一种新型发射药燃烧性能测试和内弹道数值计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对现有发射药燃烧性能测试和数据处理方法、内弹道数值计算方法的不足之处,研究了发射药燃烧性能测试中采集数据的滤波、试验热散失的修正和数据处理结果表征的新方法,同时对膛内热散失和基于发射药燃气生成规律的内弹道数值计算方法进行了研究。
     针对密闭爆发器试验采集信号中的噪声会掩盖发射药燃烧局部特征的状况,对基于有限冲激响应(FIR)低通滤波器和最小二乘回归滤波器的组合数字滤波器(FI-LS)进行研究,提出了基于FI-LS滤波器的密闭爆发器p-t数据滤波方法,并给出了该方法的基本步骤;分析了密闭爆发器试验过程中发射药燃气与其内壁传热的特点,针对密闭爆发器试验过程中压力变化迅速的现象,提出了考虑压力变化因素的热流密度方程,推导出试验过程中的传热表达式,建立了考虑压力因素的密闭爆发器试验一维半无限大传热模型;在FI-LS滤波和修正热散失的基础上,提出了能够表征发射药燃速压力指数随压力变化关系的n~p曲线方法,编制了可视化的发射药燃烧性能测试软件;对多孔发射药的燃烧特性进行了研究,分析了多孔发射药燃烧时孔径变化对燃速、燃速压力指数测试结果的影响,并对不同药长多孔发射药的燃烧特性进行研究,提出了更接近较短药长多孔发射药燃烧特性的不同时燃烧理论;针对发射药装药内弹道性能预估时膛内热散失修正程度难以确定的问题,提出了基于密闭爆发器试验的火炮膛内传热计算方法,根据试验测得的压力与时间信号和发射药燃气在密闭环境中作功能力与压力之间的关系,提出发射药燃气与膛壁的传热方程,结合内弹道方程组,建立了考虑火炮膛内热散失的内弹道模型;通过发射药中止燃烧试验和密闭爆发器试验,研究了多孔发射药的燃烧特性,提出利用ψ,Tt的关系表征多孔发射药燃气生成规律的方法,结合提出的发射药燃气与膛壁的传热方程,建立了考虑膛内热散失的基于多孔发射药实测燃气生成规律的内弹道模型,编制相应的内弹道程序。
     研究结果对于提高装药设计研究者了解装药的实际燃烧特性,促进装药技术的发展具有重要的意义。
In this paper, new methods of the digital filter, heat loss modification and the expression of data processing in propellant burning performance tests were studied in order to improve the deficiency of the existing method of testing, data processing and calculation method. Meanwhile, heat loss in the gun barrel and the calculation method of the interior ballistics based on the propellant burning gases generation rules were researched.
     In order to slake the noises from pressure signal obtained from the closed bomb tests and express the burning property of propellant more actually, a FI-LS digital filter which combines with FIR lowpass filter and least squares filter was researched, and a new p-t digital filter method was proposed. Analyzing the characteristic of heat transfer between the propellants burning gases and the inner wall, and focusing on the phenomenon of rapid pressure change in closed bomb tests, a heat flux equation considering the pressure change as a factor was raised. The heat transfer function in the test was deduced, and a one-dimensional semi-infinite heat transfer model in the closed bomb test was established. Based on the FI-LS digital filter and the heat loss modification, an n~p curve method were proposed in order to describe the relationship between the propellants burning rate pressure exponent and the pressure, and a visual basic software for propellants combustion performance test was compiled. This paper also studied the combustion characteristics of the multi-perforation propellants. The effect of the aperture change on the propellant burning rate and burning rate pressure exponent was analyzed when propellants were burning, and the burning performance of different length multi-perforation propellants were studied, a asynchronous combustion theory which was closer to the burning characteristics of short multi-perforation propellants was proposed. As it's difficult to determine the heat loss modification degree when calculating the interior ballistics performance of propellants charge, a heat transfer calculation method in the gun chamber were proposed based on the closed bomb test. According to the pressure and time signals, and the relationship between the pressure and work capability of propellants burning gases in a closed environment, an equation of heat transfer between the propellant burning gases and the chamber wall was given. Based on the interior ballistics equations and heat transfer equation, an interior ballistics simulation model which considered the heat loss in the gun chamber was established. The burning performances of the multi-perforation propellants were studied through the interrupted combustion test and the closed bomb text. A method was raised to characterize multi-perforation propellants burning gases generation rule by using the relationship betweenΨand It, and according to the equation of heat transfer between the propellants burning gases and the chamber wall, a new interior ballistics model which considering the heat loss and burning gases generation rule was built, and the corresponding interior ballistics simulation program was also compiled.
