身管武器发射装药燃烧残渣的形成特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发射装药是身管武器的发射能源,它是决定武器性能的关键因素之一。在当前信息化战争背景下,身管武器发射过程中由发射装药燃烧所产生的燃烧残渣,不仅会降低武器射击精度,增加勤务工作量,同时还易于暴露己方阵地,进而削弱己方战斗力和生存力。揭示燃烧残渣形成机理,研究并掌握消除或抑制燃烧残渣技术,已成为发射装药研究领域亟待解决的关键问题之一。基于此,本论文采用理论研究与实验研究相结合的方式,开展了发射装药中关键元器件,包括发射药、点火体系以及装药附加元件燃烧残渣的形成机制研究。主要研究内容如下:
     (1)发射装药中发射药燃烧残渣的研究
     从发射药燃烧化学反应的热力学和动力学角度出发,主要研究发射药配方氧平衡、药粒弧厚分布、冷壁效应(燃烧场环境温度)等三个方面与发射药燃烧残渣形成之间的作用机制。
     (a)发射药配方氧平衡对燃烧残渣的影响
     采用最小自由能算法,对发射药燃烧产物进行了理论预估,研究了发射药配方氧平衡与其燃烧生成固态游离碳之间的关系,并结合定容燃烧试验进行了验证。结果表明,发射药燃烧生成游离碳存在一个临界氧平衡值,低于该值,其燃烧产物中会有固态游离碳的生成,并且生成量是随着氧平衡的降低而呈线性增加的;同时,配方氧平衡低于约-57.00%时,发射药燃烧就可能有游离碳的生成。在此基础上,建立了发射药燃烧生成游离碳的临界氧平衡值与硝化甘油含量、硝化纤维素含氮量以及燃烧平衡压力之间的函数关系。
     (b)发射药弧厚分布对燃烧残渣的影响
     采用实测量取的方式,统计获取了发射药的药粒弧厚分布特征;并以经典内弹道理论为基础,计算研究了发射药弧厚分布对燃烧残渣形成的影响规律。结果表明,发射药弧厚存在一定的尺寸偏差;弧厚较大的发射药难以在膅内燃尽,将形成燃烧残渣;在发射药弧厚分布规律中,弧厚期望值和偏差都会影响到燃烧残渣的形成,燃烧残渣量会随着弧厚期望值的上升和弧厚偏差的增大而增加。
     (c)冷壁效应作用下发射药燃烧残渣的形成
     分别采用喷淋水和铜柱为基体,通过常压和定容燃烧实验,开展了冷壁效应作用下燃烧残渣的形成可能性及特征研究,并利用5.8mm枪射击实验进行了验证;同时,采用直接拉开法对燃烧残渣的附着力进行了表征。结果表明,冷壁效应作用下,发射药的常压燃烧和定容燃烧会形成燃烧残渣,并且燃烧残渣的附着力明显高于原药样品的附着力。这说明在发射过程中,冷壁效应作用下燃烧残渣的形成是可能的,实弹射击实验结果验证了这一点。
     (2)发射装药中点火体系燃烧残渣的研究
     采用最小自由能算法,对点火体系中击发药、传火药燃烧残渣进行了理论预估:采用射击实验和常压燃烧试验收集点火体系燃烧残渣,结合扫描电子显微镜-电子能谱法分析,研究了击发药、传火药燃烧残渣形态及其元素组成;在理论计算和实验研究基础上,分析了发射装药中点火体系燃烧残渣的形成规律。结果表明,击发药、传火药配方中的金属元素,经燃烧后形成的无机金属盐类物质是点火体系燃烧残渣的主要组成物;枪点火体系的燃烧残渣主要来源于火帽中的击发药,燃烧残渣量较少;小口径火炮点火体系中,燃烧残渣主要来源于底火装药中的黑火药,燃烧残渣量较多;中大口径火炮的点火体系中,传火药(黑火药)是该类型点火体系燃烧残渣的主要来源,并且武器口径增大,传火药的装药量增加,相应的燃烧残渣量就增加。
     (3)发射装药中附加元件燃烧残渣的研究
     采用最小自由能算法,计算研究了护膛剂和消焰剂两种装药附加元件燃烧残渣形成规律,并结合定容燃烧试验进行了验证。结果表明,护膛剂和消焰剂两种装药附加元件会在发射装药燃烧过程中形成燃烧残渣;这两种装药元件中的无机类组成物会直接残留下来或反应生成燃烧残渣;而有机物类(如石蜡、地蜡等)物质,因难以参与燃烧反应,其主体将直接残留下来形成燃烧残渣。
As the firing energy source, propellant charge is critical to weapons performance. Against background of modern information warfare, residue caused by combustion of propellant charge can not only lower the firing accuracy and increase the combat-service works, but also be easy to exposure own position, and then weaken own fighting and existence capability. How to reveal the formation mechnism of residue and eliminate or inhibit the generation of charge residue has become one of the key problems demanding urgent solution. Therefore, the main purpose of the work was to investigate the formation mechanism of residue caused by the key propellant charge elements, in which propellant, ignition system and additional charge components are included, through theoretical and experimental research works. The main works are as follows.
