温敏性壳聚糖/甘油磷酸钠栓塞猪脑动静脉畸形模型的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑动静脉畸形(cerebral arteriovenous malformation,cAVM)是一种较常见的脑血管发育异常所致的先天性脑血管病。多在40岁以下的中青年发病,临床表现为颅内出血、癫痫、脑缺血、局部神经功能障碍及头痛。在形态学上,cAVM为一条或数条供血动脉与一条或数条引流静脉间有一异常的畸形血管团,在供血动脉及引流静脉之间有一个或多个瘘口,其间多缺乏毛细血管床,畸形血管团无正常的弹力层和内膜。在血液动力学上,畸形血管团内多处于高血流量,高灌注状态,具有通过低阻力病灶的动静脉分流。长期的高灌注状态使得静脉弹力层异常增厚、缺乏弹性,局部可形成静脉瘤,多发生破裂出血,严重危害患者的健康。因此,对于这些病人通常要进行积极的治疗。
     cAVM治疗方法分为传统手术切除治疗、血管内介入栓塞治疗及放射治疗。其中介入栓塞治疗对患者创伤最小,为患者所青睐。近年来,随着介入材料的更新、栓塞材料的改进以及神经介入医生通过大量的临床实践提高了介入技巧和临床经验。血管内栓塞cAVM已经发展成为切除手术之外最有效的治疗手段之一。但是目前临床应用的栓塞材料均存在局限性,成为制约其疗效的主要因素。
     理想的栓塞材料应具备:1)材料为液体,弥散性良好,能保证足够长的注射时间;2)栓塞效果持久;3)无毒性,无致畸、致癌、致突变;4)有良好的组织相容性;5)易于控制,不黏管;6)在栓塞过程中可见到栓塞剂显影;7)复查时栓塞剂不显影。
     壳聚糖(Chitosan CS)与甘油磷酸钠(Glycerophosphate Salt GP)以一定的比例混合后,在室温23℃下为液态,在生理体温37℃下转变为水凝胶。本研究应用温度敏感性CS/GP水凝胶栓塞猪的脑动静脉畸形模型。
     首先经过显微血管吻合技术建立猪的脑动静脉畸形模型,经过血管造影证实模型是否成功。通过调整壳聚糖的脱乙酰度(Deacetylation Degree DD)、分子量(Mw)及与甘油磷酸钠的体积比,探索二者混合后适合介入栓塞的成胶时间。加入不同浓度及不同产品液态显影剂(ContrastAgent CA)。应用成胶时间适合作为栓塞材料的CS/GP/CA混合液,栓塞猪的脑动静脉畸形模型。栓塞后3天,2周,8周复查血管造影,检查是否存在血管再通现象。行组织学检查,观察栓塞剂是否对血管壁有损害。通过此实验研究,旨在探索一种新型不黏管、能够栓塞脑动静脉畸形的液体栓塞材料。
Objectives
     The goal of this study was to analyze the feasibility of embolization of cerebralarteriovenous malformation by thermosensitive chitosan(CH)/β-glycerophosphate disodiumsalt (β-GP) hydrogels through in vivo/in vitro experiments.
     Methods
     1. To study the effects that thermosensitive chitosan(CH)/β-glycero-phosphate disodiumsalt(β-GP) solution-sol/gel system has on the gelation time and mechanical properties afterdifferent contrast agents (CA) were added at37℃in order to determine contrast agent releasefrom hydrogel.
     2. Nine swines were selected as experimental animals. Cerebral arterio-venous malformationmodel of swines was built with Rete Mirabile(REM)of swines used as nidus, one commoncarotid artery and internal jugular vein anastomosed using microsurgical technique, andexternal carotid artery ligated. The swines were put into three groups with three in one group,and arteriography was operated to common carotid arteries of swines in acute phase(1-3daysafter operation),subacute phase(1-3weeks after operation) and chronic phase(over3weeksafter operation). This is to evaluate whether the model has been successfully built througharteriography.
     3. Chitosan(CH)/β-glycerophosphate disodium salt (β-GP) with addition of the appropriatecontrast agent(CA) was used to conduct embolization experiment of cerebral arteriovenousmalformation model of swines.
     3.1To prepare2%w/v chitosan and12%w/v β-glycerophosphate disodium salt solution, andto mix it with contrast agent20%v/v Visipaque with their volume ratio of1:1:1at23℃. Toprepare fresh when it will be used.To determine gelation time with inverted tube test.
     3.2To embolize bilateral rete mirabile of swines with chitosan/β-glycerophosphatedisodium salt/Visipaque solution and sol/gel tran-sition system.
     3.2.1Eighteen swines were divided into two groups: Low flow experimental group:One group was nine swines directly embolism on one side of the REM; High flow experimentalgroup: The other group was nine swines embolism on two sides of the REM aftersuccessfully-built cerebral arteriovenous malformation models with common carotid arteryand internal jugular vein anastomosis. To conduct femoral artery puncture with Seldingertechnique, put6F catheter sheath inside femoral artery, insert5F angiography catheterselectively into the other common carotid artery of the anastomosis of blood vessel, injectVisipaque contrast agent using high pressure injector to perform angiography (injection rate4ml/s, dosage6ml) to understand the basics of AP, REM and connected arteries. Change6Fguiding catheter with the head end close to AP, conduct digital subtraction angiography(dosage6ml, rate4ml/min, pressure300mmHg). And then place a Tracker18microcatheter/Seeker14microguidewire combina-tion through guiding catheter superselectively into thestart area of REM via AP. Next, after angiography, conduct superselective angiograms usingnonionic isotonic Visipaque (dosage2ml, rate1ml/min, pressure180mmHg). Injectchitosan/β-glycerophosphate disodium salt/Visipaque solution and sol/gel transition systemthrough a microcatheter (injection rate0.2ml-0.5ml/min, dosage0.3-0.5ml, injection time1.5-3min). In order to observe the degree of embolization, conduct DSA with the injection ofcontrast agent after fluoroscopic observation of the embolization of embolic agent and theflow direction with hand push contrast agent “smoking”during the injection of embolic agent.Continue to inject embolic agent if REM fails to be occluded completely until REM does notdevelop through microcatheter angiography. Use Tracker10microcatheter to enter RA andAA superselectively to conduct superselective angiograms. Inject chitosan/β-glycero-phosphate disodium salt/Visipaque solution and sol/gel transition system(injection rate0.2ml-0.3ml/min, dosage0.1-0.2ml, injection time1.5-3min) until REM does not developthrough guiding catheter angiography. After embolotherapy, slowly withdraw themicrocatheter., press the puncture site for15minutes, and apply sterile pressure dressing.
