有壁面质量注入通道流体动力学典型问题分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于有壁面注入通道空间流动在发汗冷却、多孔介质通道空间流动、固体火箭发动机燃烧室流动、内弹道设计、燃烧及稳定性研究中的重要性,本论文主要针对典型的带壁面注入通道空间流动进行了系统研究,研究考虑了不同头部注入模式的壁面注入通道、考虑壁面退移的轴对称壁面注入通道、有颗粒相注入的两相流通道、具有小倾斜角度的二维壁面注入通道及旋转情况下的带壁面注入通道流,主要工作及其结论如下:
     (1)给出了任意头部注入情况下Taylor-Culick流的分析解并进行了数值研究,分别通过无粘、层流和湍流数值解验证了分析解的准确性及应用范围;
     (2)对具有壁面退移的带壁面质量注入通道内流场进行研究,通过运用空间相似与时间相似原理简化N-S方程,基于解析方法以及运用摄动法求解高阶微分方程,然后采用CFD方法通过动网格技术对该问题进行数值模拟。分析比较不同的燃面无量纲减退率a及燃气注入雷诺数R下,通道的速度场、压力场及剪应力分布。对于高燃速推进剂,即α/R较大时,时间相关性必须考虑,不考虑燃面退移的准稳态计算将低估ur,△pr。
     (3)对二维两相流通道内的流动规律进行了分析研究。首先采用Lagrange方法,基于摄动法获得了小Stokes数情况下通道两相流的分析解。然后应用Euler方法,获得了通道两相流的自相似解,应用4阶R-K方法求解出相似函数、速度及密度分布,给出了不同Stokes数情况下两相流规律。
     (4)对具有倾斜燃面的有质量注入通道内流场进行了研究。结果表明,燃面倾斜角a与平直燃面长度L对燃烧室内流场具有很重要的影响,用平直燃面代替倾斜燃面,不仅会高估压降,而且会影响流场的其它参数,这种影响在加长燃烧室或大燃面倾斜角发动机中表现的尤为突出。
     (5)对带壁面注入的旋转通道(具有柱形装药旋转固体火箭发动机通道)内流场进行了研究。首先通过解析方法求解简化后的欧拉方程,获得了无粘情况下的旋转通道解析解,在此基础上,运用渐进展开匹配法求解引入粘性修正的切向动量方程,并获得解析解,切向速度分布解具有组合涡特征。分析了涡核半径与注入雷诺数及旋转转数的关系。同时考虑了可压缩修正条件下的组合涡规律。然后采用CFD对柱形装药旋转固体火箭发动机通道进行数值模拟。分析比较不同转速下的速度分布、涡核尺度、燃烧室的分区特征及旋转情况下的封头端面的二次涡效应,进而为旋转对发动机封头烧蚀研究给出了理论依据。
Since the channel flows such as transpiration cooling, porous medium with mass injection and bulk gas flow of porous chamber in solid rocket motors (RSM) etc., are characterized by wall mass injection, especially for interior ballastics of RSM, hydrodynamic and combustion instability. The study is focus on typical channel spatial flow with mass injection, which includes the Taylor-Culick flow with arbitrary headwall injection, axisymmetric chamber gas flow with regression walls, two-phase channel flow with particles injection, planar channel flow with tapered wall and mean flow of spinning channel with wall mass injection (especially for RSM). The main conclusions are as follows:
     (1) Analytical and numerical studies on the Taylor-Culick flow with arbitrary headwall injection are performed and numerical validation of the analytical solutions is in consideration of inviscid, laminar and turbulent flow.
     (2) Analytical and numerical solutions of axisymmetric chamber gas flow with regression walls are compared. A high order ordinary differtial equation, Reduced N-S equations by spatial similarity andt emporal similarity, is analytically solved with perturbation method. Numerical simulation is based on laminar flow with dynamic mesh techinique to deal with regressing wall. The velocity fields, pressure fields and shear stress distributions are mainly studied for different rates of wall regression a and injection Reynolds number R. The fact that numerical results are well in agreement with the analytical solutions gains confidence in the analytical approximation.
     (3) Analytical study on the gas-particle two phase mean flow with particles injection is performed with Lagrange method and Euler method respectively. The perturbation approximate solution for small Stokes number with Lagrange method is gained. The self-similarity solution of particle phase flow field is derived and the similarity functions and profiles of velocity and density for different Stokes Number are solved with fourth order R-K method.
