通气超空泡流动及航行体流体动力数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通气超空泡减阻技术可以使水下航行体突破传统水下速度瓶颈,实现水下超高速运行,具有重要的军事应用价值。通气超空泡流动非常复杂,涉及到多相流、湍流、相变以及可压缩流动等诸多流体力学难点问题。快速生成最佳尺度的稳定通气超空泡,深入了解超空泡尾部泄气方式以及超空泡航行体独特的流体动力学特性对于实现航行体稳定的水下弹道具有重要意义。本文围绕上述问题,从通气超空泡基本模拟方法到相关具体工程问题开展研究。主要研究内容如下:
     从多相流模型角度入手,采用均质平衡流模型和分相流模型分别计算了自然空化和通气空化,通过大量的实验结果对比和内部流场分析,综合评价了两种多相流模型的预测能力。结果表明,分相流模型不论在预测自然空化还是通气空化方面相与均质平衡流模型相比都具有较高的精度,可以给出更加合理的空泡流场结构分布,但计算量相对较大,均质平衡流模型在预测自然空化方面可以满足工程需要。
     在均质平衡流动框架内,通过二次开发语言CEL嵌入了四种经典的空化模型并通过实验数据对空化模型进行了选择,将不可凝结气体项引入空化模型,在模拟水-气-汽三相流动时,可以充分考虑通入的不可凝结气体对自然空化的影响。模拟结果表明,在计算三相流动时,通入的不可凝结气体对自然空化具有一定的抑制作用。另外,引入了水的可压缩性Tait状态方程,实现了对超高速及超音速自然超空泡流动的数值模拟,结果发现,超音速流动条件下,超空泡显现出了明显的左右非对称性。
     对通气超空泡的一系列基本问题进行了研究,包括水洞直径尺度效应和壁面粘性效应对通气超空泡的影响,结果表明水洞阻塞效应会导致通气超空泡发生明显变形。另外,采用定常和非定常模拟方式讨论了通气超空泡的发展过程、尾部泄气方式以及超空泡的稳定性,结果表明,通气超空泡在不同阶段主要以回注射流和双涡管方式泄气。低速条件下,空泡自身存在自激震荡现象,且航行体后体在空泡发展过程会导致空泡大片脱落,对空泡稳定性产生重要影响。
     详细讨论了空化器的定常、非定常流体动力以及水洞实验模型的尾部滑行力变化规律。结果表明,圆锥形空化器锥角对空泡形态以及空化器流体动力会产生重要影响,空化器偏转过程,角速度大小基本上不影响空化器流体动力。
     基于相对运动的思想,通过在水的动量方程中添加源项,将航行体运动方程和空泡流动控制方程进行耦合求解,得到了纵向平面内超空泡航行体的无控弹道以及Savchenko提出的航行体尾部滑水状态及其影响因素。结果表明,航行体质心位置严重影响超空泡航行体无控弹道。
     本论文在预测通气超空泡方面数值模拟方法可以用来模拟大量的通气超空泡流动问题,成为通气超空泡实验有效的辅助工具。
The drag-reduction technology with ventilated supercavity can make the underwater vehicle brake through the traditional bottleneck and achieve travelling at high speed, which makes it have the significant military application value. The supercavitating flow is very complex due to its involving some hydrodynamic problems such as multiphase flow, turbulence, phase transition and compressibility. Quickly generating the best size and stable ventilated supercavity, deeply understanding the gas leakage way and the unique hydrodynamic characteristic of the vehicle are of the great significance for achieving the stable underwater trajectory of the vehicle. Around these issues, the basic modeling method and the detailed engineering problems have been carried out in this paper. The main works are as follows:
     Starting from the multiphase flow model, the homogeneous and inhomogeneous flow models are used separately to investigate the natural and ventilated cavitation, the predicting ability of the both models are evaluated by using the large number of experimental results and analysis of internal flow field. The results show that the inhomogeneous flow model has the high accuracy either on predicting the natural cavitation or ventilated cavitation and can give the more reasonable distribution of flow field, however, it has relatively large amount of computation. The homogeneous flow model can meet the project need on predicting natural cavitation.