     The study productions are significant to improve the understanding for actual burning performance of propellant and promote the development of propellant charge technology.
引文
[1]王泽山.论现代发射装药技术的研究方向[J].南京理工大学学报,1994(4):93-96.
    [2]王泽山.控制发射装药燃气生成规律的一种方法[J].华北工学院学报,2001(4):252-255.
    [3]王泽山.远射程发射装药与模块装药[J].南京理工大学学报,2003,27(5):446-472.
    [4]萧忠良.王泽山.发射药科学技术总体认识与理解[J].火炸药学报.2004(3):1-6.
    [5]萧忠良.提高火炮初速(动能)技术途径与潜力分析[J].华北工学院学报,2001(4):277-280.
    [6]王泽山.发射药技术的展望.华北工学院学报(社科版).2001年增刊:36-40
    [7]罗运军.低温感包覆火药装药技术的理论与试验研究.博士学位论文.南京理工大学.1994.08.
    [8]Lekota M. G6-52:The most advanced artillery system available[Z]. Pretoria, South Africa:L IW (A Division of Denel Ltd),2003.
    [9]Somchem Co. M64 BMCS2technical information [Z]. Somerset West,South Afirica:Somchem of Denol Ltd,2003.
    [10]陈福泰等.纳米级碳酸铅在NEPE推进剂中的应用研究.推进技术.2000,21(1):82-85
    [11]洪伟良,刘剑洪,陈沛等.纳米CuO的制备及对RDX热分解特性的影响.推进技术.2001,22(3):254-257
    [12]洪伟良,刘剑洪,田德余等.纳米铁酸铜的制备及对RDX热分解的催化作用.推进技术.2003.24(4):560-562
    [13]洪伟良,刘剑洪,田德余等.纳米PbSnO3,的制备及其燃烧催化性能的研究.无机化学学报.2004.20(3):278-282
    [14]洪伟良,赵凤起,刘剑洪等.纳米PbO和Bi2O3粉的制备及对推进剂燃烧性能的影响.火炸药学报.2001.24(3):7-9
    [15]徐宏,刘剑洪,陈沛等.纳米氧化镧对黑索今热分解的影响.推进技术.2002.23.(4):329-331
    [16]徐宏,刘剑洪,蔡弘华等.纳米氧化铈的制备及其催化性能研究.深圳大学学报.2002.19(2):13-16
    [17]单文刚,张国栋等.碳硼烷衍生物对固体推进剂燃烧性能影响研究.固体火箭技 术1995.3:3-7
    [18]Youngjoo Lee, Ching-Jen Tang, Thomas A. Litzinger. Thermal Decomposition of RDX/BAMO Pseudo-Propellants. Combustion and Flame.1999,117:795-809
    [19]O.P. Korobeinichev, L.V. Kuibida, E.N. Volkov, A.G. Shmakov. Mass Spectrometric Study of Combustion and Thermal Decomposition of GAP. Combustion and Flame.2002,129:136-150
    [20]Hyu-BumPark, Ho-Jin Kweon, Young-Sik Hong, Si-Joong Kim,Keon Kim. Preparation of La1-xSrxMnO3 powders by combustion of poly(ethylene glycol)-metal nitrategel precursors. Journal of Materials Science.1997,32:57-65
    [21]S.T. Surzhikov, H. Krier. Quasi-One-Dimensional Model of Combustion of Sandwich Heterogeneous Solid Propellant. High Temperature.2001,39(4): 586-595
    [22]G. Singh, S. Prem Felix. Studies on energetic compounds Part 36:Evaluation of transition metal salts of NTO as burning rate modifiers for HTPB-AN composite solid propellants. Combustion and Flame.2003,135:145-150
    [23]朱俊武,陈海群,郝艳霞等.针状纳米CuO的制备及其催化性能研究.材料科学与工程学报2004.22(3):26-29
    [24]汪信,杨绪杰,刘孝恒等.纳米CuO的制备及对NH4ClO4、热分解的催化性能.无机化学学报.2002.18(12):1211-1214
    [25]罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究.含能材料.2002.10(4):148-152
    [26]朱俊武,陈海群,郝艳霞等.针状纳米CuO的制备及其催化性能研究.材料科学与工程学报2004.22(3):26-29
    [27]赵凤起,徐司雨,郑林.燃烧催化剂对太根发射药燃烧性能的影响[J].火炸药学报.2007(4):38-42.
    [28]廖昕,马方生,堵平等.不同催化剂对降低双基火药燃速压力指数效果的影响[J].火炸药学报.2007(4):25-28.
