湿度、温度及存放时间对聚醚橡胶印模精度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚醚橡胶印模材料是弹性不可逆印模材料,主要由四氢呋喃和氧化乙烯共聚构成的聚醚橡胶所组成。20世纪60年代该材料最先在德国应用,经过四十多年的发展,目前已成为临床工作中广泛使用的一类弹性体印模材料。它具有强度大、弹性恢复能力强、凝固快速,尺寸稳定性高、亲水性好及反应过程中不产生副产物等优点。聚醚橡胶印模材料常用于制取无严重倒凹的精密印模,精度明显高于缩合型硅橡胶和聚硫橡胶印模材料。然而,在聚醚橡胶印模材料制取印模后,会出现因印模的变形而导致修复体制作失败的情况。获取精确的印模一直是临床医师的目标和愿望,因此,印模的精度和尺寸稳定性极其重要。临床工作中每个修复体的印模从口内取出后,都需要被放置到灌模室由技师统一灌注,从取出印模到灌注模型的过程中,模型难免会受到室内温度、湿度的影响,因此放置温度、湿度及时间对印模的影响是不容忽视的。
     本课题实验组选用2种商用聚醚橡胶印模材料:Polyjel(?) NF~(TM)聚醚橡胶印模材料( Dentsply公司,德国,简称PO)和Impregum~(TM) Soft聚醚橡胶印模材料(3M公司,德国,简称IM),对比组选用临床上常用的1种硅橡胶:Express~(TM) XT亲水性加成型硅橡胶印模材料(3M公司,德国,简称EX)。用以上三种印模材料制取印模,测量不同温度、湿度及存放时间后印模或模型的尺寸变化,计算尺寸变化率,进行对比分析,进而评价印模精度的变化。
     方法
     (1)采用国际标准化组织(ISO4823)推荐使用的标准不锈钢模具来制取印模。将印模分别放置于5种不同湿度下:30%、50%、70%、90%、浸水,温度设为23℃。放置24小时后,使用万能工具显微镜测量每个样本中间水平线的长度和标准模具上同一条水平线的长度,计算印模尺寸变化百分数。(2)使用上述标准模具制取印模,分别将印模存放于温度4℃、16℃、23℃、32℃、40℃环境中,存放湿度选取上述实验中印模精度最高的湿度环境,放置24小时后,使用万能工具显微镜测量印模尺寸,计算印模尺寸变化。(3)模拟3单位固定桥制作金属模具,制取印模。将印模存放于上述实验中精度最高的温、湿度环境中,分别在7个不同的时间点灌注石膏模型。使用万能工具显微镜测量石膏模型的尺寸,计算尺寸变化百分数。
     结果
     (1)聚醚橡胶IM、PO的印模存放在不同湿度下尺寸变化存在统计学差异(p <0 .05),浸泡水中时尺寸变化最大,存放在70%湿度下尺寸变化最小。亲水性加成型硅橡胶EX的印模存放在5种湿度下尺寸变化的差别均有统计学意义(p <0 .05),存放在30%湿度下尺寸变化最大,浸泡水中时尺寸变化最小。
     (2)聚醚橡胶IM、PO的印模存放在不同温度下尺寸变化的差别均有统计学意义(p <0 .05),存放在40℃环境中尺寸变化最大,存放在23℃环境中尺寸变化最小。加成型硅橡胶EX存放在4℃环境下的印模与其余各温度下存放的印模尺寸变化均有统计学差异(p <0 .05),且尺寸变化最大。
     (3)在湿度70%、温度23℃的环境中,每组印模在1h、6h灌模模型尺寸变化无统计学差异(p﹥0 .05),灌模模型尺寸变化最小。在72h,168h灌模的模型尺寸变化无统计学差异(p﹥0 .05),且灌模的石膏模型尺寸变化最大。其余各时间点下灌模的石膏模型尺寸变化均有统计学差异(p <0 .05)。
     结论
     (1)两种聚醚橡胶PO和IM在湿度70%的环境下存放,能获得最精确的印模;浸泡水中存放,印模膨胀变形最大。亲水性加成型硅橡胶EX印模浸泡在水中精度最高。
     (2)两种聚醚橡胶PO和IM存放在温度在23℃环境时,印模精度最高,聚醚橡胶印模在40℃环境下存放,收缩变形最大。加成型硅橡胶EX在温度4℃下存放,收缩变形最大。
     (3)湿度70%,温度23℃的环境中,聚醚橡胶PO、IM和加成型硅橡胶EX制取的印模,存放1h、6h灌模,模型尺寸变化最小;存放72h、168h灌模,模型尺寸变化最大。
Polyether rubber impression material is a irreversible elastic impression material, which is composed of tetrahydrofuran and ethylene oxide. In the 1960s Twentieth-Century it has been first applied in Germany. After forty years of development, it has become a kind of elastomer impression materials, which is widely used in clinical works. In the manufacturing process of a dental prosthetic restoration, accurate impression and model is the basic conditions for manufacturing restoration. Polyether rubber impression material has many advantages, such as high intensity, good elastic recovery, rapid solidification, high dimensional stability, hydrophilic and etc. In reaction process it does not produce by-products. Polyether rubber impression material is commonly used for manufacture the precision impression, which has no serious undercuts. The accuracy significantly higher than condensation silicone rubber and polysulfide rubber impression materials. However, using polyether rubber impression material still has possibility that restorations might failed because of the deformation. Therefore, to obtain accurate impression has always been a goal and a aspiration of clinicians. In a word, precision