     (1) Formation of propellant residue
     Based on the thermodynamics and dynamics of propellant combustion reaction, the generation law of propellant residue was studied from oxygen balance, grain thickness and cold wall effects of propellant.
     (a) Effect of oxygen balance on the formation of propellant residue
     The combustion products of propellant were estimated by computational method of minimum free energy, and the relationship between oxygen balance and carbon residue was established, then it was varified by closed vessel experiments. The results show that the combustion of propellant can generate carbon residue when the oxygen balance of propellant lower than a critical value, and the carbon residue will increase gradually with the descent of oxygen balance. In addition, the function of the oxygen balance and the nitroglycerine content, nitrogen content of nitrocellulose, combustion pressure is established based on the computational results.
     (b) Effect of grain thickness on the formation of propellant residue
     The grain thickness distribution of propellant was experimentally measured and statistically analyzed, and the effect of grain thickness distribution on the formation of propellant residue was investigated based on the classic interior ballistic theory. The results show that the deviation of grain thickness exists in active propellant. The propellant with large grain thickness can not burn out in chamber when firing, then form residue. The expectation value or deviation of grain thickness can affect the formation of residue, and the ammount of residue increases with increasing of expectation value or deviation of grain thickness.
     (c) Effect of cold wall effects on the formation of propellant residue
     The possibility and character of propellant residue formed under cold wall effects were investigated by normal-pressure and constant-volume combustion experiments, in which spray water and bronze pillar were used as combustion matrix respectively, and it was varified through firing tests using 5.8mm catridge. In addition, the adhesion of residue was measured by put-off test method. The results show that the combustion of propellant at normal pressure or constant volume can generate residue under cold wall effects, and the adhension of residue is apparently higher than that of original propellant. It indicates that propellant residue is formed under cold wall effects when firing, and it has been confirmed by the firing tests.
     (2) Formation of ignition system residue
     The combustion products of charge in ignition system were estimated by computational method of minimum free energy. The residue was collected through shooting test and normal pressure combustion experiments, and it was characterized by scanning electronic microscopy (SEM) and Xray energy dispersive analysis (EDS). Then the generation law of igniter charge was studied on the basis of theoretical computation and experiments. The results show that the residues are mainly composed of inorganic metal salts, which are the combustion product of the metal elements in the ignition system charge. For firearm, the amount of residue is small and derived from primer mixture in ignition cap. For small carliber gun, the amount of residue is superior and derived from black powder in artillery primer, while for medium or large carliber gun, the residues are mainly from black powder, and the amount of residues are high and increasing with increasing of gun's caliber.
     (3) Formation of residue from additional charge components
     Using computational method of minimum free energy, the combustion products of additional charge elements were simulated, and it was varified by closed vessel experiments. The results show that bore-wear reducing additive and flame inhibitor can result in residue in the combustion of propellant charge. The inorganic components of bore-wear reducing additive and flame inhibitor can survive directly or react to form residue in the combustion process, while the organic components (such as olefin and ozocerite) are hard to participate in the combustion reaction and mainly form residue directly.