     3.2.2Low flow experimental animals and high flow experimental group were separately putinto3groups, with3swines in each group. They were re-examined with angiography1week,2weeks and8weeks after embolization respectively to evaluate the existence ofrevascularization.
     3.2.3After re-examinations with angiography1week,2weeks and8weeks afterembolization, the swines in each group were executed with over-dose narcotic amobarbital(100mg/kg), and then were subsequently conducted REM histological examination.
     4. Statistical analysis
     Experimental data are reported as means±SD. Data were analyzed using one wayanalysis of chi square tests with a minimum confidence level (p <0.05) for statisticalsignificance.
     Results
     1. chitosan (CH)/β--glycerophosphate disodium salt (β-GP) hydrogels have goodbiocompatibility, thermosensitivity and high viscosity. The addition of contrast agent ofcertain concentration did not impede the formation of thermosensitive chitosan hydrogels.
     2. The chitosan (CH)/β--glycerophosphate disodium salt (β-GP) solution has high viscosityat23℃, while it is good for the control of injection rate when it forms hydrogels at37℃.
     3. Same volume mixed solution of94%degree of deacetylation (DD) and2%w/v chitosan,12%w/v β--glycerophosphate disodium salt and20%v/v nonionic isotonic Visipaque hasmoderate gelation time at37℃(120.00±1.82s), which is good for embolism injection.
     4. The cerebral arteriovenous malformation model was successfully built throughmicrosurgical formation end-to-end anastomosis arteriovenous fistula between the rightcommon carotid artery and the internal jugular vein. With angiography, it could be seen thatblood flew through three feeding arteries, i.e, ascending pharyngeal artery AP, ramusanastomoticus RA and arteria anastomotica AA. Nidus (bilateral retia mirabilia), throughdraining vein, i.e., right ascending pharyngeal artery and right common carotid artery, goesinto the right internal jugular vein via the anastomotic stoma. It proved that this model wasacute and subacute phase animal model, which can be experimented for new embolismmaterials.
     5. The chitosan (CH)/β--glycerophosphate disodium salt (β-GP) hydrogel embolized thecerebral arteriovenous malformation model of swines, and REM was completely embolized.Eighteen swines of embolism was successful except one swine cause convulsions, stoppage of breathing and death in interventional procedure. Due to the embolization of REM and externalcarotid artery at the same time, one swine was found to develop ipsilateral facial paralysis,masticatory muscle weakness, little intake of food and emaciation.
     6. Angiography was conducted again after1week,2weeks and8weeks of embolization, andrevascularization was not seen.
     7. Histological examination. REM sample was generally found to be gray, tough and easy tobe peeled. Light microscopic examination (HE staining):3days after embolization bloodvessel lumens were filled with hydrogels, the vascular intima remain intact and the necrosis ofit was not seen. No neutrophils in blood vessel lumens or obvious inflammatory reactionswere found.2weeks after embolization scattered macrophages were found through REMlight microscopic exam, blood vessel lumens were still filled with hydrogels, thrombusformed, vascular intima did not drop, slight inflammatory change was found within bloodvessel lumens, scattered lymph cells were discovered in adventitia of blood vessel, thenecrosis of vascular walls was not seen.8weeks after embolization arterioles were still filledwith hydrogels through REM light microscopic exam, slight inflammatory reactions werefound, no necrosis or dropping of vascular intima was found, that is to say inflammatorymacrophages swallowed hydrogels, the vascular intima remain intact, and medial membranestructure remain normal.
     Conclusion
     Thermosensitive chitosan(CH)/β--glycerophosphate disodium salt (β-GP) hydrogels canembolize cerebral arteriovenous malformation model of swines, and have the potential ofbecoming new embolic materials.
引文
[1] Stein BM. Surgical decisions in vascular malformations of the brain. In: Barnett JM, Mohr JP, SteinBM, Yatsu FM, eds. Stroke:Pathophysiology, Diagnosis, and Management. New York, NY:Churchill Livingstone;1992:1093–1133
    [2] Massoud TF, Ji C, Vinuela F, et al. An experimental arteri-ovenous malformation model in swine:anatomic basis and construction technique. AJNR AmJNeuroradiol,1994,15:1537-1545.
    [3] Hecht ST, Horton JA, Kerber CW. Hemodynamics of the central nervous system arteriovenousmalformation nidus during particulate embolization. Neuroradiology,1991,33:62-64.
    [4] Lo EH, Fabrikant J I, Levy RP, et al. An experimental compartmental flow model for assessing thehemodynamic response of intracranial arteriovenous malformations to stereotactic radiosurgery.Neurosurgery,1991,28:251-259.
    [5] Lo EH. A haemodynamic analysis of intracranial arteriovenous malformations. Neurol Res,1993,15(1):51-55.