and dimensional stability of the impression is extremely important.In clinical work, it is not difficult to discover that after taking out the impression from the patient’s mouth, it will be placed in the perfusion room to fill the impression with relevant materials. From take-out of the impression, to filling in the impression, the mould will be influenced by the indoor temperature, and moisture. Thus, the influences of temperature, moisture and time can't be ignored for impression.
     This research subject firstly took impressions of two polyether rubber impression materials, then measured the influences of different temperature, moisture and time for storage on the precision of impression, at the same time made a comparison with the vinylpolysiloxane impression material processed in the same condition in order to offer experimental proofs to clinical work. In the experimental process, two polyether rubber impression materials--Polyjel(?) NF~(TM) , Impregum~(TM) Soft(3M Company, German)and one hydrophilic vinylpolysiloxane impression material --Express~(TM) XT(3M Company, German)were selected.
     Methods
     This research subject firstly took impressions of two polyether rubber impression materials, then measured the influences of different temperature, moisture and time for storage on the precision of impression, at the same time made a comparison with the vinylpolysiloxane impression material processed in the same condition in order to offer experimental proofs to clinical work. In the experimental process, two polyether rubber impression materials--Polyjel(?) NF~(TM) , Impregum~(TM) Soft(3M Company, German)and one hydrophilic vinylpolysiloxane impression material --Express~(TM) XT(3M Company, German)were selected. Experiment 1 and 2 adopted there three materials respectively and then stored the cavity blocks in different temperatures and humidity for 24 hours, and then measure the changes of linear sizes. Experiment 3 made the metal mould by simulating three-unit fixed bridge and took impressions based on these three materials, then stored the impression in an environmental with 70% humidity and a temperature of 23℃. Next the changing rate of the mould sizes was measured at seven different time points by using universal tool microscope (precision 0.001mm).
     Results
     (1) The dimensional changes of two polyether rubber impression, IM and PO, in five different relative humidity conditions showed statistic significance(p<0.05). When dipping the materials into water, they showed the maximum dimensional changes. And when the humidity was 70%, they showed the minimum dimensional changes. The dimensional changes of hydrophilic vinylpolysiloxane impression material—EX in five different relative humidity conditions showed statistic significance(p <0.05). When the humidity was 30%, it showed the maximun dimensional changes. Once dipping the material into water, it showed the minimun dimensional changes.
