弹载合成孔径雷达成像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代精确制导武器不仅要求能快速突防并精确识别和打击高价值军事目标,还必须具备全天候、全天时和远距离作战能力。因此,将合成孔径雷达应用于弹载平台以进行二维成像制导的模式日益受到重视。与机载和星载平台相比较,弹载平台具备高速度、大斜视和非匀直的特性,弹载SAR需解决一系列关键技术问题,主要包括大斜视角SAR成像方法和非匀直弹道SAR成像方法等。同时,弹载新体制SAR也是未来精确制导武器发展的重要内容,其中合成带宽SAR体制和双基地SAR体制是最具前途的发展方向。一方面,需要解决弹载SAR中的普遍性关键技术;另一方面,需要研究新体制SAR的特殊性关键问题。针对上述两个方面的四个具体问题,本文围绕弹载SAR成像技术开展了以下研究工作:
     1、研究了弹载大斜视角SAR成像方法。首先分析了瞬时斜距方程与二维频谱的泰勒展开近似公式,从中得到耦合相位校正的关系,并由此导出了弹载条件下的Range Doppler算法和Chirp Scaling算法。然后,提出了基于时域距离走动校正的CS算法。并为适应更大斜视角下的成像,提出了冗余设计的策略,并对该算法作了三次距离偏移相位校正的改进。最后,为获取更精确的成像参数,改进了基于分数阶傅里叶变换的参数估计方法,并利用仿真实验验证了其有效性。
     2、研究了弹载非匀直弹道SAR成像方法。首先通过分析非匀速直线运动弹道,建立了距离向和方位向的速度分解模型。阐述了从非均匀数据重构虚拟均匀数据的角度来解决变速直线运动SAR成像的原理,从这一思想出发,研究了弹载平台变速直线运动时基于内插阵列变换SAR成像方法。阐述了将变速运动等间隔时间采样的回波数据等效为匀速运动中非等间隔时间采样数据的原理,并由此导出了基于非均匀傅里叶变换的变速直线运动SAR算法。其次分析了俯冲向运动和横向规避运动在距离向的运动偏移方程,得出了其运动补偿函数。构建了非匀速直线运动SAR成像的方案——距离向进行运动补偿,方位向采用非均匀方法处理。然后,考虑到工程实践中测量误差的因素,阐述了基于弹道拟合方法获取弹道参数的原理,并通过仿真实验验证了弹道拟合方法和非匀直SAR方案的有效性。最后,讨论了末制导寻的阶段基于PFA算法的聚束SAR成像方法。
     3、研究了基于合成带宽技术的成像方法。首先,提出了基于多频段子脉冲信号合成带宽技术的SAR成像方法。为实现不同参数条件下的合成带宽,构建了合成信号的非均匀采样模型,并通过SINC插值完成信号重建。讨论了带宽合成技术在成像前处理和后处理的问题,认为前处理方式适合各子脉冲间参数不同的情况,并给出了重新处理后的参数和成像流程。然后,研究了末制导跟踪段高重频随机频率步进雷达成像的方法,解决了高重频条件下的频率匹配和运动补偿问题。提出了利用相邻良好距离像间具有强相关系数的特性判定回波是否正确混频的方法,并设计了基于收缩式频率匹配搜索策略的算法流程。
     4、研究了弹载双基地SAR成像方法。首先从弹载平台运动特点和作战样式的可适应性出发,讨论双基地SAR各种组合模式和几何构形在弹载平台应用的可行性,并研究平飞、一基固定一基飞行和双基斜飞等几何场景下的双基地SAR成像算法。重点构建了斜飞双基地SAR的理论模型,分析了其中存在的距离向空变误差,并为此设计了一阶近似法和模型近似法两种运动补偿的的方法。然后深入分析了收发平台非匀速平飞模式下的非同步双基地SAR成像问题。该方法将非匀速平飞双基地模型等效成单基地变速运动模型,并采用非均匀傅立叶变换处理变速运动引起的非均匀采样的问题。
     最后概括了本文的研究工作,对课题研究方向的发展趋势、应用前景作了总结与展望,并指出了需要进一步研究和解决的问题。
New generation of precision guided weapons not only demanded to identify and destroy the high-value military targets quickly and accurately, but also demanded to work in all-weather, all-time and long-range conditions. Therefore, the pattern that synthetic aperture radar used in missile platform for two-dimensional imaging guidance has received increasing attention. Compared with airborne and space-borne platforms, missile-borne platforms have the characteristics of high-speed, high squint and non-uniform straight. Missile-borne SAR needs to resolve a series of key technical issues, including mainly high squint SAR imaging methods and non-uniform direct trajectory SAR Imaging methods. Meanwhile, the new missile-borne SAR systems are also an important part of the future development of precision guided weapons, among those, synthetic bandwidth SAR system and the biostatic SAR system are the most promising directions. On the one hand, universality of the key technologies on missile-borne SAR need to be resolved , on the other hand, particularity of the key issues on new SAR system need to be studied. In response to these the four specific issues of two aspects, the following researches focusing on Missile-borne SAR imaging technology are carried out in this paper.