     (4) The channel mean flow with tapered sidewalls is studied with both analytical method and numerical method. The results indicate that the influence of taper angle of sidewalls a and the length of straight sidewalls L is important, the numerical results are well in agreement with the analytical solutions. The pressure drop may be over-estimated only in consideration of straight sidewalls and its influence on other parameters is so on, especially for SRM with the longer chamber and larger tapered combustion surface.
     (5) The analytic and numerical studies on spinning channel mean flow with porous wall injection is accomplished. The analytical inviscid solutions of spinning mean flow are based on the reduced Euler equations and viscous core corrections to swirl driven mean flow with wall injection is based on tangential momentum equation with the second order viscous terms. Pursuant to conventional asymptotic matching theory, a complete solution is arrived by a separate expansion (the sum of inner and outer expansions), which is cheraterized by The Rankine vortex (sum of free votex and forced vortex) The viscous core radius versus injection velocity with swirl speed is analysed, meanwhile, in consideration of compressibility corrections. Numerical simulation is performed with CFD to study the channel mean flow of a spinning SRM with inner burning cylindrical circle grain. The velocity profiles, viscous core size, segment characteristics of flow in the chamber and secondary vortex near the headwall vernus swirl speed are analysed in details. It provides theoretical basis for the study on the erosion of headwall closure in spinning SRM.
引文
[1]Berman A S. Laminar Flow in Channels with Porous Walls[J].Journal of Applied Physics.1953,24 (9):1232-1235P
    [2]Taylor G I. Fluid flow in regions bounded by porous surfaces[J]. Proc. R. Soc. Lond. A,1956,234 (1199):456-475P
    [3]Yuan S W.& Finkelstein, A. B. Laminar pipe flow with injection and suction through aporous wall[J]. Trans. ASME J. Appl. Mech. 1956,78:719-724P.
    [4]Yuan S W. Further investigation of laminar flow in channels with porous walls[J]. J. Appl. Phys.1956,27 (3):267-269P
    [5]Culick F E C. Rotational Axisymmetric Mean Flow and Damping of Acoustic Waves in a Solid Propellant Rocket[J],AIAA Jounal,1966,4 (8):1462-1464.
    [6]Sellars J. R. Laminar flow in channels with porous walls at high suction Reynolds numbers[J]. J. Appl. Phys.1955,26 (4):489-490P
    [7]Morduchow M, On laminar flow through a channel or tube with injection: application of method of averages[J]. Quart. J. Appl. Math.1957,14 (4) 361-368P
    [8]White F. M., Barfield Jr. B F,Goglia M J, Laminar flow in a uniformly porous channel[J]. Trans. ASME:J. Appl. Mech. E,1958 (25):613-617P
    [9]Terrill R M, Laminar flow in a uniformly porous channel[J]. Aeronaut. Q. 1964 (15):299-310P
    [10]Terrill R M, Laminar flow in a uniformly porous channel with large injection[J]. Aeronaut.Q.1965 (16):323-332P
    [11]Terrill R M, Thomas P W. On Laminar Flow through a Uniformly Porous Pipe[J]. Applied Scientific Research,1969 (21):37-67P
    [12]Terrill, R M On some exponentially small terms arising in flow through a porous pipe[J]. Q. J. Mech. Appl. Math.1973 (26):347-354P
    [13]Terrill, R M, Laminar flow through a porous tube[J]. ASME J. Fluids Engineering,1983 (105):303-307P
    [14]Varapaev V N, Yagodkin V I, Flow stability in a channel with porous walls[J]. Fluid Dyn.1969,4 (5):91-95P
    [15]Raithby G D,Knudsen D C, Hydrodynamic development in a duct with suction and blowing[J]. Trans. ASME:J. Appl. Mech. E,1974,41:896-902P
    [16]Brady J F, Flow development in a porous channel or tube[J]. Phys. Fluids 1984,27 (5):1061-1067P
    [17]Durlofsky L, Brady J F, The spatial stability of a class of similarity solutions[J]. Phys.Fluids,1984,27 (5):1068-1076P
    [18]Robinson W A, The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls[J]. J. Eng. Math. 1976,10 (1)-23-40P
    [19]Skalak F M,Wang C Y, On the nonunique solutions of laminar flow through a porous tube or channel[J]. SIAM J. Appl. Math.34 (3) (1978),535-544.