引文
[1]Jenkins T. F., Ampleman G., Thiboutot S., Bigl S. R., et al. Characterization and fate of gun and rocket propellant residues on testing and training ranges, ADA491994 [R]. Springfield: NTIS,2008.
    [2]王琼林,刘少武,张远波,郑双.枪用发射药燃烧残渣的测试方法[J].火炸药学报,2006,29(5):57-59.
    [3]萧忠良.武器信息化条件下火炸药发展策略分析[J].火炸药学报,2007,30(1):1-3.
    [4]陈舒林,李凤生.火药设计与制造[M].北京:兵器工业出版社,1987.
    [5]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [6]张柏生,林天木.炮用火药装药[M].南京:机械委兵工教材编审室,1988.
    [7]刘庆荣等火药装药设计[M].北京:国防工业出版社,1986
    [8]金泽渊,詹彩琴.火炸药与装药概论[M].北京:兵器工业出版社,1986.
    [9]白汉德.可燃药筒的发展[J].兵器知识,1999,(6):7-8.
    [10]李煜,郭德惠,田书春,周伟良,徐复铭.纤维增强组份对可燃药筒性能的影响[J].弹道学报,2009,21(4):95-98.
    [11]Lum W. S., Smith, P. M., Chesonis, K. G. Investigation of residue and coating stoichiometry on 120-mm combustible Ccartridge cases, ADA387413 [R]. Springfield:NTIS,2000.
    [12]Zoltani C. K., Colburn J. W., Robbins F. W. Combustible cartridge cases: current status and future prospects, ADA254636 [R]. Springfield:NTIS,1992.
    [13]Peshave J. R., Singh H. Observation of change in colour of combustible cartridge cases on ageing-a qualitative tool [J]. Defence science journal,2003,53(4):367-370.
    [14]金志明.枪炮内弹道学[M].北京:北京理工大学出版社,2004.
    [15]王琼林,刘少武,谭惠民,郑双,张远波,赵颍,姚月娟.具有洁净燃烧特征的高分子钝感枪药[J].火炸药学报,2003,26(4):5-7.
    [16]Wang B. X. A model of steady-state convective combustion of micropore propellants [J]. Journal of Beijing institute of technology,1998,7(1):107-112.
    [17]王伯羲,冯增国,杨荣杰.火药燃烧理论[M].北京:北京理工大学出版社,1997.
    [18]黄人骏,宋洪昌.火药设计基础[M].北京:北京理工大学出版社,1997.
    [19]张柏生.火药燃烧导论[M].南京:华东工学院,1988.
    [20]Kenneth K. K. Principles of combustion [M]. New York: WILEY-VCH Verlag GmbH & Co.,2005.
    [21]Kubota N. Propellants and Explosives [M]. New York: Weinheim: WILEY-VCH Verlag GmbH & Co.,2007.
    [22]李杰,余永刚,周彦煌,黄凤良.机枪内膛壁面瞬态温度的测试[J].测试技术学报,2005,19(4):412-415.
    [23]Wu B., Chen G., Xia W. Heat transfer in a 155 mm compound gun barrel with full length integral midwall cooling channels [J]. Applied Thermal Engineering,2008,28(8-9):881-888.
    [24]狄加伟,杨敏涛,张明安,赵斌.电热化学发射技术在大口径火炮上的应用前景[J].测试技术学报,2010,19(6):24-27.
    [25]王浩,梁世超,张莺,邵志坚.火焰在传火管装药床中的传输特性研究[J].爆炸与冲击,1999,19(1):66-71.
    [26]余斌,蒋树君.发射药初温和热物性参数对点火性能影响的研究[J].火炸药学报,1997,20(3):1-4.
    [27]丁世用.弹药[M].北京:兵器工业出版社,1989.
    [28]王洪杰.发射药洁净燃烧技术研究进展[J].山西化工,2008,28(3):26-28.
    [29]王琼林,刘少武,吴建军.钝感剂对发射药枪口烟雾特性影响的研究[J].火炸药学报,1998,21(3):17-18.
    [30]王琼林.调节钝感发射药氧平衡的技术途径[J].火炸药学报,2000,23(2):29-31.