     (2) The dimensional changes of two polyether rubber impressions, IM and PO, in five different temperature conditions showed statistic significance(p <0 .05). When the temperature was 40℃, they showed the maximum dimensional changes. And when the temperature was 23℃, they showed the minimum dimensional changes. The dimensional changes of hydrophilic vinylpolysiloxane impression material—EX in five different temperature conditions showed statistic significance(p <0 .05). When the temperature was 4℃, it showed the maximum dimensional changes.
     (3) In an environment with humidity of 70% and a temperature of 23℃, after storing for 1 hour or 6 hours the dimensional changes among each groups of impressions showed no statistical significance(p﹥0 .05). The mould size shrank the fewest after storing for 1 hour or 6 hours. after storing for 72 hour or 168 hours the dimensional changes showed no statistical significance(p﹥0 .05). And at those times the mould size change was the biggest.
     Conclusions
     (1) To store two polyether rubber impressions, PO and IM, in an environment with 70% humidity can acquire the most precise impression. When dipping the materials into water, they showed the maximum dimensional changes. EX which is dipped in the water shows the greatest precision.
     (2) To store two polyether rubber impressions, PO and IM, in an environment with a temperature of 23℃can acquire the most precise impression. Polyether rubber impression showed the maximum dimensional changes at 40℃. EX shows the most shrinkage at 4℃.
     (3) In an environment with 70% humidity and a temperature of 23℃, using polyether rubber impression (PO and IM) and hydrophilic vinylpolysiloxane impression (EX) materials, if filling in the mould 1 or 6 hours after taking it, the plaster cast shows the smallest changing percentage in size; if filling in the mould 72 or 128 hours after taking it, the plaster cast shows the biggest changing percentage in size
引文
[1]. W.J.Finger. Effect of storage time and ambient humidity on accuracy of dental elastomeric impression materials. Quintessence, 1988, 19(11): 827-832
    [2].徐君伍《,口腔修复学》,第4版,北京,人民卫生出版社,2001,157-158
    [3].陈治清,《口腔材料学》,第3版,北京,人民卫生出版社,2005,35-45
    [4]. The glossary of prosthodontic terms. J Prosthet Dent 2005,94(1):10-92
    [5].徐恒昌,《口腔材料学》,第1版,北京,北京大学出版社,2005,34-35
    [6]. Herfort TW,Gerberich WW,Macosko CW et al. Viscosity of elastomeric impression materials. J Prosthet Dent.1977,38(4):396-404.
    [7].赵信义《,牙科修复材料学》,第1版,西安,世界图书出版公司,2005:226-228
    [8]. Kess RS, Combe EC, Sparks BS et al. Effect of surface treatments on the wettability of vinylpolysiloxane impression materials.J Prosthet Dent, 2000,84(1):98-102.
    [9]. Berg JC,Johnson GH,Lepe X et al.Temperature effects on the rheological properties of current polyether and polysiloxane impression materials during setting.J Prosthet Dent, 2003, 90(2):150-161
    [10]. Lloyd CH, Scrimgeour S N, Brown D et al. Dental materials:1995 l iterature review.Journal of Dentistry,1997, 25(3):173-208
    [11]. Meiners H,Lehmann KM .Klinische Materialkunde für Zahnarzte.Carl Hanser Verlag, 1998.
    [12]. (O|¨)dman PA,Jemt TM.Accuracy of impression materials in a semi- clinical model.Dental Materials ,1988,4(2):64-67
    [13]. Mondon M, Ziegler Ch.,Reusch B. Surface Wettability during the Curing Process of Impression Materials.J Dent Res, 2001,80:113..