     In the framework of homogeneous equilibrium flow, four cavitation models have been embedded into CFX using the secondary development and the cavitation model was selected by experimental data, the non-condensable gas term was considered in the cavitation model so that the influence of non-condensable gas to natural cavitation can be considered in the simulations of flow of three phases. The results show that the non-condensing gas can repress the natural cavitation when calculating the three-phase flow. The high speed natural cavitating flow and supersonic cavitating flow have been simulated by introducing the Tait state equation of water. The results show that under the supersonic flow condition the cavity has the obvious left-right asymmetry characteristic.
     A series of basic ventilated supercavitating issues have been investigated which include the scale effect of the diameter of water tunnel and viscous effect of the wall to ventilated supercavity, the results show that the choke effect of water tunnel can seriously result in the obvious deformation of the cavity. In addition, the developing process of ventilated supercavity, gas leakage way and the stability of supercavity were investigated using the steady and unsteady simulating ways, the result show that the ventilated supercavity has two main gas leakage way at the different stages. At the low-speed condition, the cavity has the self-excited oscillation phenomena, and the aft body of the vehicle can result in the large shedding of the cavity in the developing process of cavity and affects its stability.
     The steady and unsteady hydrodynamics of cavitator have been discussed in detail and the change law of planning force on the aft body of the vehicle is also studied by simulating the experiments in water tunnel. The results show that the cone angle can seriously affects the cavity shape and the hydrodynamics of the cone cavitator, the angular velocity basically does not affect the hydrodynamics in the deflection process of cavitator.
     Based on the relative motion principle, by adding the source term to the momentum equation, the uncontrolled trajectory of vehicle and the planning state presented by Savchenko as well as its influencing factors have been obtained by solving the motion equations and cavitating governing equations simultaneously. The results show that the centroid position seriously affects the uncontrolled trajectory of supercavitating vehicle.
     The numerical method on predicting the ventilated supercavity in this paper can be used to predict large number of supercavitating problems, and be the auxiliary tool of the experiments for ventilated supercavity.
引文
[1]张宇文.鱼雷外形设计.西北工业大学出版社. 1998:37~50
    [2]闫璞池,建文茹,呈瑶.从伊朗试射超空泡鱼雷看世界超空泡武器的发展[J].国防.2006,(7):68~70
    [3]颜开,褚学森,许晟,冯光.超空泡流体动力学研究进展[J].船舶力学, 2006,10(4):148~155
    [4]南京水利科学研究院.水利水电科学研究院.水工模型试验.1985:86~89
    [5]肖京平.水中兵器风洞试验技术.国防工业出版社. 2008:9~10