    [6] Ornstein E, Blesser WB, Young WL, et al. A computer simulation of the hemodynamic effects ofintracranial arteriovenous malformation occlusion. Neurol Res,1994,16:345-352.
    [7] Kailasnath P, Chaloupka JC. Mathematical modeling of AVM physiology using compartmentalnetwork analysis: theoretical considerations and preliminary in vivo validation using a previouslydeveloped animal model. Neurol Res,1996,18:361-366.
    [8] Gao E, Young WL, Ornstein E, et al. A theoretical model of cerebral hemodynamics: application tothe study of arteriovenous malformations. J Cereb Blood Flow Metab,1997,17(8):905-918.
    [9] Hecht ST, Horton JA, Kerber CW. Hemodynamics of the central nervous system arteriovenousmalformation nidus during particulate embolization: computer model. Neuroradiology1991;33:62–64
    [10] Flickinger JC, Kondziolka D, Lunsford LD, et al. Development of a model to predict permanentsymptomatic postradiosurgery injury for arteriovenous malformation patients. ArteriovenousMalformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys,2000,46(5):1143-1148.
    [11] Piotr Orlowski,Paul Summers,J. Alison Noble. Computational modelling for the embolization ofbrain arteriovenous malformations Medical Engineering&Physics34(2012)873–881
    [12] Kerber CW, Flaherty LW. A teaching and research simulator for therapeutic embolization. AJNR AmJ Neuroradiology1980;1:167–169
    [13] Kerber CW. Experimental arteriovenous fistula: creation and percutaneous catheter obstruction withcyanoacrylate. Invest Radiol1975;10:10–17
    [14] Bartynski WS, O’Reilly GV, Forrest MD. High-flow-rate arteriovenous malformation model forsimulated therapeutic embolization. Radiology1988;167:419–421
    [15] Nagasawa S, Kawanishi M, Tanaka H, et al. Hemodynamic study of arteriovenous malformationsusing a hydraulic model. Neurol Res1993;15:409–412
    [16] Park S, Yoon H, Suh DC, et al. An arteriovenous malformation model for testing liquid embolicmaterials. AJNR Am J Neuroraidol,1997,18:1892-1896.
    [17] Tokiwa K, Miyasaka Y, Irikura K, et al. The effects of a carotid jugular fistula on cerebral bloodflow in the cat: an experimental study in the chronic period. Neurol Res,1995,17(4):297-300.
    [18] Kaichi P, Chaloupka JC. Mathematical modeling of AVM physiology using compartmental networkanalysis: theoreticalconsiderations and preliminary in vivo validation using a previously developedanimal model. Neurol Res,1996,18:361-366.
    [19] Hassler W. Hemodynamic aspects of cerebral angiomas. Acta Neurochir Suppl (Wein),1986,37:121-136.
    [20] Sekhon LH, Morgan MK, Spence I, et al. Normal perfusion pressure breakthrough: the role ofcapillaries. J Neurosurg,1997,86:519-524.
    [21] Morgan MK, Anderson RA, Sundt TM. A model of the pathophysiology teriovenous malformationsby a carotid-jugular fistula in the rat. Brain Res,1989,496:241-250.
    [22]毛青,丁美修,郭智霖,等.多普勒技术辅助评判脑血管自动调节功能的实验研究.上海医学,1997,20(8):454-456.
    [23] Yamada M, Miyasaka Y, Irikura K, et al. A canine model of intracranial arteriovenous shunt withacute cerebral venous hypertension. NeuroRes,1998,20(1):73-78.
    [24] Massoud TF, Ji C, Vinuela F, et al. An experimental arteri-ovenous malformation model in swine:anatomic basis and construction technique. AJNR AmJNeuroradiol,1994,15:1537-1545.
    [25] Massoud TF, Ji C, vinuela F, et al. Laboratory simulations and training in endovascularembolotherapy with a swine arteriovenous malformation model. AJNR AmJ Neuroradiol,1996,17:271-279.
    [26] Murayama Y, Massoud TF, Vin. uela F. Transvenous hemodynamic assessment of experimentalarteriovenous malformations: Doppler guidewire monitoring of embolotherapy in a swine modelStroke,1996,27:1365-1372.
    [27] Chaloupka JC, Vinuela F, Robert J, et al. An in vivo arteriovenous malformation model in swine:preliminary feasibility and natural history study. AJNR AmJ Neuroradiol,1994,15(5):945-950.
    [28]王大明,凌锋,等.颅内动静脉畸形动物模型制作与栓塞的实验研究.中华外科杂志,2001.3:179-181.
    [29] Qian Z, Climent S, Maynar M, et al. A simplified arterio-venous malformation model in sheep:feasibility study. AJNR Am J Neuroradiol,1999,20(5):765-770.
    [30]亓卫国,吴中学,等.介入技术结合手术建立了简易绵羊脑动静脉畸形初步研究.中华神经外科杂志,2001,1:41-43.
    [31] Becker TA, Kipke DR, Preul MC et al. In vivo assessment of calcium alginate gel for endovascularembolization of a cerebral arteriovenous malformation model using the Swine rete mirabile[J].Neurosurgery,2002,51(2):453-458.
    [32]王大明,凌锋,李萌,等.脑动静脉畸形动物模型的初步建立.中华神经外科杂志,1997:335.
    [33] Dieguez G, Garcia AL, Conde MV, et al. In vivo studies of the carotid rete mirabile ofArtiodactyla[J]. Cardiovasc Res,1987,33:143-154.
    [34] Massoud TF, Ji C, Guglielmi G, et al. Endovascular treatment of arteriovenous malformations withselective intranidal occlusion by detachable platinum electrodes: technical feasibility in a swinemodel. AmJ Neuroradiol,1996,17:1459-1466.