    [29]马方生,赵军,堵平等.催化剂对太根发射药燃速的影响[J].火炸药学报.2010(4):63-65
    [30]Frederick W. Robbins, Franz R. Lynn. Analytic Solutions to the Closed Bomb[R]. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.March,1988. AD-A194691
    [31]P.G.Baer, and J. M. Frankle, "The Simulation of Interior Ballistic Performance of Guns by Digital Computer Program," USA Balliatic Research Laboratories Report 1183, USA Ballistic Research Laboratories, APG, MD, December 1962.
    [32]J. Corner, "Theory of the Interior Ballistics of Guns," John Wiley & Sons New York,1950, pp.30-35
    [33]F. R. Lynn, "DLveloprent of General Form-Functions for Muttiperforated Cylindrical Propellant Graine," Ballistic Research Laboratory Memorandum Report ARBLMR03014, Ballistic Research Laboratory, USA ARRADCOM, APG, MD, March 1980.
    [34]Franz. R. Lynn. Form-Functions for the IBHVG Code. U.S.Army Ballistic Research Laboratory, Aberdeen Proving Ground,MD,21005. November 1982A.ADA121669.
    [35]Anderson, R.A., and K. D. Fickie. " IBHVG2-A User's Guide. " BRL-TR-2829 U.S. Army Ballistic Research Laboratory,Aberdeen Proving Ground,MD,July 1987.
    [36]F.W. Robbins and A.W. Horst, "Numerical Simulation of Closed Bomb Performance Based on BLAKE Code Thermodynamic Date," IHMR 76-259,Naval Ordance Station, Indian Head, MD, November 1976.
    [37]C. Price and A. Juhasz, "A Versatile User-Oriented Closed Bomb Date Reduction Program(CBRED)," BRLB 2018, Ballistic Research Laboratory, Aberdeen Proving Ground,MD,September 1977.
    [38]Frederick W. Robbins, Franz R. Lynn. Analytic Solutions to the Closed Bomb[R]. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.March,1988. AD-A194691
    [39]William F.Oberle,Arpad A.Juhasz.and T.M.Griffie. A Simplified Computer Code for Reduction to Burning Rate of Closed Bomb Pressure-Time Date (MINICB)[R].BRL-TR-2841,U.S.Army Ballistic Research Laboratory,Aberdeen Proving Ground,MD,1987.
    [40]William F.Oberle,Douglas E.Kooker A Closed Chamber Data Analysis Program with Provisions for Deterred and Layered Propellants[R]. April 1991. ADA235618.
    [41]William F. oberle, Douglas E.Kooker, BRLCB:A Closed-Chamber Data Analysis Program. Part 1. Theory and User's Manual[R].U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.January,1993. AD-A260493
    [42]William F. oberle, Douglas E.Kooker, BRLCB:A Closed Chamber Data Analysis Program with Provisions for Deterred and Layered Propellants[R]. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.April 1991. AD-A235618
    [43]Barrie E. Homan, Arpad A.Juhasz, XLCB:A New Closed-Bomb Data Acquisition and Reduction Program. Army Ballistic Research Laboratory,Aberdeen Proving Ground,MD,21005-5066. ARL-TR-2491, May 2001.
    [44]Hobin S. Lee Estimating Heat Losses in Pyrotechnic Devices.41st, AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 10-13 July 2005, Tucson, Arizona. AIAA 2005-3837
    [45]Hobin S. Lee. A Study on Closed-Bomb Method of Validating Energetic Components 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 11-14 July 2004, Fort Lauderdale, Florida AIAA 2004-3421
    [46]一零三教研室.《内弹道学》.国防工业出版社.北京.1978.24-108.
    [47]王泽山,贺晓军,罗运军.火药试验方法.兵器工业出版社.北京.1996.202-207.
    [48]刘裕昆.常规密闭爆发器试验系统通过了技术鉴定.火炸药.1986
    [49]GJB 771.302-94火药性能试验方法密闭爆发器试验微分压力法
    [50]GJB 770A-1997中方法703.1(K)
    [51]GJB/J 3345-1998火药密闭爆发器测试系统检定规程
    [52]GJB770b-2005半可燃药筒试验方法第9部分:密闭爆发器试验微分法
    [53]王普法,官汉章.密闭爆发器压力损失及其修正方法[J].弹道学报1992,11:15-20
    [54]刘宏成,李保黄,李逢春等.应用于定容燃烧器法的热损失修正技术分析[J].弹箭与制导学报2005(1).444-446
    [55]黄凤良、余永刚.爆发器内壁温度测试的试验研究[J].计量学报.2004(4):322-325.