    [20]Shih K G, On the existence of solutions of an equation arising in the theory of laminar flow in a uniformly porous channel with injection[J]. SIAM J. Appl. Math.1987,47 (3):526-533P
    [21]Hastings S P, Lu C, MacGillivray A D, A boundary value problem with multiple solutions from the theory of laminar flow[J]. SIAM J. Math. Anal. 1992,23 (1):201-208P
    [22]Lu C, MacGillivray A D, Hastings S P, Asymptotic behavior of solutions of a similarity equation for laminar flows in channels with porous walls [J]. IMA J. Appl. Math.1992,49:139-162P
    [23]MacGillivray A D, Lu C, Asymptotic solution of a laminar flow in a porous channel with large suction:a nonlinear turning point problem[J]. Math. Appl. Anal.1994,1 (2):229-248P
    [24]Lu C, On the asymptotic solution of laminar channel flow with large suction[J]. SIAM J. Math. Anal.1997,28 (5):1113-1134P
    [25]Dunlap R, Willoughby P G., Hermsen R W. Flow field in the combustion chamber of a solid propellant rocket motor[J]. AIAA J.1974,12,1440P
    [26]Yamada K, Goto M, Ishikawa N. Simulative Study of the Erosive Burning of Solid Rocket Motors[J]. AIAA Journal.1976,14 (9):1170-1176P
    [27]Uchida S,Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe[J].J. Fluid Mech.1977,82 (2):371-387P
    [28]Brady J F.& Acrivos, A. Steady flow in a channel or tube with an accelerating surface velocity-An exact solution to the Navier-Stokes equations with reverse flow[J]. J. Fluid Mech.1981,112:127-150P
    [29]Goto M, Uhida S. Unsteady Flows in a Semi-Infinite Expanding Pipe with Injection though Wall [J].Transaction of the Japan Society for Aeronautical and Space Sciences,1990,33 (9):14-27P
    [30]Proudman I. Johnson K. Boundary layer growth near a rear stagnation point[J]. J. Fluid. Mech.1962,12:161-168P
    [31]Cox S M. Two-dimensional flow of a viscous fluid in a channel with porous walls[J]. J. Fluid. Mech.1991,227:1-33P
    [32]Cox S M. Analysis of steady flow in a channel with one porou wall,or with accelerating walls[J]. SIAM Journal on Applied Mathematics,1991,51: 429-438P
    [33]King J R, Cox S M. Asymptotic analysis of the steady-state and time-dependent Berman problem[J]. Journal of Engineering Mathematics,2001,39:87-130P
    [34]Clayton C D. Flow fields in Solid Rocket Motors with Tapered Bores[R]. AIAA 96-2643,31th Joint Propulsion Conference, Lake Buena Vista, FL,July 1996.
    [35]Sams O C, Majdalani J, Flandro G A. Mean Flow Approximation for a Slab Rocket Motor with Tapered Sidewalls[R]. AIAA 2003-5114,39th Joint Propulsion Conference, Huntsville, AL, July 2003.
    [36]Sams O C, Majdalani J, Saad T. Mean Flow Approximations for Solid Rocket Motors with Tapered Walls[J]. Journal of Propulsion and Power. 2007,23 (2):445-456P
    [37]Zhou C, Majdalani J. Improved Mean Flow Solution for Slab Rocket Motors with Regressing Walls[J]. Journal of Propulsion and Power.2002,18 (3):703-711P
    [38]Dauenhauer E C, Majdalani J. Unsteady Flows in Semi-Infinite Expanding Channels with Wall Injection[R]. AIAA 99-3523.
    [39]Dauenhauer E C, Majdalani J. Exact Self-Similarity Solution of the Navier-Stokes Equations for a Deformable Channel with Wall Suction or Injection[R]. AIAA 2001-3588.
    [40]Majdalani J, Vyas B. Higher Mean-Flow Approximation for a Solid Rocket Motors with Radially Regressing Walls[J]. AIAA Jounal,2002,40 (9):1780-1788.
