behavior in gas-solid circulating fluidized bed is studied. Computational fluid dynamics model of gas-solid fluidized bed is established and gas-solid flow behavior is simulated by software FLUENT by means of modified drag coefficient model. Mathematical model of fluidized bed reactor for methanol-to-olefins process is founded combining with cold model experiments in the gas-solid circulating fluidized bed, reaction kinetics and transport process principles. The model equations are programmed using software MATLAB.
     Experimental equipment of reaction-regeneration fluidized bed for methanol-to-olefins process is established and optimized operating conditions of reaction-regeneration process are obtained according to the research of reaction-regeneration process for methanol-to-olefins process in the experimental equipment. In order to study the process of methanol-to-olefins, the SAPO-34 is used as the main active component in a fluidized bed reactor with dimensions of 030 mm×320 mm for its dense section and 068 mm×160 mm for its thin section. The effects of reaction temperature, WHSV and feed composition on ethylene, propylene selectivity and methanol conversion are investigated; at the same time, the deactivated catalyst after use is regenerated in the fluidized bed and the catalytic performances of the regenerated catalyst is investigated too. The results indicate that, under optimal conditions for proceeding operation methanol-to-olefins:i. e. temperature of 450℃, WHSV of 3 h1a and feed methanol composition of 99.5%(mol), the total selectivity of ethylene and propylene can reach 92.06%. The catalyst SAPO-34 and the regenerated catalyst are characterized by means of XRD, SEM, BET, NH3-TDP and TGA, respectively. It is found that, after regeneration, the microstructure and the catalytic performance of the regenerated catalyst has no evident change, and it can be used repeatedly. The TGA characterization indicates that the 600℃is the optimal regeneration temperature.
     Flow behavior in gas-solid circulating fluidized bed is studied in cold model experimental facility of gas-solid circulating fluidized bed for methanol-to-olefins process via a PC-6D solid concentration analyzer and a PV-6D particle velocity analyzer. Solid concentration and particle velocity distribution in cold model experimental facility are studied with a mixture of sand ranging from 154 to 180μm diameter used as the fluidizing particles, different superficial gas velocities ranging from 0.3930 to 0.7860 m/s and different initial bed height ranging from 600 to 1200mm using air as the fluidizing gas. Local solid concentrations and particle velocity under 10 operating conditions are measured at 10 radial positions (r/R=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) on 10 axial levels (500,600,700, 800,900,1000,1100,1200,1400,1600mm),4 initial bed height (600,800,1000,1200mm) and 4 superficial gas velocities (0.3930,0.4912,0.5895,0.6877,0.7860m/s). Solid concentration and particle velocity distribution in cold model experimental facility are discussed with four types of distributors employed in the experiment:5%o circle distributor,5%o branched pipe distributor,2.5%o branched pipe distributor and 2.5%o circle distributor. Particle cycle flux is studied with different superficial gas velocities ranging from 0.3930 to 0.7860 m/s, different initial bed height ranging from 600 to 800mm and 5%o branched pipe distributor used. Optimized operating conditions of particle cycle flux for reaction-regeneration process are obtained.
     Computational fluid dynamics model of gas-solid fluidized bed is established according to analysis of flow behavior in gas-solid fluidized bed and theory of gas-solid flow. Gas-solid flow behavior in fluidized bed is simulated by software FLUENT by means of multi fluid model for two phase and 3d unsteady state algorithm. Syamlal & O'Brien model is modified based on minimum fluidization velocity and modified Syamlal & O'Brien model is added in software FLUENT via C programming language. Flow behaviors in gas-solid fluidized bed are discussed under different operations and models, the simulated results are compared with experimental results. Effects of meshing, drag models, particle shear viscosity, particle coefficient of restitution and virtual mass force on predictive power of computational fluid dynamics model are discussed. Simultaneously the flow behaviors using different particle diameters are studied. The results indicate that flow behaviors can be simulated by computational fluid dynamics model. the result with modified Syamlal& O'Brien drag model,3d mesh, Syamlal particle shear viscosity, regard of virtual mass force can simulate the flow behavior of gas-solid fluidized bed better. The effect of particle coefficient of restitution on the simulated result is small.