    [31]王琼林.国外枪炮发射药技术发展概况[J].火炸药学报,1998,21(4):54-58.
    [32]贺增弟,刘幼平,何利明,萧忠良.发射药氧平衡对枪口焰的影响[J].火炸药学报,2008,31(6):57-59.
    [33]贺增弟,刘幼平,何利明,肖忠良.硝酸铵对发射药能量性能的影响[J].含能材料,2009,17(2):202-205.
    [34]陆安舫,李顺生,薛幸福.国外火药性能手册[M].北京:兵器工业出版社,1991.
    [35]Watson J., Fred W., Ammunition cartridge with reduced propellant charge [P]. US005770815.
    [36]Downs, D. S.; Harris, L. E. Relationship of residue formation to wax used in M203 propelling charge liners, ADA0817163 [R]. Springfield: NTIS,1979.
    [37]Downs, D. S.; Ellington, D.; Harris, L. E.; Russell, K. M203 propelling charge residue investigation. Part Ⅱ, ADA0953513 [R]. Springfield:NTIS,1981.
    [38]Downs, D. S.; Harris, L. E.; Russell, K. M203 propelling charge residue investigation. Part Ⅰ, ADA0953778 [R]. Springfield: NTIS,1981.
    [39]Manning T. G., Thompson D., Ellis M., et al. Environmentally friendly 'green' propellant for the medium caliber training rounds, ADA481741 [R]. Springfield: NTIS,2008.
    [40]Hordiji A. C., Schoolderman C., Ramlal D. Recycling of a TPE based gun p rpellant [C].34th International Annual Conference of ICT. Kar lsruhe:ICT,2003.
    [41]Michael C., Jeff A. Environmentally friendly advanced gun propellants, ADA447212 [R]. Springfield: NTIS,2008.
    [42]Hewitt A., Bigl S.,Walsh M., Brochu S., Bjella K., Lambert D. Processing of training range soils for the analysis of energetic compounds, ADA472096 [R]. Springfield: NTIS,2007.
    [43]Walsh M. R., Walsh M. E., Collins C. M., Saari S. P., Zufelt J. E., Gelvin A. B., Hug J. W. Energetic residues from live-fire detonations of 120-mm mortar rounds, ADA441147 [R]. Springfield: NTIS, 2005.
    [44]Jenkins T. F., Pennington J. C., Ampleman G., et al. Characterization and fate of gun and rocket propellant residues on testing and training ranges:interim report 1, ADA471046 [R]. Springfield: NTIS,2008.
    [45]Walsh M. R., Walsh M. E., Ramsey C. A., et al. Energetic residues deposition from 60-mm and 81-mm mortars, ADA449108 [R]. Springfield: NTIS,2006.
    [46]Walsh M. R., Walsh M. E., Bigl S., Perron N. M., Lambert D. J., Hewitt A. Propellant residues deposition from small arms munitions, ADA472269 [R]. Springfield: NTIS,2007.
    [47]Erickson J. A., Kramer R. L., Hallis J. M. Non-toxic primer [P]. US005547528,1996-08-20.
    [48]Dzhordzh S. M., Dzhejms V. P. Nontoxic primer mixture [P]. RU2127238 (Cl),1999-03-10.
    [49]Henry J., John J. R. Non-toxic primer mix. [P]. MX PA01010110 (A),2001-10-05.
    [50]George C. M., James W. P. Nontoxic priming mi x [P]. US5567252,1996-10-22.
    [51]Johnston H. E., Warner K. F., Blau R. J., Lusk S. Heavy metal-free, environmentally-friendly percussion primer and ordnance and systems incorporating the same [P]. JP2006290734 (A), 2006-10-26.
    [52]Louise J., Ville D. L. Low-toxicity primer compositions for reduced energy ammunition [P]. US2010/0300319 (Al),2010-08-04.
    [53]谭胜,付洪瑞,王士钊,陈学军.QF炮膛擦拭剂的研制[J].军械工程学院学报,2007,19(1):45-46,54.
    [54]王雨石.解决23+mm航炮榴弹引信炮口炸问题的技术途径[J].探测与控制学报,2007,29(5):6-8, 12.