    [35] Klisch J, Yin L, Requejo F, et al. Liquid poly-hydroxyethyl methacrylate embolization ofexperimental arteriovenous malformations: feasibility study[J]. AJNR,2002,23:422-429.
    [36] Siekmann R, Wakhloo AK, Lieber BB, et al. Modification of a previously described arteriovenousmalformation model in the swine: endovascular and combined surgicalPendovascular constructionand hemodynamics[J]. AJNR,2000,21:1722-1725.
    [37]盛希忠,刘作勤.猪头颈部动脉血管解剖学及其在脑动静脉畸形研究中的意义.实验动物科学与管理,2005,(22):4:13-17.
    [38] Terada T, Nakamura Y, akai K et al. Emobolization of arteiovenous malformations wit hyperipheralaneurysms using et hylenevinyl alcohol copolymer: Report of t hree cases. J Neurosurg,1991,75(4):655-660.
    [39] Sadato A, Taki W, Ikada Y, et al. Experimental study and clinical use of poly vinyl acute tatemulsionas liquid embolization material. Neuroradiology,1994,36(8):634-641.
    [40] Wright KC, Greff RJ, Price RE. Experimental evaluation of celulose acetate NF and et hyleneinylalcohol copolymer for arterial embolization. JaVa Interv Radiol,1999,10(9):1207-1218.
    [41] Hofmeister C,Stapf C,Hartmann A,et a1.Demosraphic.morphological,andclinical characteristicsof1289patients with brain artefiovenous malformation[J].Stroke,2003,31(6):1307一1310.
    [42] Shin M.Kawamoto S,Kurita H,et a1.Retrospective analysis of a10-year experience of stereomcticradio surgery for arteriovenous malformation in children and adolescents[J].J Neurosurrgery,2002,97(4):779-784.
    [43] Colombo F, Cavedon C, Casentini L, et al: Early results of CyberKnife radiosurgery forarteriovenous malformations. J Neurosurg.2009Oct;111(4):807-19.
    [44] Natarajan SK, Ghodke B, Britz GW, et al: Multimodality treatment of brain arteriovenousmalformations with microsurgery after embolization with onyx: single-center experience andtechnicalnuances.Neurosurgery.2008Jun;62(6):1213-25;1225-6.
    [45]马廉亭,余泽,秦尚振,等.经导管注入真丝微粒和线段治疗动静脉畸形.中华外科杂志,1991,29:516
    [46] Sorimachi T, Koike T, Takeuchi S,et al: Embolization of cerebral arteriovenous malformationsachieved with polyvinyl alcohol particles: Angiographic reappearance and complications. AJNR AmJ Neuroradiol199920:1323–1328.
    [47] Taylor CL,Dutton K,Rappard G,et a1.Complications of preoperative embolization ofcerebra]arteriovenous malformatiom[J].J Neurosurg,2004,100(5):810-812.
    [48] Sasake T,Kurita H,Saito T,et a1.Arteriovenous malformations in the basal ganglia and dmlmu8:management and results inlOlcases[J].J Neurosurg,2005,88(2):285—292.
    [49]肖福顺,吴中学,宋家仁,等.应用钨丝弹簧圈栓寒后在体内溶解现象的临床观察.中华神经外科杂志,2006,23:138-140.
    [50] Wildus DM, Lammert GK, Brant A, et al. In vivo evaluation of iophendylate-cyanoacrylate mixtures.Radiology1992;185:269–273
    [51] Brothers MF, Kaufmann JCE, Fox A, et al. N-butyl2-cyanoacry-late, substitute for IBCA ininterventional neuroradiology: his-topathologic and polymerization time studies. AJNR Am JNeuroradiology1989;10:777–786
    [52] Murayama Y,Vinueh F,Duekwiler G,et a1.Non-adhesive liquid embolic agent for the treatmentof cerebral AVM:clinical results at UCLA[J].Intervent Neumradiol,1999,5(Suppl1):78-79.
    [53] Weber W,Kis B.Siekmann R,et a1.Endovascular treatment of intraeranial arteriovenousmalformations with onyx:technieal aspects[J].AJNR,2007.28:371-377.
    [54] Panagiotopoulos V,Gizewski E,Asgari S,et a1.Embolization of intracranial arteriovenousmalformations with ethylene-vinyl alcohol copolymer(Onyx)[J].AJNR,2009,30:99-106.
    [55] Yamashita K,Taki W,Iwata H,et al.A cationic polymer,Eudragit-E,as a new liquid embolicmaterial for arteriovenous malformations [J]. J Neuroradiology,1996,38(Suppl1):15l-156.
    [56] Mandai S,Kinugasa.K,OhmotoT.Direct thrombosis of neurysms with cellulose acetatepolymer.Par tI:Results of thrombosis in experimental aneurysms[J]. J Neurosurg,1992,77:497-500.
    [57] Kazekawa K,Tomonaga M, Iwata H,et al.Characteristics of a New Liquid Material forArteriovenous Malformations (HEMA-MMA).[J].Intervent Neumradiol.1997,3(Suppl2)25-27
    [58] Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drugdelivery systems. Journal of Controlled Release,2001,73(2-3):121-136.
    [59] Matsumaru Y,Hyodo A,Nose T,et al.Application of thermosensitive polymers as new embolicmaterial for intravascular neurosurgery.[J]. J Biomater Sci Polym Ed,1996,7(9):795-804.
    [60] Sheng XZ, Liu ZQ Wu LB, et al. Technical feasibility and histopathologic studies ofpoly(N—isopropylacrylamide)as a non—adhesive embolic agent in Swine rete mirabile[J].ChinMed J(Eng),2006,119(5):391-396.
    [61]陈益清,孙多先,刘静怡,等.微囊化海藻酸离子移变凝胶的制备、结构与性能[J].高等学校化学学报,2003,24(1):117-120.