    [56]黄凤良、余永刚.爆发器内壁温度的测试[J].西安交通大学学报.2004(2):200-203.
    [57]黄凤良、余永刚.爆发器内壁温度的软测量[J].火炸药学报2004(1):59-62
    [58]胡瑜,万学仁,肖圣敏.密闭爆发器容积弹性增量的计算及对测试结果的修正[J].火炸药学报.2001(4):54-57.
    [59]应三九,肖正刚,徐复铭.密闭爆发器试验中发射药燃烧全过程压力曲线的修正方法[J].火炸药学报.2007(4):62-65.
    [60]晋小莉,赵孝彬,刘刚.新型密闭爆发器测试系统的研制[J].火工品.2004(3):44-46.
    [61]李利,赵宝昌,赵志建等.发射药燃速压力曲线的转折分析方法[J].弹道学报.1997(1).
    [62]林庆华,栗保明.密闭爆发器压力信号的时频分析与特征提取[J].火工品.2007(4):22-25.
    [63]J. Corner, "Theory of the Interior Ballistics of Guns," John Wiley & Sons, New York,1950, pp.30-35.
    [64]P.G.Baer and J. M. Frankle, "The Simulation of Interior Ballistic performance of Guns by Digital Computer Programs," USA Ballistic Research Laboratories Report 1183, USA Ballistic Research Laboratories, APG, MD, December 1962.
    [65]Ian A. Johnston. The Noble-Abel Equation of State:Thermodynamic Derivations for Ballistics Modelling. Weapons Systems Division Defence Science and Technology Organisation DSTO.TN.0670. November,2005.ADA444005
    [66]A.K.Macpherson, T.Vladimiroff. Interior Ballistic Calculations Using an Accurate Equation of State for the Propellant Gases. U.S. Army Armament Research, Development and Engineering Center. April,1993. ADA263014
    [67]Albert W. Horst, Michael J. Nusca. The Charge Designer's Workbench:A Range of Interior Ballistic Modeling Tools. U.S. Army Research Laboratory ATTN: AMSRD-ARL-WM-BD Aberdeen Proving Ground, MD 21005-5066. May,2006.Toyoki.
    [68]Matsuzawa,Yusuke Nasuno. Development of Integrated Ballistic Simulator (Phasel).23RD International Symposium on Ballistics Tarragona Spain. April 2007:351-358.
    [69]Ronald D. Anderson. IBHVG2:Mortar Simulation with Interior Propellant Canister. U.S. Army Research Laboratory Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005-5066. ARL-TR-3760
    [70]金志明,翁春生.高等内弹道学.高等教育出版社.北京.2003.20-21.
    [71]张柏生.炮药侵蚀燃烧的理论分析[J].南京理工大学学报,198627(2):446-472.
    [72]黄振亚,杨丽霞,李丽.发射药膛内动态燃速规律研究[J].兵工学报火化工分册,1996,(2):11-13.
    [73]黄振亚,王泽山,张远波.发射药燃速压力指数变化规律的研究[J].含能材料.2006(2):123-126.
    [74]张洪林.侵蚀燃烧在发射装药内弹道中的应用研究[J].兵工学报,2008(2):129-133.
    [75]王泽山,何卫东,徐复明.火药装药设计原理与技术[M].北京:北京理工大学出版社.2006:16-22.
    [76]M.Ye.Serebryakov. Interior Ballistics of Barrel Systems and Solid-Propellant Rockets (Chapter Ⅶ). Vnutrennyaya Ballistika Stvo(?)nykh Sistem 1 Porokhovykh Raket, Moscow,1962,665-696. ADA065661
    [77]Paul S. Gough. The XNOVAKTC Code. Ballistic Research Laboratory,Aberdeen Proving Ground,MD,21005-5066. ARL-CR-627, February 1990.AD-A220153.
    [78]Paul S. Gough. Interior Ballistics Modeling:Extensions to the One-Dimensional XKTC Code and Analytical Studies of Pressure Gradient for Lumped Parameter Codes. Army Ballistic Research Laboratory,Aberdeen Proving Ground, MD, 21005-5066. ARL-CR-460, February 2001.
    [79]Bin Wu, Gang Chen, Wei Xia. Heat transfer in a 155 mm compound gun barrel with full length integral midwall cooling channels[J]. Applied Thermal Engineering.2008 (28):881-888.
    [80]Nathan Gerber, Mark L.Bundy. Heating of a Tank Gun Barrel:Numerical Study[R]. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD August 1991. AD-A241136
    [81]J.R. Ward, T.L. Brosseau, B.B. Grollman, Heat transfer in guns-determination of friction factor from heat input measurements (ADA105430), US Army Armament Research and Development Command, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1981.