    [55]王琼林,刘少武,吴建军.钝感剂对发射药枪口烟雾特性影响的研究[J].火炸药学报,1998,21(3):17-18.
    [56]王琼林.调节钝感发射药氧平衡的技术途径[J].火炸药学报,2000,23(2):29-31.
    [57]田新.双基球形药在9mm手枪弹中的应用[J].含能材料,2005,13(1):33-35.
    [58]余斌.9mm警用转轮手枪采用的新型发射药-叠氮硝胺[J].轻兵器,2006,(6):29-29.
    [59]潘仁明,蔺向阳,郑文芳,李生有,崔敬学,钱涛.一种微气孔无烟烟花药的敏化方法[P].CN101844955A,2010-05-21.
    [60]蔺向阳,潘仁明,殷继刚,郑文芳,寇波,尚喜民,罗永光.一种微气孔无烟烟花药及其制备方法[P].CN101844954A,2010-05-21.
    [61]潘仁明,蔺向阳,殷继刚,寇波,李文祥,侯国保,张晓成.一种无烟烟花的发射装药结构及其装药方法[P].CN101852576A,2010-05-21
    [62]蔺向阳,潘仁明,郑文芳,张学舜,尚喜民,阎斌.一种改善点传火性能的微气孔烟花药及其制备方法[P].CN101857516A,2010-05-21.
    [63]黄涛.可燃药筒燃烧完全性研究[D].南京理工大学,2007.
    [64]匡川强,许玉生.小口径枪弹环保底火的应用与展望[J].四川兵工学报,2008,29(4):99-101.
    [65]盛涤伦,景海东,魏学忠,马凤娥,朱雅红.手枪弹用无铅无钡击发药组分设计研究[J].火工品,2008,28(4):20-23.
    [66]刘国良.无锈蚀微烟微残渣射钉弹的研究[D].南京理工大学,2009.
    [67]Walsh M. R., Walsh M. E., Hewitt A. D. Energetic residues from field disposal of gun propellants [J]. Journal of Hazardous Materials.2010,173:115-122.
    [68]Walsh M. R., Walsh M. E., Ramsey C. A. Measuring Energetics Residues on Snow, ADA472953 [R]. Springfield: NTIS,2007.
    [69]王宏,孙美,冯伟,刘桂生,王瑛.发射药枪口烟焰检测技术研究[J].火炸药学报,2002,25(2):57-58.
    [70]陈顺昌,杨瑞琴.射击残留物检验研究[J].中国人民公安大学学报(自然科学版),2009,30(1):13-17.
    [71]赵鹏程,邹宁,郑吉龙.射击残留物的检验方法[J].中国人民公安大学学报(自然科学版),2003,30(6):16-18.
    [72]钱晓凡,施英,张鹏翔,李绍富.枪击残留物拉曼光谱研究[J].光散射学报,2001,13(1):45-48.
    [73]张鹏翔,赵金涛,杨延勇.显微拉曼技术在公安法学中的应用[J].光散射学报,1998,10(3-4):200-203.
    [74]时巧翠,严恺伦,林顺雷,毛文彬.扫描电镜/能谱仪在刑事技术中的应用[J].实验室研究与探索,2010,29(10):32-35.
    [75]王炳成,景畅,任立义.枪械射击残留物分布密度的分形研究[J].爆炸与冲击,2004,24(6):567-570.
    [76]Oliver D., David B., Jason W. B. Analysis of gunshot residue and associated materials-a review [J]. Journal of Forensic Science,2010,55(4):924-943.
    [77]Zeichner A. Recent developments in methods of chemical analysis in investigations of firearm-related events [J]. Analytical and Bioanalytical Chemistry,2003,376(8):1178-1191.
    [78]Trinks L., Klingenberg G. Gun muzzle blast field research:multiphase flow aspects and chemistry of muzzle flash including chemical flash suppression [C]. Proceedings of the sixth international symposium on ballistics, Orlando, FL,1981.
    [79]Martel, H. Measurement of two-phase flow parameters of a small caliber gun associated with muzzle flash phenomena [C]. Proceedings of the seventh international symposium on ballistics, Hauge, Netherlands,1983.