    [6]陈兢.新概念武器—超空泡水下高速武器[J].飞航导弹, 2004, 34(10): 34~37
    [7]傅金祝(译).超空泡水中射弹.水雷战与舰船防护, 1998, 6(4): 2~4
    [8] David R Stinebring, Robert B Cook. High-speedsupercavitating vehicles[J]. AIAA 2006-6441
    [9] Martin W, Travis J S, Roger E A A. Experimental Study of a Ventilated Supercavitating Vehicle. In 5th International Symposium on Cavitation, Osaka, Japan, 2003, OS-7-008:11~13
    [10] May A. Water Entry and the Cavity-Running Behavior of Missiles. Virginia: Naval Surface Weapons Center, White Oak Laboratory, 1975
    [11] David P. Stinebring, Michael L. Billet, Jules W. Lindau, et al. Developed Cavitation-Cavity Dynamics. VKI Special Course on Supercavitating Flows, Brussels, Germany, 2001, RTO-EN-010(9):12~15
    [12] Kirschner I N, Fine N E, Gieseke T A et al. Supercavitation Research and Development. Undersea Defense Technologies, Hawaii, 2001:4~8
    [13]傅金祝(译).超空泡水下航行体.水雷战与舰船防护, 2002, 10(1): 28~30
    [14] H. Reichardt. The Laws of Cavitation Bubbles as Axially Symmetrical Bodies in a Flow. Ministry of Aircraft Productuin(Great Britian), Reports and Translations. 1946(766):322~326
    [15] I.N. Kirschner, T. A. Gieseke, R. Kuklinski. Supercavition Research And Development. Undersea Defense Technologies Hawaii, Waikiki, HI,2001:3~8
    [16] E. Silberman and C. S. Song, Instability of Ventilated Cavities, Journal of Ship Research[J], 1961,5(1): 13~33
    [17] Oba,R, lkohagi,T. and Yasu,S, Supercavitating cavity observations by means of laser velocimeter[J]. Journal of Fluids Engineering,1980,102:433~439
    [18] Y N.,Savchenko, High-speed body motion at supercavitating flow. ThirdInternational Symposiumon Cavitation, ,Grenoble ,France,1998:4~6
    [19] Y. N. Savchenko. Modeling the Supercavitation Processes. International Journal of Fluid Mechanics research. 2001, 28(5):644~659
    [20]贾力平,王聪,于开平,魏英杰,王海斌,张嘉钟.空化器参数对通气超空泡形态影响的实验研究[J].工程力学. 2007,24(3):159~164
    [21] M.Wosnik Metal. Experimental study of a ventilated supercavitating vehicle[A].Proceedings of CAV2003, Fifth International Symposium on Cavitation, Osaka, Japan, 2003:3~7
    [22] Savchenko Y N. Experiment Investigation of Supercavitating Motion of bodies. Proceedings of CAV2001: Fourth International Symposium on Supercavitating Flows,Von Karman Institute(VKI) in BrusselsBelgium, 2001:77~90
    [23] Kuklinski,R, Henoch, C, Castano , J. Experimental study of ventilated cavities dynamic test model. Fouth International Symposium on Cavitation, California institute of Technology,2001,SessionB3.004:18~20
    [24] Vlasenko Y D. Control of Parameters at Supercavitating Flow. TNO report. FEL-98-A027,1998:20~25
    [25] Martin Wosnik, E. A. Arndt. Measurements in High Void-fraction Bubbly Wakes Created by Ventilated supercavitation. Sixth international symposium on cavitation. Wageningen, the Netherlands, 2006:68~70
    [26] B. B. Phillip. Supercavitation California State Science Fair 2002 Project Summary. Project Number: J0102, 2002.