    [41]Majdalani J, Saad T. The Taylor-Culick profile with arbitrary headwall injection[J]. Physics of Fluids,2007,19 (9),:093601-093601-10P
    [42]Boutros Y Z, Abd-el-Malek M K, Badran N A, Hassan H S.Lie-group method for unsteady flows in a semi-infinite expanding or contracting pipe with injection or suction through a porous wall[J]. Journal of Computational and Applied Mathematics,2006 (197):465-494P
    [43]Balachandar S,Buckmaster J D, and Short M.The generation of axial vorticity in solid-propellant rocket-motor flows[J]. J. Fluid Mech.2001 (429):283-305P.
    [44]Majdalani J, Roh T S. The oscillatory channel flow with large wall injection[J]. Proc. R. Soc. London, Ser. A,2000 (456):1625-1657P.
    [45]Majdalani J, Flandro G A. The oscillatory pipe flow with arbitrary wall injection[J]. Proc. R. Soc. London, Ser. A,2002 (458):1621-1651P.
    [46]Baum J D, Levine J N, and Lovine R L. Pulsed instabilities in rocketmotors: A comparison between predictions and experiments [J]. AIAA J.1988,4:308 P.
    [47]Sabnis J S, Gibeling H J, and McDonald H, Navier-Stokes analysis of solid propellant rocket motor internal flows[J]. AIAA J.1989,5:657P.
    [48]Dunlap R, Blackner A M, Waugh R C, Brown R S, and Willoughby P G, Internal flow field studies in a simulated cylindrical port rocket chamber [J]. AIAA J.1990 (6):690-P.
    [49]Ciucci A, Iaccarino G, Moser R, Najjar F,Durbin P. Simulation of rocket motor internal flows with turblent mass injection[C]. Center for tublent research Proceedings of summer program,1998,245-266P
    [50]Kuentzmann P, Combustion Instabilities (AGARDograph), Princeton University, Princeton,1991.
    [51]Traineau J C, Hervat P, and Kuentzmann P. Cold-flow simulation of a two-dimensional nozzleless solid-rocket motor[R]. AIAA Paper 86-1447, Huntsville, AL,1986.
    [52]Apte S and Yang V. Effect of acoustic oscillation on flow development in a simulated nozzleless rocket motor, in Solid Propellant Chemistry,Combustion, and Motor Interior Ballistics, edited by V. Yang, T. B. Brill,and W.-Z. Ren,AIAA, Washington, D.C.,2000 (185):791-822P.
    [53]Flandro G A. Effects of Vorticity on Rocket Combustion Stability [J]. Journal of Propulsion and Power.1995,11 (4):607-625P.
    [54]Flandro G A, Majdalani J. Aeroacoustic Instability in Rockets[R]. AIAA 2001-3868P.
    [55]Apte S, V.Yang. Effects of Acoustic Oscillations on Turbulent Flowfield in a Porous Chamber with Surface Transpiration[R]. AIAA98-3219.
    [56]Griffond J, Casalis G. Pineau J P, Spatial instability of flow in a semi-infinite cylinder with fluid injection through its porous walls[J]. Eur. J.Mech. B/Fluids,2000,19 (1):69-87P.
    [57]Griffond J, Casalis G. On the nonparallel stability of the injection induced two-dimensional Taylor flow[J]. Phys. Fluids,2001,13 (6):1635-1644P.
    [58]Feraille T, Casalis G. Channel flow induced by wall injection of fluid and particles [J]. Phys. Fluids,2003,15 (2):348-360P.
    [59]Cai W, Ma F,Yang V. Two-phase vorticoacoustic flow interactions in solid-propellant rocket motors[J]. J. of Propulsion and power,2003,19 (3):385-396P.
    [60]Langhenry M. T. Acceleration effects in solid propellant rocket motors[D]. Auburn University.1985
    [61][苏]B.A.莱兹别格,B.T.叶罗欣,K.п.沙母索诺夫著.固体火箭发动机系统工作过程的理论基础[M].刘光宇,梅其志译.北京:国防工业出版社,1984:369-392页
    [62]Mager A. Approximate solution of isentropic swirling flow through a nozzle[J].ARS Journal.1961, (8):1140-1148P
    [63]Bastress E K. Interior ballistics of spinning solid propellant rockets[J]. J Spacecraft Rockets.1965, (3):12-25P
    [64]Manda L J. Spin effects on rocket nozzle performance [J]. J Spacecraft Rockets.1965, (3):36-45P
    [65]Nontan D J. An analytical and experimental investigation of swirling flow in nozzle[J].AIAA Journal.1968, (10):102-110P
    [66]Dunlap R. An Investigation of the Swirling Flow in a Spinning End-Burning Rocket[J].AIAA Journal.1969,7 (12):2293-2299P
    [67]Crowe C T.A unified model for the acceleration-produced burning rate augmentation of metalized solid propellants[J]. Combustion Science and technology.1972,5:55-60P
    [68]Fuchs M D.A parametric study of the effects of acceleration on the burning rate of metalized solid propellants[J]. Journal of Spacecraft and Rockets. 1982,19 (6):539-544P
    [69]Boraas S.Modeling slag deposition in the space shuttle solid rocket Motor[J]. Journal of Spacecraft and Rocket.1984,21 (11):36-47P
    [70]Langhenry M T.Acceleration effects in solid propellant rocket motors[J]. AIAA Journal.1986,15:77-90P
    [71]Wilkinson J, Motamed-Amini A, Owen I. Compressible and confined vortex flow[J]. International Journal of Heat and Fluid Flow,1988,9(4):373-380P.