     Mathematical model of fluidized bed reactor for methanol-to-olefins process is founded combining with cold model experiments in the gas-solid circulating fluidized bed, reaction kinetics and transport process principles, the results of methanol-to-olefins reactions using catalysis SAPO-34 in relative steady period are simulated. Effects of operated conditions on product distribution and pressure drop are discussed. The results indicate that high temperature can increase the selectivities of ethylene and propylene, methanol conversion and pressure drop; high operated pressure can increase methanol conversion and decrease pressure drop; high space velocity can increase pressure drop and decrease methanol conversion; effects of nitrogen on results of reactions are unconspicuous.
引文
[1]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术.化学工业出版社.2004.
    [2]Wragg D S, Johnsen R E, Balasundaram M, et al. SAPO-34 methanol-to-olefin catalysts under working conditions:A combined in situ powder x-ray diffraction, mass spectrometry and raman study. J. Catal.,2009,268 (2):290-296.
    [3]Meisel S L, McCullough J P, Lechthaler C H, et al. Gasoline from methanol in one step. Chem. Tech.,1976,6:86.
    [4]Chang C D, Lang W H, Smith R L. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts Ⅱ. Pressure effects. J Catal.,1979,53:169-173.
    [5]Chang C D, Chu C T W, Socha R F. Methanol conversion to olefins over ZSM-5:I. Effect of temperature and zeolite SiO2/Al2O3. J Catal.,1984,86:289-296.
    [6]Lok B M, Messina C A. Silicoaluminophosphate molecular sieves:Another new class of microporous crystalline inorganic solids. J Am. Chem. Soc,1984,106:6092-6093.
    [7]Lok B M, Messina C A, Paton R L, et al. Crystalline Silicoaluminophosphates.US 4440871,1984.
    [8]Liang J, Li H Y,Zhao S Q, et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl. Catal.,1990,64:31-40.
    [9]Keil F J. Methanol-to-hydrocarbons:process technology. Micro. Meso. Mater.,1999,29: 49-66.
    [10]Vora B V, Marker T L, Barger P T, et al. Economic route for natural gas conversion to ethylene and propylene. Stud. Surf. Sci. Catal.,1997,107:87-98.
    [11]Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal. Today,2005,106: 103-107.
    [12]Gregor J, Vermeiren W. Proceedings of the fifth EMEA petrochemicals technology conference. Paris,2003,6:25-26.
    [13]蔡光宇,孙承林,刘中民.一种由甲醇或二甲醚制取乙烯、丙烯等低碳烯烃方法.CN1166478A,1997.
    [14]Liu Z M. Coal to chemicals. Beijing:Belfer center.2007:123-130.
    [15]杨为民,刘俊涛,钟思青,等.生产乙烯、丙烯的方法.CN10117291,2008.
    [16]朱杰,崔宇,魏飞,等.甲醇制烯烃过程研究进展.化工学报.2010,61(7):1674-1684.
    [17]朱炳辰.化学反应工程(第四版).化学工业出版社.2007.
    [18]金涌,祝京旭,等.流态化工程原理.清华大学出版社.2001.
    [19]李永旺,等.新型流化床气溶胶发生装置及其特性.东南大学学报.2005,5(35):742-745.
    [20]Wenli Songet et al. VOC adsorption in circulating gas fluidized bed. Adsorption,2005, 11:853-858.
    [21]刘明言,杨扬,薛娟萍,胡宗定,气液固三相流化床反应器测试技术.过程工程学报.2005,5(2):217-222.
    [22]杨虎,石炎福.气固流化床中空隙率研究.四川轻化工学院学报.2001,14(1):5-9.
    [23]Javier V B, Jesus G S. Free top fluidized bed surface fluctuations as a source of hydrodynamic data. Powder Tech.,2003:133~144.
    [24]Li J, Kuipers JAM. On the origin of heterogenerous structure in dense gas-solid flows. Chem. Eng. Sci.,2005:1251-1265.
    [25]Satish B, Muthanna A D, Milorad P D. Quantification of solids flow in a gas-solid riser: single radioactive. Chem. Eng. Sci.,2004:5381-5386.