     1. High squint missile-borne SAR imaging methods are studied. At first, taylor approximation formulas of instantaneous slant range equation and two-dimensional spectrum are analyzed. And the relationship of the coupling phase correction is obtained. From this, Range Doppler algorithm and Chirp Scaling algorithm on missile-borne SAR are derived. Then, The Chirp Scaling algorithm based on range walk correction in time domain is presented. To adapt for higher squint imaging, redundant design strategies are proposed, and the algorithm with third-order phase correction from the offset is improved. At last, parameter estimation method based on fractional fourier transform is improved to obtain the more accurate imaging parameters, and the simulation experiments show its effectiveness.
     2. Missile borne SAR imaging method of non-uniform direct trajectory is studied. At first, through analysis of non-uniform linear trajectory, the velocity decomposition model in range and azimuth direction is constructed. The principle of restructure method from non-uniform sampling data to virtual uniform sampling data to resolve the SAR imaging with variable motion is expounded. And proceeding from this idea, missile-borne SAR imaging for variable motion based on interpolated array transformation is studied. The principle of equivalent method from the uniform sampling data with variable motion to the non-uniform sampling data with uniform motion is expounded, and from this, the SAR imaging for variable motion based on non-uniform discrete fourier transform is studied. Second, Movement offset equations in range direction with diving motion and yaw motion is analyzed, and the motion compensation function is obtained. Non-uniform motion SAR imaging program is constructed—motion compensation in range direction and non-uniform treatment in azimuth direction. Then, Taking into account the measurement error factors in engineering practice, the method for ballistic parameters method based on trajectory fitting is expounded, and simulation results verify the effectiveness of the method for trajectory fitting and the SAR imaging program for non-uniform linear motion. At last, the spotlight SAR imaging method based on PFA algorithm in the stage of homing terminal guidance is discussed.
     3. The imaging method based on synthetic bandwidth technology is studied. At first, the SAR imaging method with synthetic bandwidth technology based on multi-band sub-pulse signal is presented. To resolve the synthetic bandwidth under different parameters, synthesized signal model of non-uniform sampling are constructed, and the SINC interpolation is used to complete the signal reconstruction. The problem about bandwidth synthesis processing before and after imaging is discussed. Pre-treatment is considered to suit for the circumstances under sub-pulse of different parameters, and the re-treatment parameters and imaging process are proposed. Then, the imaging method of random stepped frequency radar in the terminal guidance tracking segment is studied, moreover, the problems about frequency matching and motion compensation are resolved under the high repetition frequency condition. The determination method whether the echo is mixed correctly is presented, which uses the properties that the good adjacent range profiles have strong coefficient correlation, and the Algorithm process based on contraction-type frequency matching search strategy is designed.
     4. The missile-borne bistatic SAR method is studied. At first, starting from the use of motion feature and combat style of missile platform, the feasibility of various bistatic SAR combinations of patterns and geometrical on missile platform is discussed, and the imaging algorithm on geometric scenes of parallel mode, one fixed platform mode, and slanting flight mode is studied. Slanting flight bistatic SAR model is especially built up, the air variable error in the range direction is analyzed, and the motion compensation methods of first order approximation method and the model approximation are designed. An equivalent method from asynchronous bistatic model to monostatic variable velocity motion model is proposed, and with the non-uniform discrete Fourier transform, it resolves the non-uniform sample problems raised by variable velocity motion.
     Finally, the research is summarized in this paper. The summary and outlook about development tendency and application prospects in the subject research direction are given, and the problems about further study and solution are pointed out.
引文
[1] Curlander J.C. and R.N. Mcdonough,合成孔径雷达:系统与信号处理[M],2006,北京:电子工业出版社.
    [2] Ian G. Cumming, Frank H. Wong.合成孔径雷达成像——算法与实现[M].洪文,胡东辉等译. 2007,北京:电子工业出版社.