    [80]Fujimura, S. F., Warren R. E., Lutomirski R. F. Lidars for Smoke and Dust Cloud Diagnostics, ADA102178 [R]. Springfield:NTIS,1980.
    [81]Martel R., Aurelie B., Richard L., Sebastien C. Determination of nitroglycerin and its degradation products by solid-phase extraction and LC-UV [J]. Chromatographia,2010,71(3-4):285-289.
    [82]Can M., Uner H. B., Koc S., Tok M., Disbudak M. Determination of hand deposited gunshot residue obtained from shootings carried out with handgun cartridges produced by Turkish machinery and chemistry foundation using flameless atomic absorption spectrophotometer [J]. Forensic Science International,2003,136(S1):147.
    [83]Koons R. D. Flameless atomic-absorption spectrophotometric determination of antimony and barium in gunshot residue collection swabs-a collaborative study [J]. Crime Laboratory Digest,1993, 20(1):19-23.
    [84]Reed G. E., McGuire P.J., Boehm A. Analysis of gunshot residue test results in 112 suicides [J]. Journal of Forensic Science,1990,35(1):62-68.
    [85]Koons R. D., Analysis of gunshot primer residue collection swabs by inductively coupled plasma-mass spectrometry [J]. Journal of Forensic Science,1998,43(4):748-754.
    [86]Steffen S., Otto M., Niewoehner L., Barth M., Brozek-Mucha Z., Blegstraaten J., Horvath R. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection [J]. Spectrochim Acta Part B, 2007,62(9):1028-1036.
    [87]Aleksandar I. Is there a way to precisely identify that the suspect fired from the firearm? Forensic Science International,2003,136(S1):158-159.
    [88]Martiny A., Andrea P.C. Campos A., Sader M. S., Pinto M., SEM-EDS analysis and characterization of gunshot residues from Brazilian lead-free ammunition [J]. Forensic Science International,2008, 177:e9-e17.
    [89]傅晓莉.组份对发射药燃烧残渣形成的影响研究[D].南京:南京理工大学,2010.
    [90]王劲松,李海兰.新型枪口烟测试系统[J].探测与控制学报,2009,32(s):58-61.
    [91]乔丽洁,刘志涛,王泽山.炮用模块装药燃烧残渣的分析[J].火炸药学报,2010,33(6):80-82,86.
    [1]Kenneth K. K. Principles of combustion [M]. New York: WILEY-VCH Verlag GmbH & Co.,2005.
    [2]Koch E-C. Pyrotechnic countermeasures. Ⅲ: The influence of oxygen balance of an aromatic fuel on the color ratio of spectral flare compositions [J]. Propellants, Explosives, Pyrotechnics,2007,32(5): 365-370.
    [3]Lu Chunxu. Research and development of powder industrial explosives in China [J]. Propellants, Explosives, Pyrotechnics,1999,24(1):27-29.
    [4]陆明,吕春绪.氧平衡对粉状硝铵炸药爆炸性能影响的数学计算方法[J].兵工学报,2004,25(2):225-228.
    [5]王琼林,刘少武,吴建军.钝感剂对发射药枪口烟雾特性影响的研究[J].火炸药学报,1998,21(3):17-19.
    [6]王琼林,刘少武,张远波,郑双.枪用发射药燃烧残渣的测试方法[J].火炸药学报,2006,29(5):57-59.
    [7]Jones M. R., Brewster M. Q., Yamada Y. Application of a genetic algorithm to the optical characterization of propellant smoke [J]. Journal of thermophysics and heat transfer,1996,10(2): 372-377.
    [8]贺增弟,刘幼平,何利明,等.硝酸铵对发射药能量性能的影响[J].含能材料,2009,17(2):202-205.
    [9]Manning T. G., Thompson D., Ellis M., et al. Environmentally friendly 'green' propellant for the medium caliber training rounds, ADA481741 [R]. Springfield:NTIS,2008.
    [10]田德余,刘剑洪.化学推进剂计算能量学[M].河南科学技术出版社,2001.
    [11]陈舒林,李凤生.火药设计与制造[M].北京:兵器工业出版社,1987.