    [14]. Langenwalter EM., Aquilino SA.,Turner KA.The dimensional stability of elastomeric impression materials following disinfection.J Prosth Dent,1990,63:270-276
    [15]. Lee H, Hochstedler JL,Ercoli C. The accuracy of implant impressions: a systematic review.J Prosthet Dent. 2008, 100(4):285-91.
    [16]. Grundke K,Michel S,Knispel G et al. Wettability of silicone and polyether impression materials:Characterization by surface tension and contact angle measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008, 20(1-3):598-609
    [17]. Craig RG. Review of dental impression materials. Adv Dent Res 1988,2(1):51-64.
    [18]. Hembree H, Andrews JT.Accuracy of a polyether impression material. Ark Dent J, 1974, 47(6):1-10.
    [19]. Anusavice K J.Phillips' Science of dental materials . Philadelphia; 1996, 4- 5
    [20]. Espe Dental AG (Hrsg.). Precision Impression– A Guideline for Theory and Practice. 1999, 62
    [21]. Ciesco JN,Malone WF,Sandrick JL.Comparison of elastomeric impression materials used in fixed prosthodontics. J Prosthet Dent 1981,45:89-94.
    [22]. J?rgensen KD. Thermal expansion of additional polymerization (TypeⅡ) silicone impression materials. Aust Dent J 1982,27:377-81.
    [23]. Kwang-Mahn Kim,Jong-Seok Lee,Kyoung-Nam Kim et al. Dimensio- nal change s of dental impression materials by thermal changes .JBiomed Mater Res.2001, 58(3):217-220
    [24]. Fano V,Gennari PU,Ortalli I.Dimensional stability of silicone-base impression materials. Dental Materials 1992, 8(2): 105-9
    [25]. de Araujo PA,Jorgensen KD.Improved accuracy by reheating addition- reaction silicone impressions.J Prosthet Dent 1986,55:11-2.
    [26]. Corso M, Abanomy A, Di Canzio J .The effect of temperature changes on the dimensional stability of polyvinyl siloxane and polyether impression materials.J Prosthet Dent. 1998,79(6):626-31.
    [27].頡慧菲.储存环境及时间对硅橡胶印模精度影响的实验研究.第四军大学大学硕士学位论文.2007
    [28]. Shiqeto N,Murata H,Hamada T.Evaluation of the methods for dislodging the impression tray affecting the dimensional accuracy of the abutments in a complete dental arch cast.J Prosthet Dent,1989, 61(1):54-58.
    [29]. Kanehira. M, Finger WJ,Endo T et al.Volatilization of components from and water absorption of polyether impressions. Journal of Dentistry,2006,34(2):134-138.
    [30]. Tjan AH,Nemetz H,Nguyen LT,et al.Effect of tray space on the accuracy of monophasic polyvinyl silocane impressions. Prosthet Dent.1992,68(1):19-28.
    [31]. Lepe X, Johnson GH, Berg JC et al. Surface characteristics of polyether and addition silicone impression materials after long-term disinfection. J Prosthet Dent ,1995,74(2):181-186.
    [32]. Peutzfeldt A,Asmussen E.Effect of disinfecting solutions on accuracy of alginate and elastomeric impressions, Scand.Dent Res 1989,97:470-475
    [33]. Phillips K,Aw TC,Johnson GH, Accuracy of Three Monophase Impression Materials with Immersion Disinfection, AADR, 2001,1678
    [34]. Harrison A.Prosthodontic techniques and the timing of complete denture a survey.J. Prosthet.Dent. 1977,37:274–279.
    [35]. Harrison A,Huggett R,Murphy WM.Complete denture construction in general dental practice: an update of the 1970 survey. Br Dent J.1990,169:159-163
    [36]. Petrie CS,Walker MP,Williams,KA Surveys of US complete prostho- dontists and dental schools on the current materials and. methods for final impressions for complete denture prosthodontics.J.Prosthodont. 2005,14 (4),253–262.