    [3]张澄波等著.综合孔径雷达——原理、系统分析与应用[M]. 1989,北京:科学出版社.
    [4]保铮,邢孟道,王彤,雷达成像技术[M]. 2005.4,北京:电子工业出版社
    [5]魏钟铨等著.合成孔径雷达卫星[M]. 2002,北京:科学出版社.
    [6] Neumann C. and Senkowski H.. MMW-SAR Seeker Against Ground Targets in a Drone Application[C].4th European Conference on Synthetic Aperture Radar,Cologne,2002:457-460.
    [7] Malenke Thomas, Oelgart Thorsten, and Rieck Wolfgang. W-Band-Radar System in a Dual-Mode Seeker for Autonomous Target Detection[C]. 4th European Conference on Synthetic Aperture Radar, Cologne, 2002:171-174.
    [8] Smith Brian J., Garner Wayne, and Cannon Randal. Precision Dynamic SAR Testbed for Tactical Missiles [C]. IEEE Aerospace Conference Proceedings,2004:2220-2226.
    [9]高烽.合成孔径雷达导引头技术[J].制导与引信.2004,25(1):1~4.
    [10]张义广,杨军,周军等,主动雷达/红外成像复合导引头技术浅谈[J].红外与激光工程. 2007, 9(36),增刊:43~46.
    [11]谢文冲.弹载毫米波雷达二维成像方法研究[D].博士论文,武汉:空军雷达学院,2003.
    [12]李悦丽.弹载合成孔径雷达成像技术研究[D].博士论文,长沙:国防科学技术大学, 2008.
    [13]秦玉亮.弹载SAR制导技术研究[D].博士论文,长沙:国防科学技术大学, 2008.
    [14]谢华英,范红旗,赵宏钟,等. SAR成像导引头的弹道设计与优化.系统工程与电子技术, 2010,32(2): 333-337.
    [15]王建.车载前视超宽带SAR浅埋目标成像技术研究[D].博士论文,长沙:国防科学技术大学, 2008.
    [16] Sherwin C W, Ruina J P, Rawcliff R D. some early developments in synthetic aperture radar systems[J]. IRE Trans. On Military Electronics, 1962, 6(2).
    [17] Ausherman D A,Kozma A,Walker J L,Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(4).
    [18] Gonzalez F I, Beal R C, Brown W E, et al. Seasat Synthetic Aperture Radar: Ocean Wave Detection Capabilities[J]. Science 29, 1979, 204(4400): 1418– 1421.
    [19] Dubbert D.F, Sweet A D ,Sloan G R, et al. Results of the sub-thirty-pound high-resolution“mini”SAR demonstration[R],Airborne Intelligence, Surveillance, Reconnaissance Systems and Applications III, 2006, 6209: 162-179.
    [20]陈仁元,邓海涛,江凯,雍延梅,张长耀.机载高分辨SAR系统成像技术[J].遥感技术与应用, 2005. 20(1):173-177.
    [21]陈国范,胡仕友,周国军.合成孔径雷达在弹上导引头的应用[J].飞航导弹, 1995(7):43~47.
    [22]黄世奇,禹春来,刘代志,钱昌松.成像精确制导技术分析与研究[J].导弹与航天运载技术, 2005(5): 20-25.
    [23]丛敏.反舰导弹将用于海岸和对陆攻击任务[J].飞航导弹, 1999(4): 1-7.
    [24] Malenke T. W-band-radar system in a dual-mode seeker for autonomous target detection[C]. EUSAR, 2002.
    [25] Neumann C, Senkowski H. mmW-SAR seeker against ground targets in a drone application[C]. EUSAR, 2002.
    [26]张俊.图像匹配与雷达地图匹配制导中匹配技术研究[J].通信与测控, 1998(3): 43-48.
    [27] Cress D H, Mastin G A. Fusion of LADAR and SAR for Terminal Guidance[C]. Applied laser Radar Technology, 1993, 1936: 110-117.
    [28] Combined SAR Monopulse and Inverse Monopulse Weapon Guidance [P]. USA:5473331, 1995-12-5.
    [29]毕士龙译.自主制导炸弹导引头[J].飞航导弹,1991(7):61-62.
    [30] Makoto Tabei, Mitsuhiro Ueda. Back projection by Upsampled Fourier Series Expansion and Interpolated FFT[J]. IEEE Transactions on Image Process, 1992, 1(1): 77-87.