    [62]刘群,薛伟明,于炜婷,等.海藻酸钠-壳聚糖微胶囊膜强度的研究[J].高等学校化学学报,2002,23(7):1417-1420.
    [63] Becker TA, Preul MC, Bichard WD,et al.Preliminary investiment of calcium alginate gel as abiocompatible material for endovascular aneurysm embolization in vivo. Neurosurgery2007,60:1119-1128.
    [64] Becker TA, Preul MC, Bichard WD, et al. Calcium alginate gel as a biocompatible material forendovascular arteriovenous malformation embolization:Six-month results in an animal model.Neurosurgery200556:793-801.
    [65] Becker TA, Collins VE, Kipke DR:Endovascular occlusion of vascular defects utilizing thebiocompatible and two component polymer:Calcium alginate. US Patent6592566,2003July15.
    [66] Becker TA, Kipke DR, Preul MC, et al. In vivo assessment of calcium alginate gel for endovascularembolization of a cerebral arteriovenous malformation model using the swine rete mirabile.Neurosurgery200251:453-459.
    [67] Becker TA, Kipke DR. Flow properties of liquid calcium alginate polymer injected throught medicalmicrocatheters for endovascular embolization. J Biomed Mater Res200261:533-540.
    [68] Becker TA, Kipke DR, Brandon T, et al.Calcium alginate gel:A biocompatible and mechanicallystable polymer for endovascular embolization. J Biomed Mater Res200154:76-86.
    [69] Soga Y, Preul MC, Furuse M, et al: Calcium alginate provides a high degree of embolization inaneurysm models: a specific comparison to coil packing. Neurosurgery.2004Dec;55(6):1401-9.
    [70] JHong JS, Vreeland WN, Lacerda SH, et al:Liposome-Templated Supramolecular Assembly ofResponsive Alginate Nanogels. Langmuir.2008Apr15;24(8):4092-6.
    [71] Eric Westhaus, Phillip B. Messersmith:Triggered release of calcium from lipid vesicles: abioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials22(2001)453}462.
    [72] Phillip B. Messersmith, Steven Starke:Thermally Triggered Calcium Phosphate Formation fromCalcium-Loaded Liposomes. Chem. Mater.1998,10,117-124.
    [73] Cui H, Messermith PB. Thermally triggered gelation of alginate for controlled release [M]. in:I McCulloch, S.W Shalaby(Eds.),Tailored Polymeric Materials For Controlled Delivery Systems.Washington. DC: American Chemicalsociety,1998:203-211
    [74] Kumar R, Muzzarelli RAA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives.Chem Rev2004;104:6017-84
    [75] Pal K, Behera B, Roy S, et al. Chitosan based delivery systems on a length scale: nano to macro.Soft Mater2011;11:125-42
    [76] Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinkedchitosan hydrogels for biomedical applications. Eur J Pharm Biopharm2004;57:19-34
    [77] Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan formbiodegradable gels in situ. Biomaterials2000;21:2155-61
    [78] Chenite A, Chaput C, Combes C, et al. BioSyntech LC, assignee. Temperature-controlledpH-dependent formation of ionic polysaccharide gels. US6344488;1999
    [79] Ruel-Gariepy E, Chenite A, Chaput C, et al.Characterization of thermo-sensitive chitosan gels forthe sustained delivery of drugs. Int J Pharm2000;203:89-98
    [80] Cho JY, Heuzey MC, Begin A, Carreau PJ. Physical gelation of chitosan in the presence ofbeta-glycerophosphate: the effect of temperature. Biomacromolecules2005;6:3267-75
    [81] Filion D, Buschmann MD. Chitosan-Glycerol-Phosphate (GP) gels release freely diffusible GPand possess titratable fixed charge. Carbohydr Polym2013;98:813-19
    [82] Lavertu M, Filion D, Buschmann MD. Heat-induced transfer of protons from chitosan toglycerol phosphate produces chitosan precipitation and gelation. Biomacromolecules2008;9:640-50
    [83] Crompton KE, Forsythe JS, Horne MK, et al. Molecular level and microstructural characterisationof thermally sensitive chitosan hydrogels.SoftMater2009;5:4704-11
    [84] Kempe S, Metz H, Bastrop M, et al. Characterization of thermosensitive chitosan-basedhydrogels by rheology and electron paramagnetic resonance spectr-oscopy. Eur J Pharm Biopharm2008;68:26-33
    [85] Cho J, Heuzey MC, Begin A, Carreau PJ. Chitosan and glycerophosphate concentration dependenceof solution behaviour and gel point using small amplitude oscillatory rheometry. Food Hydrocoll2006;20:936-45
    [86] Tsai ML, Chang HW, Yu HC, et al. Effect of chitosan characteristics and solution conditions ongelation temperatures of chitosan/2-glycerophosphate/nanosilver hydrogels. Carbohydr Polym2011;84:1337-43
    [87] Chang HW, Lin YS, Tsai YD, Tsai ML. Effects of chitosan characteristics on the physicochemicalproperties, antibacterial activity, and cytotoxicity of chitosan/2-glycerophosphate/nanosilverhydrogels. J Appl Polym Sci2013;127:169-76
    [88] Dang QF, Zou SH, Chen XG, et al. Characterizations of chitosan-based highly porous hydrogel-theeffects of the solvent. J Appl Polym Sci2012;125:E88-98
    [89] Cho J, Heuzey MC. Dynamic scaling for gelation of a thermosensitive chitosan-b-glycerophosphatehydrogel. Colloid Polym Sci2008;286:427-34
    [90] Kempe S, Metz H, Bastrop M, et al.Characterization of thermosensitive chitosan-based hydrogelsby rheology and electron paramagnetic resonance spectroscopy. Eur J Pharm Biopharm2008;68:26-33
    [91] Dang QF, Yan JQ, Li JJ, et al. Controlled gelation temperature, pore diameter and degradation of ahighly porous chitosan-based hydrogel. Carbohydr Polym2011;83:171-8
    [92] Berger J, Reist M, Chenite A, et al. Pseudo-thermosetting chitosan hydrogels for biomedicalapplication. Int J Pharm2005;288:197-206
    [93] Kim S, Nishimoto SK, Bumgardner JD, et al. A Chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials2010;31:4157-66
    [94] Schuetz YB, Gurny R, Jordan O. A novel thermoresponsive hydrogel based on chitosan. Eur JPharm Biopharm2008;68:19-25
    [95] Jarry C, Leroux JC, Haeck J, Chaput C. Irradiating or autoclaving chitosan/polyolsolutions: effectonthermogelling chitosan-beta-glycerophosphate systems. Chem Pharm Bull (Tokyo)2002;50:1335-40