    [82]R. Fisher, A. Szirmae, W.T. Huang, P.J. Conroy, Metallographic studies of erosion and thermo-chemical cracking of cannon tubes (ADA135816), US Army Armament Research and Development Command Benet Weapons Laboratory, DRDARLCB-TL Watervliet, NY 12189, May 1983.
    [83]P.J. Conroy, Gun tube heating, BRL-TR-3300 (ADA243265), US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, December 1991.
    [84]N. Gerber, M.L. Bundy, Gun barrel heating with heat input during projectile passage, J. Ballistics 12 (1995) 267-281.
    [85]T.W.H. Sheu, S.H. Lee, Numerical study of two-dimensional solid-gas combustion through granulated propellants, Numer. Heat Transfer A 27 (1995) 395-415.
    [86]J.K. Clutter, W. Shyy, Computation of high-speed reacting flow for gun propulsion applications, Numer. Heat Transfer A 31 (1997) 355-374.
    [87]Haw Long Lee, Yu Ching Yang, Win Jin Chang, Tser Son Wu. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance. Applied Mathematics and Computation.2009 (209):211-221.
    [88]彭志国,周彦煌,陈桂东.火炮身管热散失模型及其冷炮对弹丸初速的影响[J].火炮发射与控制学报,2008,2:1-5.
    [89]F.Volk, H.Bathelt. Influence of energetic materials on the energy-output of gun propellants. Energetic Materials.1999:120-1-9
    [90]傅献彩,陈瑞华.物理化学(上册)[M].人民教育出版社.1979:47-48.
    [91]杨丽侠.高能硝胺发射药装药点火与起始燃烧过程的关系研究[J].火炸药.1995(4):1-3.
    [92]杨文宝,戚士莲,杨爱华.硝胺发射药的热行为与燃烧性能的关系[J].火炸药.1994(1):1-5.
    [93]王琼林,杨文宝.硝胺发射药燃速压力指数转折及其改善途径[J].火炸药.1994(1):17-18
    [94]黄振亚,王泽山,何卫东等.新型高能高强度JMZ发射药的燃烧特性[J].火炸药学报.2005(4):61-63.
    [95]黄振亚,王泽山,张远波.发射药燃速压力指数变化规律的研究[J].含能材料.2006(2):123-126.
    [96]赵宏立.火药密闭爆发器标准装置的不确定度分析[J].误差分析2004(4):26-28.
    [97]马方生,赵军,廖听.有机酸金属盐M对降低太根发射药燃速压力指数的影响[J].火炸药学报.待发表
    [98]梁勇,王琼林,于慧芳.增能钝感单基药的燃烧特性[J].含能材料.2007(6):597-599.
    [99]魏学涛,卿辉,崔鹏腾.叠氮硝胺发射药燃烧性能调控技术[J].火炸药学报.2004(4):46-49.
    [100]王琼林,刘少武,于慧芳.高性能改性单基发射药的制备与性能[J].火炸药学报.2007(6):68-71.
    [101]吴毅,董朝阳,李幼临.105mm炮射导弹发射装药的一种优化设计方案[J].弹道学报.2006(2):60-63.
    [102]徐皖育.高能量高强度发射药研究.博士学位论文.南京理工大学,2006,10.
    [103]史先扬.低温感硝胺发射药的研究及弹道模拟.博士学位论文.南京理工大学,2002,02.
    [104]George A. Gazonas. The Mechanical Response of M30, XM39, and JA2 Propellants at Strain Rates from 10-2 to 250 sec-1. US Army Ballistic Research Laboratory. ATTN:SLCBR-DD-T BRL-TR-3181. Aberdeen Proving Ground. MD 21005-5066. AD-A231435
    [105]Michael G. Leadore, Robert J.Lieb. High-Rate Mechanical Response and SEM Morphology of EX99 Gun Propellants. US Army Ballistic Research Laboratory. Aberdeen Proving Ground. MD 21005-5069.
    [106]M. Warfield Teague, Gurbax Singh, John A. Vanderhoff. Spectral Studies of Solid Propellant Combustion IV:Absorption and Burn Rate Results for M43, XM39, and M10 Propellants. U.S. Army Research Laboratory ATrN: AMSRL-OP-CI-B Aberdeen Proving Ground, MD 21005-5066
    [107]Rose A. Pesce-Rodriguez, Robert A. Fifer. LOVA Propellant Aging:Effect of Residual Solvent. U.S. AMy Raeserch Laboatory ATIN:AMSRL-OP-AP-L Muds Pmving Gomund, MD 21005-5066

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700