    [12]Gordon S., Mcbride B. J. Computer program for calculation complex chemical equilibrium compositions and applications I. analysis, N95201802 [R]. Springfield: NTIS,1994.
    [13]Li X., Grace J.R., Watkinson A.P., Lim C.J., Ergudenler A. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier [J]. Fuel,2001,80(2):195-207.
    [14]Gordon S., Zeleznik F. A general IBM 704 or 7090 computer program for computation of chemical equilibrium compositions, rocket performance, and chapman-jouguet detonations, NASA TN D-1737 [R]. Springfield: NTIS,1962.
    [15]Gordon S., McBride B. J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and chapman-jouguet detonations, N78177243 [R]. Springfield:NTIS,1976.
    [16]宋东明,潘功配,王乃岩.基于最小自由能法的烟火药燃烧产物预测模型[J].弹箭与制导学报,2006,26(1):120-122.
    [17]Baker F S, Turner C M, Privett G J. The interaction of dibutyl phthalate with 12.6 %N nitrocellulose [J]. Polymer International,2005,54(1):54-58.
    [18]Kubota N. Propellants and Explosives [M]. New York: Weinheim: WILEY-VCH Verlag GmbH & Co., 2007.
    [19]傅献彩,沈文霞,姚天扬.物理化学[M].高等教育出版社,1990.
    [20]GJB 770B-2005.火药实验方法密闭爆发器实验微分压力法[S].
    [1]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [2]黄人骏,宋洪昌.火药设计基础[M].北京:北京理工大学出版社,1997.
    [3]金志明.枪炮内弹道学[M].北京:北京理工大学出版社,2004.
    [4]鲍廷钰,邱文坚.内弹道学[M].北京:北京理工大学出版社,1995.
    [5]杨敏涛,张向明.多孔火药内外弧厚不等对内弹道性能的影响[J].弹道学报,2004,16(02):15-18.
    [6]GJB 558A-97.炮用单基发射药通用规范[S].
    [7]翁春生,王浩.计算内弹道学[M].北京:国防工业出版社,2006.
    [8]朵英贤.95式5.8mm班用枪族的研制[J].中国工程科学,1999,1(2):57-61.
    [9]王琼林,刘少武,张远波,郑双.枪用发射药燃烧残渣的测试方法[J].火炸药学报,2006,29(5):57-59.
    [1]Kubota N. Propellants and Explosives [M]. New York: Weinheim: WILEY-VCH Verlag GmbH & Co., 2007.
    [2]Kenneth K K, Summerfield M. Fundamentals of solid-propellant combustion [M]. New York: American Institute of Aeronautics and Astronautics,1984.
    [3]王伯羲,冯增国,杨荣杰.火药燃烧理论[M].北京:北京理工大学出版社,1997.
    [4]张柏生.火药燃烧导论[M].南京:华东工学院,1988.
    [5]李葆萱.固体推进剂性能[M].西安:西北工业大学出版社.1990.
    [6]李杰,余永刚,周彦煌,黄凤良.机枪内膛壁面瞬态温度的测试[J].测试技术学报,2005,19(4):412-415.
    [7]张洪汉,郭映华,王育维,魏建国.某小口径火炮射击过程膛内传热计算分析[J].火炮发射与控制学报,2009,(4):34-37.
    [8]田青超,吴建生,樊新民,张越.有限差分法在复合枪管传热中的应用[J]'兵工学报2000,21(4):297-300.
    [9]Wu B., Chen G., Xia W. Heat transfer in a 155 mm compound gun barrel with full length integral midwall cooling channels [J]. Applied Thermal Engineering,2008,28(8-9):881-888.
    [10]Sinditskii V. P., Egorshev V. Y., Serushkin V. V., Berezin M. V., Filatov S. A. Combustion of energetic materials governed by reactions in the condensed phase [J]. International Journal of Energetic Materials and Chemical Propulsion,2010,9(2):147-192.
    [11]Marshakov V. N., Istratov A. G., Kolesnikov-Svinarev V. I., Finyakov S. V. Extinction of a propellant upon contact with a wall or substrate [J]. Russian Journal of Physical Chemistry B,2008,2(3): 470-475.