    [96] Ahmadi R, de Bruijn JD. Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. JBiomed Mater Res2008;86A:824-32
    [97] Jarry C, Chaput C, Chenite A, et al. Effects of steam sterilization on thermogelling chitosan-based gels. J Biomed Mater Res2001;58:127-35
    [98] Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan: a versatile semi-synthetic polymer inbiomedical applications. Prog Polym Sci2011;36:981-1014
    [99] Topp H, Hochfeld O, Bark S, et al. Glycerophosphate does not interact with components ofparenteral nutrition. Pharmacology2011;88:114-20
    [100] Zhou HY, Zhang YP, Zhang WF, Chen XG. Biocompatibility and characteristics of injectablechitosan-based thermosensitive hydrogel for drug delivery. Carbohydr Polym2011;83:1643-51
    [101] Varum KM, Myhr MM, Hjerde RJN, Smidsrod O. In vitro degradation rates of partiallyN-acetylated chitosans in human serum. Carbohydr Res1997;299:99-101
    [102] Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosanmatrices with different degrees of N-acetylation. Carbohydr Res2005;340:2403-10
    [103] Tian M, Yang Z, Kuwahara K, et al. Delivery of demineralized bone matrix powder using athermogelling chitosan carrier. Acta Biomater2012;8:753-62
    [104] Peng Y, Li J, Li J, et al. Optimization of thermosensitive chitosan hydrogels for the sustaineddelivery of venlafaxine hydrochloride. Int J Pharm2013;441:482-90
    [105] Berrada M, Serreqi A, Dabbarh F, et al. A novel non-toxic camptothecin formulation for cancerchemotherapy. Biomaterials2005;26:2115-20
    [106] Mulik R, Kulkarni V, Murthy RSR. Chitosan-based thermosensitive hydrogel containing liposomesfor sustained delivery of cytarabine. Drug Dev Ind Pharm2009;35:49-56
    [107] Gordon S, Teichmann E, Young K, et al. In vitro and in vivo investigation of thermosensitivechitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci2010;41:360-8
    [108] Huang Z, Feng Q, Yu B, Li S. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C2011;31:683-7
    [109] Huang LK, Chen WM, Lin WY, et al. Local delivery of rhenium-188colloid into hepatic tumor sitesin rats using thermo-sensitive chitosan hydrogel: effects of gelling time of chitosan as deliverysystem. J Radioanal Nucl Chem2011;290:39-44
    [110] Cheng YH, Yang SH, Su WY, et al. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogelsas a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A2010;16:695-703
    [111]盛希忠,刘作勤.猪头颈部血管解剖学研究及其在人脑血管病研究中的意义.中国比较医学杂志.2006年16卷04期208-210
    [112] Olshaker JS, Brown CK, Arthur DC, et al. Animal procedure laboratory surveys: use of the animallaboratory to improve physician confidence and ability. J Emerg Med1989;7:593–597
    [113] Kerber CW, Flaherty LW. A teaching and research simulator for therapeutic embolization. AJNR AmJ Neuroradiology1980;1:167–169
    [114] Massoud TF, Ji C, Vin uela F, et al. An experimental arteriovenous malformation model in swine:anatomic basis and construction technique. AJNR Am J Neuroradiol1994;15:1537–1545
    [115] Geremia GK, Hoile RD, Haklin MF, et al. Balloon embolization of experimentally createdaneurysms: an animal training model.AJNR Am J Neuroradiol1990;11:659–662
    [116] Guglielmi G, Ji C, Massoud TF, et al. Experimental saccular aneurysms, II: a new model in swine.Neuroradiology1994;36:547–550
    [117] Massoud TF, Guglielmi G, Ji C, et al. Experimental saccular aneurysms, I: a review of surgicallyconstructed models and their laboratory applications. Neuroradiology1994;36:537–546
    [118] Kerber CW. Experimental arteriovenous fistula: creation and percutaneous catheter obstruction withcyanoacrylate. Invest Radiol1975;10:10–17
    [119] Kerber CW, Bank WO, Comwell LD. Calibrated leak balloon microcatheter: a device for arterialexploration and occlusive therapy. AJR Am J Roentgenol1979;132:207–212
    [120] Anderson JH, Wallace S, Gianturco C. Transcatheter intravascular coil occlusion of experimentalarteriovenous fistulas. AJR Am J Roentgenol1977;129:795–798
    [121] Hecht ST, Horton JA, Kerber CW. Hemodynamics of the central nervous system arteriovenousmalformation nidus during particulate embolization: computer model. Neuroradiology1991;33:62–64
    [122] Nagasawa S, Kawanishi M, Tanaka H, et al. Hemodynamic study of arteriovenous malformationsusing a hydraulic model. Neurol Res1993;15:409-412
    [123] Cheong J. The use of animals in medical education: a question of necessity vs. desirability. TheorMed1989;10:53–57
    [124] Lylyk P, Vinuela F, Vinters HV, et al. Use of a new mixture for embolization of intracranial vascularmalformations: preliminary experimental experience. Neuroradiology1990;32:304–310
    [125] Cowley MJ, Faxon DP, Holmes DR. Guidelines for training, credentialing, and maintenance ofcompetence for the performance of coronary angioplasty. Cathet Cardiovasc Diag1993;30:1–4
    [126] Wildus DM, Lammert GK, Brant A, et al. In vivo evaluation of iophendylate-cyanoacrylatemixtures. Radiology1992;185:269–273
    [127] Bartynski WS, O’Reilly GV, Forrest MD. High-flow-rate arteriovenous malformation model forsimulated therapeutic embolization. Radiology1988;167:419–421
    [128] Dion JE. Principles and methodology. In: Vin uela F, Halbach VV, Dion J, eds. InterventionalNeuroradiology: Endovascular Therapy of the Central Nervous System. New York, NY: Raven Press1992:1–15
    [129] Vinuela F, Fox AJ, Debrun G, et al. Preembolization superselective angiography: role in thetreatment of brain arteriovenous malformations with isobutyl-2cyanoacrylate. AJNR Am JNeuroradiol1984;5:765–769
    [130] Fatimi A, Coutu JM, Cloutier G, Lerouge S. Rheological studies of an injectable radiopaquehydrogel for embolization of abdominal aortic aneurysms. Adv Mater Res2012;409:129–135.