    [27] Xiong junwu, Georges L. Chahine. Characterization of the Content of the Cavity Behind a High-Speed Supercavitating Body[J]. ASME, Journal of Fluids Engineering.2007, 129:136-145
    [28] D. R. Stinebring, M. L. Billet, J. W. Lindau, et al. Developed Cavitation–Cavity Dynamics. VKI Special Course on Supercavitating Flows, Brussels, 2001: RTO-EN-010(5)
    [29] I. N. Kirschner. Results of Selected Experiments Involving Supercavitating Flows. VKI Special Course on Supercavitating Flows, Brussels, 2001: RTO-EN-010(15)
    [30] V. Serebryakov, Problems of hydrodynamics for high speed motion in water supercavitation, Sixth International Symposium on Cavitation. Wageningen, The Nethelands. 2006: CAV2006-134
    [31] A.L. Gonor, V. I. Zabutnaya and N. N. Yas’ko. Existence of an Optimal Cavitation Body, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1991, 2: 63~68
    [32] T. Ota, K. Ueda, H. Yoshikawa. Hysteresis of Flow around an Elliptic Cylinder in Critical Reynolds Number Regime. ASME Heat Transfer/Fluids EngineeringSummer Conference, Charlotte, North Carolina USA, 2004:HT-FED04-56141
    [33] T. Ota, I. Tsubura, H. Yoshikawa. Unsteady Cavitating Flow around an Inclined Rectangular Cylinder. ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina USA, 2004:HT-FED04-56143
    [34]蒋增辉,于开平,张嘉钟,黄文虎,王聪.超空泡航行体尾部流体动力特性试验模型支撑方式的选择研究[J].机械科学与技术.2007,26(12):1648~1651
    [35]蒋增辉,于开平,张嘉钟,王聪,黄文虎.超空泡航行体尾部流体动力特性试验研究[J].工程力学.2008,25(3):26~30
    [36]贾力平,于开平,张嘉钟,王聪,魏英杰,李凝.空化器参数对超空泡形成和发展的影响[J].力学学报.2007,39(2):210~216
    [37]贾力平,王聪,于开平,魏英杰,王海斌,张嘉钟.空化器参数对通气超空泡形态影响的实验研究.工程力学[J]. 2007,24(3):159~164
    [38]贾力平,张嘉钟,魏英杰,王聪,于开平,王海斌,李凝.空化器几何参数对通气超空泡生成影响的实验研究[J].船舶力学2007,11(2):171~178
    [39]张学伟,魏英杰,张嘉钟,王聪,于开平.模型结构对通气超空泡影响的实验研究[J].工程力学. 2008,25(9):203~208
    [40]王海斌,王聪,魏英杰,张嘉钟,贾力平.水下航行体通气超空泡的实验研究[J].船舶力学.2007,11(4):514~520
    [41]王海斌,张嘉钟,魏英杰,王聪,于开平,贾力平.水下航行体通气超空泡减阻特性实验研究[J].船舶工程.2006,28(3):14~17
    [42]隗喜斌,魏英杰,黄庆新,于开平,张学伟,黄文虎.通气超空泡临界通气率的水洞试验分析[J].哈尔滨工业大学学报.2007,39(5):797~799
    [43]张学伟,张嘉钟,王聪,魏英杰,于开平,隗喜斌.通气超空泡形态及其稳定性实验研究[J].哈尔滨工程大学学报. 2007,28(4):381~387
    [44]裴譞,张宇文,孟生,李闻白.超空泡航行器尾喷管实验研究[J].应用力学学报. 2010,27(3):584~588
    [45]陈伟政,张宇文,袁绪龙,邓飞.重力场对轴对称体稳定空泡形态影响的实验研究[J].西北工业大学学报. 2004,24(3):274~278
    [46]杨武刚,张宇文,阚雷,范辉.通气法控制超空泡流动的实验研究[J].应用力学学报.2007,24(4):504~508
    [47]邓飞,张宇文,袁绪龙,陈伟政,杨武刚,范辉.航行体通气超空泡起始与形成实验研究[J].弹箭与制导学报. 2005,25(3):342~345
    [48]张琦,超高速航行体尾部流场特性分析与试验研究.西北工业大学硕士论文. 2006:38~45
    [49]谢正桐,何友声.小攻角下轴对称细长体的充气空泡试验研究[J].试验力学, 1999,14(3): 279~287
    [50] Feng X M, Lu C J, Hu T Q. Experimental Research on a Supercavitating Slender Body of Revolution with Ventilation[J]. Journal of Hydrodynamics, 2002, Ser.B,14(2):17~23
    [51]蒋洁明,鲁传敬,胡天群,程鑫.轴对称体通气空泡的水动力试验研究.力学季刊[J].2004,25(4):450~456.
    [52] LEE Qi-tao, XUE Lei-ping, HE You-sheng. Experimental Study of Ventilated Supercavities with a Dynamic Pitching Model[J]. Journal of Hydrodynamics. 2008,20(4):456~460.