    [12]Wang J., Wight C. A. Use of condensed-phase reaction models in combustion simulation of energetic materials [J]. Journal of Propulsion and Power,2008,24(2):175-183.
    [13]赵凤起,单文刚,王瑛,李上文,李疏芬,何德球.含催化剂的RDX-CMDB推进剂熄火表面形貌特征和燃烧火焰结构分析[J].含能材料,2009,8(2):67-71.
    [14]虞莹莹.涂料工业用检验方法与仪器大全[M].北京:化学工业出版社,2007.
    [15]童国忠.现代涂料仪器分析[M].北京:化学工业出版社,2006.
    [16]郑国娟漆膜附着力及其测试标准[J].化工标准·计量·质量,2003,(5):23-24.
    [17]王平,严冬.漆膜附着力的检测及其影响因素[J].上海涂料,2000,(1):9-11
    [18]宋玉苏,姚树人.涂层与基体金属附着力的研究进展[J].材料保护,1999,32(9):21-22.
    [19]崔彩娥,缪强,潘俊德.薄膜与基体间的附着力测试[J].电子工艺技术,2005,26(5):294-297
    [20]GB/T 23998-2009.室内装饰装修用溶剂型硝基木器涂料[S].
    [1]叶迎华.火工品技术[M].北京:北京理工大学出版社,2007.
    [2]蔡瑞娇.火工品设计原理[M].北京:北京理工大学出版社,1999.
    [3]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [4]Erickson J. A., Kramer R. L., Hallis J. M. Non-toxic primer [P]. US005547528,1996-08-20.
    [5]Dzhordzh S. M., Dzhejms V. P. Nontoxic primer mixture [P]. RU2127238 (Cl),1999-03-10.
    [6]Henry J., John J. R. Non-toxic primer mix. [P]. MX PA01010110 (A),2001-10-05.
    [7]George C. M., James W. P. Nontoxic priming mi x [P]. US5567252,1996-10-22.
    [8]Johnston H. E., Warner K. F., Blau R. J., Lusk S. Heavy metal-free, environmentally-friendly percussion primer and ordnance and systems incorporating the same [P]. JP2006290734 (A), 2006-10-26.
    [9]Louise J., Ville D. L. Low-toxicity primer compositions for reduced energy ammunition [P]. US2010/0300319 (Al),2010-08-04.
    [10]盛涤伦,景海东,魏学忠,马凤娥,朱雅红.手枪弹用无铅无钡击发药组分设计研究[J].火工品,2008,28(4):20-23.
    [11]金泽渊,詹彩琴.火炸药与装药概论[M].北京:兵器工业出版社,1986.
    [1]Stiefel L. Gun propulsion technology [M]. New York: American Institute of Aeronautics and Astronautics,1988.
    [2]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [3]Downs, D. S.; Harris, L. E.; Russell, K. M203 propelling charge residue investigation. Part Ⅰ, ADA0953778 [R]. Springfield: NTIS,1981.
    [4]金泽渊,詹彩琴.火炸药与装药概论[M].北京:兵器工业出版社,1986.
    [5]Goldberg A. Infrared signatures of the muzzle flash of a 120 mm tank gun and their implications for the kinetic energy active protection system (KEAPS), ADA396882 [R]. Springfield:NTIS,1997.
    [6]Fontijn A. Kinetics of propellant combustion and muzzle flash reactions, ADA246109 [R]. Springfield: NTIS,1983.
    [7]May I. W., Einstein S. I. Prediction of gun muzzle flash, ADA083888 [R]. Springfield: NTIS,1980.
    [8]Conroy P. J., Weinacht P., Nusca M. J.120-mm gun tube erosion including surface chemistry effects, ADA338048 [R]. Springfield: NTIS,1997.
    [9]Hasenbein R. G. Wear and erosion in large caliber gun barrels, ADA440980 [R]. Springfield: NTIS, 2003.
    [10]Carter E. A. First principles and multiscale modeling of spallation and erosion of gun tubes, ADA459432 [R]. Springfield:NTIS,2006.
    [11]GJB 770B-2005.火药实验方法密闭爆发器实验微分压力法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700