    [131] Winter HH, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point.J Rheol1986;30:367–382.
    [132] Seron A, Moine L, Laurent A, Wassef M, Guiffant G, Flaud P, Labarre D. An embolic gellingsolution based on acrylic copolymers in ethanol for the treatment of arteriovenous malformations.Biomaterials2009;30:3436–3443.
    [133] Coviello T, Alhaique F, Parisi C, Matricardi P, Bocchinfuso G, Grassi M. A new polysaccharidic gelmatrix for drug delivery: Preparation and mechanical properties. J Control Release2005;102:643–656.
    [134] Jones DS, Woolfson AD, Djokic J, Coulter WA. Development and mechanical characterization ofbioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontaldiseases. Pharm Res1996;13:1734–1738.
    [135] Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part1.Structure, gelation rate and mechanical properties. Biomaterials2001;22:511–521.
    [136] Cho J, Heuzey M-C, Bein A, Carreau PJ. Chitosan and glycerolphosphate concentration dependenceof solution behaviour and gel point using small amplitude oscillatory rheometry. FoodHydrocolloids2006;20:936–945.
    [137] Cho J, Heuzey M-C, Bein A, Carreau PJ. Viscoelastic properties of chitosan solutions: Effect ofconcentration and ionic strength. J Food Eng2006;74:500–515.
    [138] Lavertu M, Filion D, Buschmann MD. Heat-induced transfer of protons from chitosan to glycerolphosphate produces chitosan precipitation and gelation. Biomacromolecules2008;9:640–650.
    [139] Ahmadi R, de Bruijn JD. Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. JBiomed Mater Res Part A2008;86A:824–832.
    [140] Ruel-Gariepy E, Chenite A, Chaput C, Guirguis S, Leroux JC. Characterization of thermosensitivechitosan gels for the sustained delivery of drugs. Int J Pharm2000;203:89–98.
    [141] Ganji F, Abdekhodaie MJ, Ramazani SA. Gelation time and degradation rate of chitosan-basedinjectable hydrogel. J Sol-Gel Sci Technol2007;42:47–53.
    [142] Stammen JA, Williams S, Ku DN, Guldberg RE. Mechanical properties of a novel PVA hydrogel inshear and unconfined compression. Biomaterials2001;22:799–806.
    [143] Ho E, Lowman A, Marcolongo M. Synthesis and characterization of an injectable hydrogel withtunable mechanical properties for soft tissue repair. Biomacromolecules2006;7:3223–3228.
    [144] Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalentlyand ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm2004;57:19–34.
    [145] Fatimi A, Chabrot P, Berrahoume S, Coutu JM, Soulez G, Lerouge S. A new injectable radiopaquechitosan-based sclerosing embolizing hydrogel for endo-vascular therapies. Acta Biomater2012;8:2712–2721.
    [146] Loh Y, Duckwiler GR. A prospective, multicenter, randomized trial of the Onyx liquid embolicsystem and N-butyl cyanoacrylate embolization of cerebral arterio-venous malformations. JNeurosurg2010;113:733–741.
    [147] Bosman WMPF, Vlot J, van der Steenhoven TJ, van den Berg O, Hamming JF, de Vries AC, BromHLF, Jacobs MJ. Aortic customize: An in vivo feasibility study of a percutaneous technique for therepair of aortic aneurysms using injectable elastomer. Eur J Vasc Endovasc Surg2010;40:65–70.
    [148] Dompmartin A, Blaizot X, Theron J, Hammer F, Chene Y, Labbe D, Barrellier MT, Gaillard C,Leroyer R, Chedru V, Ollivier C, Vikkula M, Boon LM. Radio-opaque ethylcellulose-ethanol is asafe and efficient sclerosing agent for venous malformations. Eur Radiol2011;21:2647–2656.
    [149] Barnett BP, Gailloud P. Assessment of embogel-A selectively dissolvable radiopaque hydrogel forembolic applications. J Vasc Intervent Radiol2011;22:203–211.
    [150] Nevala T, Biancari F, Manninen H, Aho PS, Matsi P, Makinen K, Roth WD, Ylonen K, Lepantalo M,Perala J. Type II endoleak after endovascular repair of abdominal aortic aneurysm: Effectiveness ofembolization. Cardiovasc Intervent Radiol2010;33:278–284.