    [53] Li Xiangbin, Wang Guoyu, Zhang Mindi, Shyy Wei. Structures of supercavitating multiphase flows. International Journal of Thermal Sciences. 2008,47(10):1263~1275
    [54]易淑群,张明辉,周建伟,徐萌萌,宋志平,沈基仁.攻角对轴向约束模型加速过程超空泡影响的试验研究[J].水动力学研究与进展.2010,25(3):292~298
    [55]易淑群,惠昌年,周建伟,张明辉,徐萌萌,沈基仁.通气量对轴向加速过程超空泡发展规律影响的试验研究[J].船舶力学. 2009,13(4):522~526
    [56]顾建农,张志宏,高永琪,郑学龄.充气头型对超空泡轴对称体阻力特性影响的试验研究[J].兵工学报. 2004,25(6):766~769
    [57] M. P. Tulin. Steady Two-dimensional Cavity Flows about Slender Bodies Technical Report 834, DTMB, 1953
    [58] M. P. Tulin. Supercavitating Flow past Foils and Strut. In Symposium on Cavitation in Hydrodynamics, Tendington, England, 1955
    [59] Furuya. Three-dimensional Theory on Supercavitating Hydrofoils near a Free Surface[J]. J Fluid Mech, 1975, 71(2): 339~359
    [60] S. E.Windnall. Unsteay Loads on Supercavitating Hydrofoils[J]. J Ship Res, 1966, 9: 107~118
    [61] C. S. Lee. Prediction of Steady and Unsteady Performance of Marine Propellers with or without Cavitation by Numerical Lifting Surface Theory. PhD Dissertation, M.I.T., USA, 1979
    [62] M. P. Tulin, C. C. Hsu. New Application of Cavity Flow Theory. In 13th Symposium on Naval Hydrodynamics, Tokyo, Japan, 1980
    [63] J. S. Uhlman. The Surface Singularity or Boundary Integral Method Applied to Supercavitating Hydrofoils[J]. Journal of Ship Research, 1989, 33(1): 16~20
    [64] S. A. Kinnas and C. H. Mazel. Numerical Versus Experimental CavitationTunnel. J. Fluids Engin, 1993, 115: 760~765
    [65] W. S. Vorus, Ambient Supercavities of Slender Bodies of Revolution[J]. Journal of Ship Research, 1986, 30(3): 215~219
    [66] A.D. Vasin, Thin Axisymmetric Cavities in a Subsonic Compressible Flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1987, 5:174~177
    [67] A. D. Vasin, Slender Axisymmetric Cavities in a Supersonic Flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1989, 1:179-181
    [68] V. Serebryakov,G. Schnerr,Some Problems of Hydrodynamics For Sub- and Supersonic Motion in Water with Supercavitation, Fifth International Symposium on Cavitation, Osaka, Japan, 2003
    [69] J. M. Aitchison, The Numerical Solution of Planar and Axisymmetric Cavitational Flow Problems[J], Computers & Fluids, 1984, 12, (1): 55~65
    [70] A.D. Vasin, Calculation of Axisymmetric Cavities Downstream of a Disk in Subsonic Compressible Fluid Flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1996, 2:94~103
    [71] A.D. Vasin, Calculation of Axisymmetric Cavities Downstream of a Disk in a Supersonic Flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1997, No. 4:54-62
    [72] Dellanoy, Kueny,J.L. Two-phase flow approach in unsteady cavitation modeling, ASME FED, 1990,98:153~158
    [73] Diebal. L, Pellone. C, Arnaud, M. Advantages and disadvantages of different techniques of modeling of supercavitation. Proceedings of Meeting on High Speed Hydrodynamics and Supercavitation, Grenoble, France, 2000
    [74] Reboud, J.L, Delannoy,Y. Two-phase flow modeling of unsteady cavitation. Proceedings of 2nd International Symposium on Cavitation, Japan ,1994:39~44
    [75] Y. Chen, S.D. Heister. Modeling hydrodynamic non-equilibrium in bubbly and cavitating flows. J Fluids Eng,1995,118:172~178