    [31] Berkman Sahiner, Andrew E. Yagle. A fast Algorithm for Backprojection with Linear Interpolation[J]. IEEE Transactions on Image Process, 1993, 2(4):547-551.
    [32] Cafforio C, Prati C, Rocca F. SAR focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207.
    [33] Raney R.K, Vachon P W. A phase preserving SAR processor[C]. the 12th Canadian Symposium on Remote Sensing, 1989, Vancouver: 2588-2591.
    [34] Smith A M. A new approach to Range Doppler SAR processing, Int. J. Remote sensing, 1991. 12: 235-251.
    [35] Jin M J, Wu C, A SAR correlation algorithm which accomodates large range migration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984, 22(6): 592-597.
    [36] Chang C Y, Jin M J, Curlander J C. Squint mode SAR processing algorithms[J]. the12th Canadian Symposium on Remote Sensing, 1989, Vancouver: 1702-1706.
    [37] Shao Yulong, Zhu Zhaoda. Squint mode airborne SAR processing using RD algorithm[C]. IEEE Aerospace and Electronics Conference, Nanjing, 1997: 1025-1029.
    [38] Moreira A, Huang Yonglong, Chirp scaling algorithm for processing SAR data with high squint angle and motion error[C]. SPIE: SAR Data Processing for Remote Sensing, 1994: 268-277.
    [39] Moreira A. Real-time implementation of the extended chirp scaling algorithm for air- and spaceborne SAR-processing[C]. International Geoscience and Remote Sensing Symposium, 1995: 2286-2288.
    [40] Davidson G W, Cumming I D, Ito M R. A chirp scaling approach for processing squint model SAR data[J]. IEEE Trans. On AES,1996,32(1): 121-133.
    [41]程玉平.一种改进的非线性CS成像算法[J].西安电子科技大学学报, 2000, 27(3): 273-277.
    [42] Tobin M. and Greenspan M. Smuggling interdiction using an adaptation of the AN/APG-76 multimode radar[J].the IEEE Magazine on Aerospace and Electronic Systems, 1996: 19-24.
    [43]邢孟道,保铮.基于运动参数估计的SAR成像[J].电子学报, 2001, 29(12A): 1824-1828.
    [44]周峰,邢孟道,保铮.一种无人机机载SAR运动补偿的方法[J],电子学报, 2006,34(6): 1002-1007.
    [45]邢孟道.基于实测数据的雷达成像方法研究[D].博士学位论文.西安:西安电子科技大学, 2002.
    [46]邢孟道,保铮.基于运动参数估计的窄波束宽幅SAR成像算法[J].现代雷达, 2004, 26(2): 37-41.
    [47] John Kirk. Signal based motion compensation for synthetic aperture radar[R], Technogy Service Corporation, Los Angles, 1999.
    [48]叶少华,周荫清.用真实IMU_GPS数据进行机载SAR运动补偿处理[J].北京航空航天大学学报, 2005, 31(10): 1063-1070.
    [49]黄晓芳,刘峥.反舰导弹聚束式SAR导引头成像算法研究[J].制导与引信. 2005, 26(4): 6-12.
    [50] Li Yue-li, Liang Dian-nong. A refined range doppler algorithm for airborne squinted SAR imaging under maneuvers[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007, 11:389-392.
    [51]贺知明,朱江,周波.弹载SAR实时信号处理研究[J].电子与信息学报. 2008, 30(4): 1011-1013.
    [52] Polge R, Green A H, Mullins J H. Extension of synthetic aperture radar imaging to nonlinear trajectories[J]. Southeastcon '90. Proceedings, 1990: 161-166.
    [53]谢文冲,孙文峰,王永良.弹载毫米波聚束SAR对地面目标成像研究[J].系统工程与电子技术. 2003, 25(7): 860-862.
    [54]俞根苗,尚勇,邓海涛,张长耀等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报. 2005, 33(5): 778-782.
    [55]俞根苗,邓海涛,吴顺君.弹载SAR图像几何失真校正方法[J].西安电子科技大学学报(自然科学版). 2006, 33(3): 386-389.
    [56]孙兵,周荫清,陈杰, et al.高速俯冲SAR成像方法研究[J].电子与信息学报,增刊. 2004, 26(9): 173-180.
    [57]孙兵,周荫清,陈杰, et al.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报. 2006, 34(9): 1595-1599.
    [58]房丽丽,王岩飞.俯冲加速运动状态下SAR信号分析及运动补偿[J].电子与信息学报. 2008, 30(6): 1316-1320.