    [26]刘会娥,魏飞,金涌.气固循环流态化研究中常用的测试技术.化学反应工程与工艺.2001,17(2):165-173.
    [27]张志攀,刘慧娥,等.X射线投影成像法测量气固流化床中的固含分布(1)原理及图像处理方法.过程工程学报.2002,10(5):400-405.
    [28]杨宽利,王其成,张锴,等.鼓泡流化床内颗粒速度分布的研究.石油化工高等学校学报.2008,21(3):5-8.
    [29]Jackson R. The mechanics of fluidized beds. Trans. lnst. Chem. Eng.,1963,41:13-28.
    [30]Murray J D. On the mathematics of fluidization Part 2. Steady motion of fully developed bubbles. J. of Fluid Mechanics Digital Archive.,2006,22(01):57-80.
    [31]Anderson T B, Jackson R. A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam.,1967,6(4):527-539.
    [32]Pritchett J W, Blake T R, et al. A numerical model of gas fluidized beds. AIChE Symp. Ser.1978,176:134-138.
    [33]Lyczkowski R W, Bouillard J X, et al. Erosion calculations in a two-dimensional fluidized bed.9th international conference on fluidized bed combustion. ASME,1987, 697-706.
    [34]Bouillard J X, Lyczkowski R W, et al. Porosity distributions in a fluidized bed with an immersed obstacle. AIChE. J.,1989,35(6):908-922.
    [35]Gera D, Gautam M, Tsuji Y, et al. Computer simulation of bubbles in large-particle fluidized beds. Powder Technology,1998,98(1):38-47.
    [36]Ding, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow. AIChE. J.,1990,36(4):523-538.
    [37]Kuipers JAM, Van Duin K J, Van Beckum F P H, et al. Computer simulation of the hydrodynamics of a two-dimensional gas-fluidizedbed. Computers Chem. Eng.,1993, 17:839-858.
    [38]Boemer A, Qi H, Renz U. Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed. Int. J. Multiphase Flow,1997,23(5):927-944.
    [39]Savage, S B, Jefrey D J. The stress tensor in granular flow at high shear rates. J. of Fluid Mechanics,1981,110:255-272.
    [40]Jenkins J T, Savage S B. A theory of the rapid flow of identical, smooth, nearly ealstic, spherical particles. J. of Fluid Mechanics,1983,130:187-202.
    [41]Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. of Fluid Mechanics,1987,176:67-93.
    [42]Gustavsson M, Almstedt A E. Numerical simulation of fluid dynamics in fluidized beds with horizontal heat exchanger tubes. Chem. Eng. Sci.,2000,55(4):857-866.
    [43]Tsuo Y D, Gidaspow D. Computation of flow patterns in circulating fluidized beds. AIChE J.1990,36(6):885~896.
    [44]Gayubo A G, Aguayo A T, Olazar M. Kinetics of the irreversible deactivation of the H-ZSM-5 catalyst in the MTO process. Chem. Eng. Sci.2003,58:5239-5249.
    [45]Bos A N, Tromp P J J, Akse H N. Conversion of methanol to lower olefins. Kinetic modeling, reactor simulation and selection. Ind. Eng. Chem. Res.,1995,34:3808-3816.
    [46]胡浩,应卫勇,房鼎业.甲醇制烯烃(MTO)多段间接换热式绝热固定床反应器的数学模拟.华东理工大学学报.2010,36(2):180-186.
    [47]Hu H, Ying W Y, Fang D Y. Mathematical modeling of multi-bed adiabatic reactor for MTO process. Reaction Kinetics, Mechanisms and Catalysis,2010,101:49-61.
    [48]Mihail R, Straja S, Maria G H, et al. Akinetic model for methanol conversion to hydrocarbons. Chem. Eng. Sci.,1983,38(9):1581-1591.
    [49]Alwahabi S M, Froment G. F. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind. Eng. Chem. Res.,2004,43(17):5098-5111.
    [50]Wu X C, Abraha M G, Anthony R G. Methanol Conversion On SAPO-34:Reaction Condition for Fixed-bed Reactor. Appl. Catal. A:Gen.,2004,260 (1):63-69.