    [72]Haloulakos V E.Slag mass accumulation in spinning solid rocket motors[J]. Journal of Propulsion and Power.1991,7 (1):14-21P
    [73]Meyer R X.In-flight formation of slag in spinning solid propellant rocket motors[J]. Journal of Propulsion and Power.1992,8 (1):19-26P
    [74]Sabnis J S,Frederik J, Gibeling H J. Calculation of Particle Trajectories in Solid-Rocket Motors with Arbitrary Acceleration [J]. Journal of Propulsion and Power.1992,8 (5):18-25P
    [75]Greatrix D R. Acceleration-based combustion augmentation modeling for non-cylindrical grain solid rocket motors [R]. AIAA Paper.1995:2876P
    [76]Greatrix D R. Internal ballistic model for spinning star-grain motors[J]. Journal of Propulsion and Power,1996,12 (3)
    [77]Vaidyanathan S, Venkatesh T N, Mohan N K. Isentropic swirling flow through supersonic nozzles-Part 1 (Free Vortex Flow) [J]. Journal of Aerospace Sciences and Technologies,2006,58 (1)
    [78]曹泰岳.含金属固体推进剂在加速度场中燃烧时瞬态燃绕特性预示[J].推进技术.1987,10(5):9-13页
    [79]曹泰岳.含金属固体推进剂在加速度场中燃烧时燃速敏感性预示[J].宇航学报.1988,1(1):74-80页
    [80]张伟青.旋转对固体火箭发动机性能的影响[J].上海航天.1990,(3):1-4 页
    [81]许少华,方丁酉.旋转发动机的喷管流场计算[J].固体火箭技术.1991,12(4):26-32页
    [82]汪志清.高速旋转固体火箭发动机低燃速推进剂燃速性能研究[J].推进技术.1991,(5):45-50页
    [83]万章吉,商晨燕,曹泰岳.加速度对固体发动机内弹道性能影响的实验研究[J].固体火箭技术.1991,9(3):24-30页
    [84]张为华,曹泰岳,郭印诚.旋转固体火箭发动机一维内弹道计算[J].推进技术.1994,6(3):28-32页
    [85]程谋森,张为华.固体发动机喷管内跨音速旋转流动研究[J].航空动力学报.1995,10(4):372-374页
    [86]张如洲,李保江,郑晓平等.加速度对含铝复合推进剂燃烧特性的影响[J].推进技术.1996,16(2):7-11页
    [87]张为华,曹泰岳,冯海涛,姜春林.星孔药柱旋转发动机工作过程数值模拟[J].航空动力学报.1996,11(1):72-74页
    [88]张为华,曹泰岳,万章吉.旋转发动机研究中的几个重要技术问题[J].推进技术.1996,17(3):26-31页
    [89]曹泰岳,张为华,万章吉,郭印诚.旋转固体火箭发动机内弹道理论与实验研究[J].宇航学报.1997,18(1):1-7页
    [90]邵爱民.大型固体发动机旋转试车头部热防护工程分析[J].固体火箭技术.1998,21(3):7-12页
    [91]蔡国飙,田辉.旋转对固体火箭发动机的影响[J].推进技术.1999,20(1):11-15页
    [92]高波,叶定友,侯晓.旋转固体发动机燃烧室燃气湍流流动数值模拟[J].推进技术.1999,20(6):23-27页
    [93]张如洲,张平,李保江等.加速度对固体火箭发动机内弹道性能的影响[J].推进技术.2000,21(3):6-8页
    [94]王国辉,何国强,刘佩进,蔡体敏.过载状态下固体火箭发动机燃烧室内 二相流动数值模拟[J].固体火箭技术.2001,24(2):8-12页
    [95]何国强,王国辉,蔡体敏,阮崇智,王富春.过载条件下固体发动机内流场数值模拟[J].推进技术.2002,23(3):182-185页
    [96]王栋,余陵,武晓松.固体火箭发动机高速旋转试验研究[J].弹道学报.2004,16(4):87-91页
    [97]武晓松,王栋,余陵,夏静等.高速旋转固体火箭发动机的动态燃速特性研究[J].弹道学报.2005,17(2):1-7页
    [98]张志峰,蔡体敏.旋转条件下固体火箭发动机三维内流场数值模拟[J].固体火箭技术,2007,30(4):302-304P
    [99]Van Dyke, M. Perturbation methods in fluid mechanics [M]. Stanford, Calif., Parabolic Press,1975
    [100]A.Aziz, T.YNa. Perturbation Methods in Heat Transfer[M]. Hemisphere Publishing Corporation,1984.