    [37]. Hydrophilically modified curable silicone impression material. USP.2001,03-13
    [38]. Nissan J,Laufer BZ.,Brosh T.Accuracy of three of polyvinylsiloxane putty-wash impression techniques.J.Prosthet.Dent. 2000,93 (6), 530–5 39.
    [39]. Christensen GJ.Impression materials for complete and partial denture prosthodontics.Dent. Clin.North Am.1984,28 (2),223–237.
    [40]. CheeDT,Donovan T.Polyvinylsiloxane impression materials: a review of properties and techniques.J.Prosthet.Dent. 1992,68: 728–732
    [41]. Bell JW,Davies EH.,Fraunhofer JA et al. The dimensional changes of elastomeric impression materials under various conditions of humidity. Journal of Dentistry,1976,4(2)73-82
    [42]. American National Standards Institute/American Dental Association: Specification No. 19 for dental elastomeric impression materials. J Am Dent Assoc, 1977,94(4):733-741
    [43]. ISO 4823 for Elastomeric impression materials. International Organi- zation for Standardization(ISO) Technical committee: TC 106 / SC 2; 2000
    [44]. Kanehira.M,Finger WJ,Endo T et al. Volatilization of components from and water absorption of polyether impressions. Journal of Dentistry.2006,34(2):134–138.
    [45]. Endo T,Finger WJ.Dimensional accuracy of a new polyether impre- ssion material. Quintessence Int,2006,37(1):47-51.
    [46]. Dunne JT, Zech J.Investigations on the Force Required for Removal of Polyether Impressions.2000, 04:2436
    [47]. Stackhouse JA. The accuracy of stone dies made by rubber impression materials. J Prosthet Dent .1970,24:377-86.
    [48]. Kaloyannides TM, Christidou L. Elasticity of impression materials: IV.Permanent deformation as a function of time. J Dent Res 1975,54:168-73.
    [49]. Philips RW. Science of dental materials. 9th ed .Philadelphia,WB Saunders. 1991, 5-135
    [50]. Kim KN,Craig RG,Koran A. Viscosity of monophase addition silicones as a function of shear rate.J Prosthet Dent. 1992 ,67(6): 8-794
    [51]. McCabe JF, Arikawa H. Rheological Properties of Elastomeric Impression Materials Before and During Setting. J Dent Res 1998.,77(11): 1874-1880,
    [52]. McCabe JF,Arikawa H.Rheological Properties of Elastomeric Impression Materials Before and During Setting.J Dent Res 77(11), 1874-1880, 11/1998.
    [53]. Dunne JT, Zech J. Investigations on the Force Required for Removal ofPolyether Impressions.2000. 04
    [54]. McCabe JF,Carrick TE.Rheological Properties of Elastomers during Setting.J Dent Res,1998,68(8):1218-1222,
    [55]. Jia W,Sorensen JA.Wet Detail Reproduction And Dynamic Contact Angle Of Impression Materials.1679, 2001.
    [56]. Robert J.Luebke Forrest R.Scandrett,Paul E.Kerber The effect of delayed and second pours on elastomeric impression material accuracy J.Pros.Den. 1979 41(5)517-521
    [57]. Herfort TW,Gerberich WW,Macosko CW,Goodkind RJ.Tear strength of elastomeric impression materials.J Prosthet Dent.1978 Jan;39(1):59- 62.
    [58]. Lacy A.M,Fukui H.,Bellman T.et al.Time-dependent accuracy of elastomer impression materials.PartⅡ: polyether,polysulfides,and polyvinylsiloxane.J Prosthet Dent, 1981,45(3):329-333
    [59]. Glen H.Johnson, Robert G.Craig. Accuracy of four types of rubber impression materials compared with time of pour and repeat pour of models. J Prosthet Dent, 1985,53(4): 484-490
    [60]. McMurry J.Fundamentals of organic chemistry.4th ed.Pacific Grove, CA;Brooks/Cole Publishing Co. 1998,36-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700