    [51]Keil F J. Methanol to olefins-prediction of the performance of a circulating fluidized-bed reactor on the basis of kinetic experiments in a fixed-bed reactor. Chem. Eng. Sci.,1994, 49:5377-5390.
    [52]Soundararajan S, Dalai A K, Berruti F. Modeling of methanol to olefins (MTO) process in a circulating fluidized bed reactor. Fuel,2001.80:1187-1197.
    [53]Alwahabi S M. Froment G F. Conceptual reactor design for the methanol-to-olefins process on SAPO-34. Ind. Eng. Chem. Res.,2004,43:5112-5122.
    [54]Kaarsholm M, Rafii B, Joensen F. Kinetic Modeling of Methanol-to-Olefin Reaction over ZSM-5 in Fluid Bed. Ind. Eng. Chem. Res.,2010,49 (1):29-38.
    [55]叶丽萍,胡浩,应卫勇SAPO-34分子筛的合成及其对甲醇制低碳烯烃反应的催化性能.华东理工大学学报.2010,36(1):180-186.
    [56]Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic catalysts by in situ solid-state NMR spectroscopy [J]. Catal Today,2006,113 (2):102-114.
    [57]Dahl I M, Kolboe S. On the reaction mechanism for hydro-carbon formation for methanol over SAPO-34.1. Isotopic labeling studies of the co-reaction of ethane and methanol. J. Catal.,1994,149 (2):458-464.
    [58]Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation for methanol over SAPO-34:2. Isotopic labeling studies of the co-reaction of propene and methanol. J. Catal.,1996,161:304-309.
    [59]刘学武,柯丽,张明森SAPO-34/SiO2催化甲醇制烯烃.石油化工,2007,36(7):547-552.
    [60]Qi G Z, Xie Z K, Yang W M, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Process Technol.,2007,88(5): 437-441.
    [61]Kaarsholm M, Joensen F, Nerlov J, et al. Phosphorous modified ZSM-5:Deactivation and product distribution for MTO. Chem. Eng. Sci.,2007,62 (20):5527-5532.
    [62]Qi X B, Zhang H, Zhu J. Solids concentration in the fully developed region of circulating fluidized bed downers. Powder Technol.,2008,18:417-425.
    [63]Wei F, Lin H, Cheng Y, J et al. Profiles of particle velocity and solids fraction in a high density riser. Powder Technol.,1998,100:183-189.
    [64]Gidspow D, Ettehadieh B. Fluidization in two dimensional beds with a jet:Part Ⅱ. Hydrodynamic modeling. Ind. Eng. Chem. Fun.,1983,22:193-201.
    [65]Kupiers J A M, Tammes H, Princs W, et al. Experimental and theoretical porosity profiles in two dimensional gas-fluidized bed with a central jet. Powder Technol.,1992, 71:87-89.
    [66]Lun C K K, Savage S B, Jeffrey D J. Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. of Fluid Mechanics Digital Archive.2006,140:223-256.
    [67]Gidspow D. A bubbling fluidization model using kinetic theory of granular flow. AIChE. J.,1990,36(4):523-538.
    [68]Syamlal M, O'Brien T J. Simulation of granular layer inversion in liquid fluidized beds. Int. J. of Multiphase Flow,1988,14 (4):473-481.
    [69]Garside J, Al-Dibouni M R. Velocity-voidage relationship for fluidization and sedimentation. Ind. Eng. Chem. Proc. Des. Dev.,1977,16(2):206-214.
    [70]Wachem B G M, Schouten J C, Krishna R. Validation of the eulerian simulated dynamic behavior of gas-solid fluidized beds. Chem. Eng. Sci.,1999,54:2141-2149.
    [71]Gidaspow D, Multiphase Flow and Fluidization, Academic Press, San Diego,1994.
    [72]Hoomans BPB, Kuipers JAM, Briels W J. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed:a hard-sphere approach. Chem.Eng. Sci.,1996,51(1):99-118.