    [101]Salvetat B. Analysis of Gas Flow in Three Dimensional Solid Propellant Grains[R]. AIAA84-1357,20th Joint Propulsion Conference, Cincinnati, OH, July 1984.
    [102]Melia P F. Flow and Ablation Patterns in Titan IV SRM Aft Closures[J]. AIAAJournal.1995,9 (5):28-78P
    [103]Majdalani J. An Improved Time-Dependent Flow field Solution for Solid Rocket Motors[R]. AIAA 97-2717,33rd Joint Propulsion Conference, Seattle, WA, July 1997.
    [104]吴心平.计算机在固体火箭发动机设计与研制中的应用[J].推进技术.1991,1(4):1-9页
    [105]刘宇,吴心平,何洪庆.固体火箭发动机工作过程仿真中的重要问题与处理方法[J].固体火箭技术.1990,1(3):21-26页
    [106]Massa L, Spatial linear analysis of the flow in a solid rocket motor with burning walls[J]. Combustion and flame,2008,dio:10.1016.
    [107]Vyas A, Majdalani J. Asympotic temperature distribution in a simulated combustion chamber[J]. Journal of heat transfer,2007 (109):894-898P.
    [108]Majdalani J, Zhou C, Dawson C A.Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability [J]. Journal of biomechanics,2002 (35):1399-1403P.
    [109]Deng C, Martinez D M. Linear stability of a Berman flow in a channel partially filled with a porous medium [J]. Physics of fluid,2005 (17):024102-1-7P.
    [110]Liou T M, Lien W Y.Numerical simulations of injection-driven flows in a two-dimensional nozzleless solid-rocket motor [J]. J. of propulsion and power,1995,11(4):600-609P.
    [111]Brady J F. Flow development in a porous channel and tube[J]. Physics of fluid,1984,27 (5):1061-1067P.
    [112]Beran P S, Culick F E C. The role of non-uniqueness in the development of vortex breakdown in tubes[J]. J. Fluid and Mechanics,1992(242):491-527P.
    [113]Leibovich S. Vortex stability and breakdown:Survey and extension[J]. AIAA J.,1984,22 (9):1192-1206P.
    [114]Leibovich S. The structure of vortex breakdown[J]. Ann.Rev.Fluid Mech. 1978 (10):221-246P.
    [115]Hewitt R E, Duck P W, Al-Azhari M. Extensions to three-dimensional flow in a porous channel[J]. Fluid dynamics research 2003 (33):17-39P.
    [116]贺征,郜冶.星孔型装药发动机三维两相流场的数值模拟[J].推进技术,2004,25(2):118-121页
    [117]方丁酉.两相流动力学[M].长沙:国防科技大学出版社,1989:98-137页
    [118]帕坦卡SV.张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984:146-151页
    [119]周立行著.湍流两相流动与燃烧的数值模拟[M].清华大学出版社,1991:9-81页
    [120]陶文铨编著.数值传热学[M].第二版.西安交通大学出版社,2001:333-385页
    [121]陈懋章编著.粘性流体动力学基础[M].北京:高等教育出版社,2002:266-274页
    [122]韩占忠,王敬,兰小平编.FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社,2004:264-273页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700