    [76] J.R. Edwards, R.K. Franklin, M.S. Liou. Low-diffusion flux splitting methods for real fluid flows with phase transitions[J]. J.AIAA.2000,38(9):1624~1633
    [77] Q.Qin,C.C.S. Song, RE.A.Arndt. Avirtual single-phase nature cavitation model and its application to cav2003 hydrofoil. Fifth International Symposium on Cavitation, Osaka,2003:CAV2003,OS-1-004
    [78] C.C.S.Song,Q.Qin. Numerical simulation of unsteady cavitating flows Fourth international symposium on cavitation. California,2001:CAV2001.Session B5.004
    [79] Y.Ventikos,G.Tzabiras. A numerical method for the simulation of steady and unsteady cavitating flows[J]. Comupters and Fluids.2000,29(1):63~88
    [80] Qin Q, Song C S, Arndt R E. A virtual single-phase natural cavitation model and its application to cav2003 hydrofoil. Fifth international symposium on cavitation, Osaka, Japan, 2003: Cav03-OS-1-004
    [81] Leroux J B, Oliver C D, Astolfi J A. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Fifth international symposium on cavitaion, Osaka, Japan, 2003:Cav03-GS-9-006
    [82] Oliver C D, Astolfi J A. Numerical prediction of the cavitation flow on a two-dimensional symmetrical hydrofoil with a single fluid model, Fifth international symposium on cavitation, Osaka, Japan, 2003:Cav-OS-1-013,
    [83] A. Kubota, H. Kato, H.Yamaguchi, A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. J Fluid Mech, 1992, 240: 59~96
    [84] R. F. Kunz, D. A. Boger, D. R. Stinebring et al. A Proconditioned Navier-Stokes Method for Two Phase Flows with Application to Cavitation[J], Computers and Fluids, 2000, 29: 849-875
    [85] A K Singhal, M M Athavale, H Li et al. Mathematical basis and validation of the full cavitation model[J]. J Fluid Eng, 2002, 124: 617~624
    [86] F M Owis, A H.Nayfeh, Computations of the compressible multiphase flow over the cavitating high-speed torpedo[J]. J Fluid Eng, 2003, 125: 459~468
    [87] R.A. Bunnell, S.D.Heister. Three-dimensional unsteady simulation of cavitating flows in injector passages[J]. Journal. Fluids Engineering. 2000,122(4) :791~797
    [88] C.L.Merkle, J.Feng, P.O.Buelow. Computational modeling of the dynamics of sheet cavitation. Third International Symposium on Cavitation, Grenoble, France, 1998:307~313
    [89] R.F.Kunz, D.A.Boger,T.S.Chyczeweki,et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. Third ASME/JSME Joint Fluids Engineering Coference . San Francisco, California, 1999: FEDSM99-7364
    [90] A.K. Singhal, N.Vaidya, A.D. Leonard. Multi-dimensional simulation of cavitating flows using a PDF model for phase change. ASME Fluids Engineering Division Summer Meeting, 1997:FEDSM97-3272
    [91] I. Senocak, Computational methodology for the simulation of turbulent cavitating flows. Phd Dissertation, University of Florida, USA, 2002
    [92] Jules W. Lindau, Robert F. Kunz, Jason M. Mulherin, James J. Dreyer, David R. Stinebring. Fully Coupled 6-Dof to Urans Modeling of Cavitating FlowsAround a Supercavitating Vehicle. Fifth International Symposium on Cavitation (CAV2003) Osaka, Japan, 2003: Cav03-OS-7-019
    [93]黄海龙,王聪,黄文虎,赵存宝,周峰.变攻角圆盘空化器生成自然超空泡数值模拟[J].北京理工大学学报, 2008,28(2):100~103
    [94]黄海龙,魏英杰,黄文虎,王聪,于开平,黄庆新.重力场对通气超空泡影响的数值模拟研究[J].哈尔滨工业大学学报, 2007,29(5):800~803
    [95]曹伟,魏英杰,韩万金,张嘉钟,王威远,张庆丽.超空泡航行体阻力系数的数值模拟研究[J].工程力学, 2008,25(12):208~212