    [59]易予让,张林让,刘楠,等.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术. 2009,31(2):2863-2866.
    [60]杨凤凤,王敏,梁甸农.基于非均匀采样的小卫星多通道SAR无模糊成像[J].电子学报. 2007,35(9): 1754-1756.
    [61]井伟,张磊,邢孟道,保铮.非匀速平台SAR成像算法研究[J].西安电子科技大学学报. Aug. 2008, 35(4): 605-608.
    [62]彭岁阳,胡卫东.基于内插阵列变换的变速SAR成像算法[J].信号处理, 2009,25(11): 1742-1747.
    [63]贺志毅.合成宽带毫米波雷达导引头的理论及实现[D].北京:航天科工集团第二研究院二十五所, 2002.
    [64] Zeng Dazhi, Long Teng. Study on the principle and implementation of a step frequency phased array radar[C]. 7th International Conference on Signal Process, Bei Jing, 2004: 2037-2040.
    [65]文树梁,袁起,秦忠宇.一种宽带相控阵雷达合成高分辨率波形方法[J].信号处理, 2007, 23(1): 1-5.
    [66]胡学成,刘爱芳,刘中.机载相控阵雷达合成宽带成像技术[J].现代雷达, 2008, 30(5): 61-69.
    [67] Skolnik M I. Introduction to radar systems[M]. New York: McGraw-Hill,1980.
    [68] Ruttenburg K, Ghanzit L. High range resolution by means of pulse-pulse frequency shifting[M]. EASCON,1968.
    [69]毛二可,龙腾,韩月秋等,频率步进雷达数字信号处理[J].航空学报, 2001, 22(6S): 16-25.
    [70] Ma Y B. Velocity compensation in stepped frequency radar[D]. Monterey, California: Master's Thesis, Naval Postgraduate School, 1995.
    [71] Abatzoglou T J, Gheen G O. Range, radial velocity, and acceleration MLE using radar LFM pulse train[J].IEEE Transactions on Aerospace and Electronic Systems, 1998,34(4): 1070-1083.
    [72]蒋楠稚,王毛路,李少洪,等.频率步进脉冲距离高分辨一维成像速度补偿分析[J].电子与信息学报, 1999, 21(5): 665-670.
    [73]包云霞,毛二可,何佩琨.基于一维高分辨距离像的相关测速补偿算法[J].北京理工大学学报. 2008, 28(2): 160-163.
    [74]王桂丽,李兴国.频率步进和脉冲多普勒复合测速研究[J].红外与毫米波学报, 2008, 27(3): 190-192.
    [75] Sune R.J.Axelsson, Analysis of Random Step Frequency Radar and Comparison With Experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890-904.
    [76] Sune R.J.Axelsson. Analysis of ultra wide Band Noise Radar with Randomized stepped Frequency[C]. IEEE International Radar symposium. 24, May, 2007:1~4.
    [77] J.E.Luminati, T.B. Hale, M.A. Temple, M.J. Havrilla and M.E. Oxley. Doppler aliasing artifact filtering in SAR imagery using randomised stepped frequency waveforms[L]. Electronics Letters 2004, 40(22).
    [78] J.E.Luminati, TODD N.Hale, M.A. Temple, M.J. Havrilla and M.E. Oxley. Doppler Aliasing Reduction in SAR Imagery using Stepped-Frequency Waveforms[J].IEEE Transcations on Aerospace and Electronic Systems, 2007, 43(1):163-175.
    [79]张焕颖,张守宏,李强.调频步进雷达ISAR成像方法[J].电子学报, 2007, 35(12): 2329-2334.
    [80]姚萍,郑天耀,王贞松.线性调频步进式合成孔径雷达系统的信号处理[J].系统工程与电子技术. 2006, 28(2): 159-162.
    [81]张志敏,张群,郭英.基于线性调频步进信号的SAR实测数据成像[J].空军工程大学学报(自然科学版). 2006, 7(2): 51-54.
    [82] Lord. R.T., INGGS, M.R. High Resolution SAR Processing Using Stepped-Frequencies [J]. IEEE International Geoscience and Remote Sensing, Singapore, 1997: 490-492.
    [83]白霞,毛士艺,袁运能.时域合成带宽方法:一种0.1米分辨率SAR技术[J].电子学报,2006, 34(3): 472-477.