    [151] Conrad MF, Adams AB, Guest JM, Paruchuri V, Brewster DC, LaMuraglia GM, Cambria RP.Secondary intervention after endovascular abdominal aortic aneurysm repair. Ann Surg2009;250:383–389.
    [152] Grisafi JL, Boiteau G, Detschelt E, Potts J, Kiproff P, Muluk SC. Endoluminal treatment of type IAendoleak with Onyx. J Vasc Surg2010;52:1346–1349.
    [153] Bakar B, Oruckaptan HH, Hazer BD, Saatci I, Atilla P, Kilic K, Muftuoglu SF. Evaluation of thetoxicity of onyx compared with n-butyl2-cyanoacrylate in the subarachnoid space of a rabbit model:An experimental research. Neuroradiology2010;52:125–134.
    [154] Natarajan SK, Born D, Ghodke B, Britz GW, Sekhar LN. Histopathological changes in brainarteriovenous malformations after embolization using Onyx or N-butyl cyanoacrylate. J Neurosurg2009;111:105–113.
    [155] Fatimi A, Chabrot P, Berrahoume S, Coutu JM, Soulez G, Lerouge S. A new injectable radiopaquechitosan-based sclerosing embolizing hydrogel for endo-vascular therapies. Acta Biomater2012;8:2712–2721.
    [156] Rinaudo M. Properties and degradation of selected polysaccharides: Hyaluronan and chitosan.Corros Eng Sci Technol2007;42:324–334.
    [157] Coma V. Syste`me gelifiant de chitosane. In: Crini G, Badot PM, Guibal E, editors. Chitine etchitosane: Du biopolymer application. Besanc on: Presse Universitaire de Franch-Compte2009.pp145–167.
    [158] Gabriel RA, Kim H, Sidney S, et al: Ten-year detection rate of brain arterio-venous malformationsin a large, multiethnic, defined population. Stroke.2010Jan;41(1):21-6.
    [159] Kim H, Pawlikowska L, Chen Y, et al: Brain arteriovenous malformation biology relevant tohemorrhage and implication for therapeutic development. Stroke.2009Mar;40(3Suppl):S95-7.
    [160] Colombo F, Cavedon C, Casentini L,et al: Early results of CyberKnife radiosurgery forarteriovenous malformations. J Neurosurg.2009Oct;111(4):807-19.
    [161] Natarajan SK, Ghodke B, Britz GW, et al: Multimodality treatment of brain arteriovenousmalformations with microsurgery after embolization with onyx: single-center experience andtechnical nuances. Neurosurgery.2008Jun;62(6):1213-25; discussion1225-6.
    [162] Sorimachi T, Koike T, Takeuchi S, et al: Embolization of cerebral arterio-venous malformationsachieved with polyvinyl alcohol particles: Angiog-raphic-reappearance and complications. AJNRAm J Neuroradiol199920:1323–1328.
    [163] Lieber BB, Wakhloo AK, Siekmann R, et al. Acute and chronic swine rete arteriovenousmalformation models: effect of ethiodol and glacial acetic acid on penetration, dispersion, andinjection force of N-butyl2-cyanoacrylate. AJNR Am J Neuroradiol.2005Aug;26(7):1707-14.
    [164] Natarajan SK, Born D, Ghodke B, et al: Histopathological changes in brain arteriovenousmalformations after embolization using Onyx or N-butyl cyanoacrylate. Laboratory investigation. JNeurosurg.2009Jul;111(1):105-13.
    [165] Starke RM, Komotar RJ, Otten ML, et al: Adjuvant embolization with N-butyl cyanoacrylate in thetreatment of cerebral arteriovenous malformations: outcomes, complications, and predictors ofneurologic deficits. Stroke.2009Aug;40(8):2783-90.
    [166] Strozyk D, Nogueira RG, Lavine SD. Endovascular treatment of intracranial arteriovenousmalformation. Neurosurg Clin N Am.2009Oct;20(4):399-418.
    [167] Dudeck O, Jordan O, Hoffmann KT,et al. Intrinsically radiopaque iodine-containing polyvinylalcohol as a liquid embolic agent: evaluation in experimental wide-necked aneurysms. J Neurosurg2006Feb;104(2):290-7.
    [168] Panagiotopoulos V, Gizewski E, Asgari S, Regel J, et al: Embolization of intracranialarteriovenous malformations with ethylene-vinyl alcohol copolymer (Onyx). AJNR Am JNeuroradiol.2009Jan;30(1):99-106..
    [169] Chenite A,Buschmann M,Wang D,Chaput C,KandaniN.Rheological characterization ofthermogelling chitosan/glycerol-phosphate solutions[J].Carbohydr Polym,200l,46:39-47
    [170] MolinaroG.Leroux JC,DamasJ。AdamA.Biocompatibllity of thermo-sensitive chitosan-basedhydrogels:an in vivo experiInental approach to injectable biomaterials[J].Bioma terials,2002,23:2717-2722
    [171]甄勇,许侃,陈学思,赵长稳,王柏,张德智,王宏磊,徐宁,于金录,罗祺*.应用组织工程材料栓塞动脉瘤的初步研究[J].中华医学杂志,2009,89(11):727-731.
    [172]甄勇,罗祺*,许侃,陈学思,赵长稳,王柏,张德智,王宏磊,徐宁,于金路.可降解水凝胶栓塞动脉瘤的实验研究[J].中华神经外科杂志,2009,25(1):31-34.
    [173] Wang Yubo, Xu Ning, Luo Qi, Li Yang, Sun Liankun, Wang Honglei, Xu Kan, Wang Bai, ZhenYong. In vivo assessment of chitosan/beta-glycerophosphate as a new liquid embolic agent.Interventional Neuroradiology,2011,17:87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700