    [73]Kawaguchi T, Sakamoto M, Tanaka T. Quasi-three-dimensional numerical simulation of spouted beds in cylinder. Powder Technol.,2000,109(1):3-12.
    [74]Mikami T, Kamiya H, Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci.,1998,53(10):1927-2940.
    [75]Richardson, Zaki W N. Sedimentation and fluidization:part I, Tran. of Ins. of Chem. Eng.,1954,32(1):35-53.
    [76]Garside J, Al-Dibouni M R. Velocity-voidage relationship for fluidization and sedimentation. Ind. Eng. Chem. Pro. Des. Dev.,1977,16(2):206-214.
    [77]Burger R, Concha F, Fjelde K K. Numerical simulation of the settling of polydisperse suspensions of spheres. Powder Technol.,2000,113(1):30-54.
    [78]Ocone R, Sundaresan S, Jackson R. Gas-particle flow in a duct of arbitrary inclination with particle-particle interactions. AIChE J.,1993,39(8):1261-1271.
    [79]Sinclair J L, Jackson R. Gas-particle flow in a vertical pipe with particle-particle interactions. AIChE J.,1989,35(9):1473-1486.
    [80]Wen C Y and Yu Y H, Mechanics of fluidization. Chem. Eng. Prog. Symp. Series,1966, 62(2):100-111.
    [81]Arastoopour H, Pakdel P, Adewumi. M. Hydrodynamic analysis of dilute gas-solids flow in a vertical pipe. Powder Technol.,1990,62(2):163-170.
    [82]Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization. Int. J. of Multiphase Flow.1996,22 (1):21-66.
    [83]Felice R. Di. The voidage functions for fluid-particle interaction system. Int. J. of Multiphase Flow,1994,20 (1):153-159.
    [84]Louge M Y, Mastorakos E. Jenkins J K. The role of particle collisions in pneumatic transport. J. of Fluid Mechanics,1991,231:345-359.
    [85]Gibilaro L G, Di Felice R. Waldram S P. Generalized friction factor and drag coefficient correlations for fluid-particle interactions. Chem. Eng. Sci,1985,40(10):1817-1823.
    [86]Nieuwland J J, Huizenga P, Kuipers JAM. Hydrodynamic modeling of circulating fluidised beds. Chem. Eng. Sci,1994,49(24B):5803-5811.
    [87]Andrews M J, O'Rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. of Multiphase Flow,1996,22(2):379-402.
    [88]Zhang Y, Reese J.M. The drag force in two fluid models of gas-solid flows. Chem. Eng. Sci.,2003,58(8):1641-1644.
    [89]O'Brien T J, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed. In:Avidan, A. (Ed.), Circulating Fluidized Bed Technology IV. Proceedings of the Fourth International Conference on Circulating Fluidized Beds, Somerset, PA,1993, August,1-5.
    [90]Yang N, Wang W, Ge W. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J.,2003,96(1-3): 71-80.
    [91]Stock D. Particle dispersion in flowing gases. J. of Fluids Eng.,1996,118:4-17.
    [92]胡浩,应卫勇,房鼎业,等SAPO-34分子筛催化剂上甲醇制烯烃反应的本征动力学.华东理工大学学报.2009,35(5):655-660.
    [93]陈敏恒,丛德滋,方图南,等.化工原理(第二版)下册.北京:化学工业出版社.2003.
    [94]房鼎业,姚佩芳,朱炳辰.甲醇生成技术及进展.上海:华东化工学院出版社,1990.
    [95]朱炳辰,翁惠新,朱子彬.催化反应工程.中国石化出版社,2000.
    [96]卢焕章.石油化工基础数据手册.上海,化学工业出版社,1982.
    [97]陈敏恒,丛德滋,方图南,等.化工原理(第二版)上册.北京:化学工业出版社.2003.
    [98]朱自强,吴有庭.化工热力学(第三版).北京:化学工业出版社.2010,1.
    [99]胡英.物理化学(上册)(第四版).北京:高等教育出版社.2002,5.
    [100]王松汉.石油化工设计手册(第一卷).北京:化学工业出版社,2002:1-57.
    [101]胡英.物理化学(下册)(第四版).北京:高等教育出版社.2002,5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700