    [96]王海斌,张嘉钟,王聪,魏英杰,贾力平.加速度对自然超空泡特性影响的数值仿真研究[J].工程力学, 2007,24(1):18~22
    [97]张学伟,张亮,张嘉钟,魏英杰,王聪.通气超空泡稳定性分析的一种数值算法[J].力学学报, 2008, 40(6):820~825
    [98]张学伟,张亮,于开平,张嘉钟,魏英杰.通气超空泡形态控制方法的数值模拟[J].应用力学学报, 2009, 26(4):736~742
    [99]隗喜斌,王聪,荣吉利,张嘉钟,杨洪澜,张学伟.锥体空化器非定常超空泡形态分析[J].兵工学报, 2007,28(7):863~866
    [100]郭建红,鲁传敬,陈瑛,潘展程.基于输运方程类空化模型的通气空泡流数值模拟[J].力学季刊, 2009,30(3):378~384
    [101]张鹏,傅慧萍.跨超音速射弹的超空泡数值模拟[J].弹箭与制导学报, 2009, 29(5):166~169
    [102]胡勇,陈鑫,鲁传敬,潘展程,郭建.水下航行体尾喷燃气与通气超空泡相互作用的研究[J].水动力学研究与进展, 2008,23(4):438~445
    [103]陈鑫.通气空泡流研究.上海交通大学博士论文. 2006
    [104] Wang Zou, Kai-ping Yu, Xiao-hui Wan. Research on the gas-leakage rate of unsteadyventilated supercavity. 9th International Conference on Hydrodynamics Shanghai, China,2010:778~783
    [105] Zhan-cheng Pan, Chuan-jing Lu ,Ying Chen, Shi-liang Hu. Numerical study of periodically forced-pitching of a supercavitating vehicle. 9th International Conference on Hydrodynamics Shanghai, China,2010:899~904
    [106]党建军,陈伟华,刘建钊.超空泡水下航行器尾喷温度对空泡形态的影响[J].鱼雷技术,2010,18(4):299~302
    [107]刘统军,罗凯,胥银.尾部喷流对超空泡流动影响试验技术研究[J].鱼雷技术,2009,17(5):63~71
    [108]张博,张宇文,袁绪龙,张纪华.超空化流场中通气位置的CFD数值计算与研究[J].机床与液压, 2009,37(10):225~228
    [109]李向宾,王国玉,张博,韩占忠. RNG k-ε模型在超空化流动计算中的应用评价[J].水动力学研究与进展, 2008,23(2):181~188
    [110]黄彪,王国玉.基于k-ωSST模型的DES方法在空化流动计算中的应用[J].中国机械工程,2010,21(1):85~88
    [111] Biao Huang, Guo-yu Wang , Hai-tao Yuan. A cavitation model for cavitating flow simulations. 9th International Conference on Hydrodynamics Shanghai, China,2010:798~804
    [112]褚学森,王志,颜开.自然空化流动数值模拟中参数取值影响的研究[J].船舶力学, 2007,11(1):32~39
    [113] Wilcox, D.C.,“Multiscale model for turbulent flows”,In AIAA 24th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1986.
    [114] Menter, F.R.,“Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA-Journal., 32(8), pp. 1598 - 1605, 1994
    [115] A. Travin, M. Shur et al.. Detached-eddy Simulations Past a Circular Cylinder .Internal Journal of Flow Turbulence and Combustion, 2000, 63: 293~313.
    [116] F. Jochen, D. Terzi. Hybrid LES/RANS Methods for the Simulation Turbulent Flows. Progress in Aerospace Sciences, 2008,(44):349~ 377
    [117] Launder,B.E. and Spalding,D.B. The numerical computation of turbulent flows. Comp Meth Appl Mech Eng, 3:269~289,1974
    [118] Owis F M, Nayfeh A H. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles[J]. European Journal of Mechanics - B/Fluids, 2004, 23(2): 339-351
    [119] Semenenko V N. Dynamic processes of supercavitation and computer simulation [A]. VKI Special Course on Supercavitating Flows [C], Brussels: RTO2AVT and VKI, 2001. RTO-EN-010 (12)
    [120] Kiceniuk,T. An experimental study of the hydrodynamic forces acting on a family of cavity producing conical bodies of revolution inclined to the flow.CIT Hydrodynamic report E-12.17,California Institute of Technology, Pasadena,CA,1954
    [121]陈瑛,自然空泡流数值模拟方法研究.上海交通大学博士论文. 2009: 2~33
    [122] Ji Bin, LUO Xian-wu. Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavitating model. Journal of hydrodynamics. 2010,22(6):753~759
    [123]魏英杰,王京华,张嘉钟,曹伟,黄文虎.水下超空泡航行体非线性动力学与控制[J].振动与冲击. 2009, 28(6): 179-182
    [124]吕瑞,于开平,魏英杰,曹伟,张嘉钟,王京华.超空泡航行体的增益自适应变结构控制设计[J].兵工学报. 2010, 31(3): 303~308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700