    [84] Kevin M Cuomo, Jean E Piou, Joseph T Mayhan. Ultrawide-band coherent processing[J].IEEE Trans on Antennas and Propagation,1999,47(7):1094-1107.
    [85]王成,胡卫东,杜小勇,郁文贤,稀疏子带的多频段雷达信号融合超分辨距离成像[J].电子学报. 2006, 34(6): 985-990.
    [86] Krieger G, Moreira A. Spaceborne bi- and multistatic SAR: Potentials and challenges[J]. IEE Proc, Radar Sonar Navig, 2006, 153(3): 184-198
    [87] Soumekh M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging[J]. IEEE Trans. On Signal Processing, 1991, 39(9):2044~2054.
    [88] Ender J H G. A step to bistatic SAR processing[C]. Proc. EUSAR’04, Ulm, Germany, May 2004: 359-364.
    [89] Ender J H G, Walterscheid I, and Brenner A R. New aspects of bistatic SAR: processing and experiments[C]. Proceedings of Geoscience and Remote Sensing Symposium, Alaska, USA, Sept.2004: 1758~1762.
    [90] Ender J, Walterscheid I, and Brenner A. Bistatic SAR tanslational invariant processing and experimental results[J]. IEE Proc.-Radar Sonar Navig, 2006, 153(3):177-183.
    [91]朱振波,汤子跃,蒋兴舟.平飞模式双站SAR成像算法研究.[J]电子与信息学报. 2007, 29(11): 2702~2705. Zhu Zhenbo, Tang Ziyue, Jiang Xingzhou. The Imaging Algorithm of Bistatic SAR with Parallel Track[J].Journal of Electronics & Information Technology. 2007, 29(11): 2702~2705.
    [92]况凌,沈晓峰,杨万麟.机载双基地SAR成像算法比较[J].电子学报. 2006, 34(12): 2311~2314. Kuang Ling, Shen Xiaofeng, Yang Wanlin. A Comparison of Airborne Bistatic SAR Imaging Algorithm[J].Acta Electronica Sinica. 2006, 34(12): 2311~2314.
    [93] Neo Y L, Wong F H, and Cumming I. Focusing bistatic SAR images using non-linear chirp scaling[C]. Radar 2004, Toulouse, France, Oct.2004.
    [94]李燕平,邢孟道,井伟,保铮.一种双基SAR的SR-ECS成像算法[J].自然科学进展. 2008, 18(3): 323~333.
    [95] Ding Y and Munson D C. A fast back-projection algorithm for bistatic SAR imaging[J]. IEEE International Conference on Image Processing, Austin, 1994:456-460.
    [96]何峰,梁甸农,董臻.基于大斜视角的星载双基地SAR波数域成像算法[J].电子学报, 2005,33(6): 1011-1014. He Feng, Liang Dian-nong, and Dong Zhen. A wavenumber domain algorithm for spaceborne bistatic SAR imaging with large squint angle[J]. Acta Electronica Sinica, 2005, 33(6): 1011-1014.
    [97]刘喆,杨建宇,皮一鸣,张晓玲.基于相位近似的双基地SAR波数域成像算法[J].电子与信息学报. 2007, 29(9): 2094~2097. Liu Zhe, Yang Jian-yu, Pi Yi-ming, Zhang Xiao-ling. A wavenumber Domain Imaging Algorithm for Bistatic SAR System Based on Phase Approximation.[J] Journal of Electronics & Information Technology, 2007, 29(9): 2094~2097.
    [98]李燕平,张振华,邢孟道,保铮.星基双基地SAR的目标二维频谱计算[J].自然科学进展. 2007,17(12):1699~1706.
    [99]张升康,宋岳鹏,杨汝良.适于“Tandem”模式双基地SAR修正距离多普勒算法[J].系统工程与电子技术. 2007, 29(11): 1806~1810. Zhang Sheng-kang, Song Yue-peng, Yang Ru-liang. modified range doppler algorithm for“Tandem”mode bistatic synthetic aperture radar imaging[J]. Systems Engineering and Electronics, 2007, 29(11): 1806~1810.
    [100]任冬晨,汤子跃,张守融.发射机固定的双站SAR对运动目标的成像[J].电子与信息学报. 2004, 26(7):1128-1130 . Ren Dong-chen, Tang Zi-yue, Zhang Shou-rong. The Imaging Technigue of Bistatic SAR with Stationary Transmitter to Moving Targets[J]. Journal of Electronics & Information Technology, 2004, 26(7):1128-1130.
    [101]汤子跃,张守融等著.双站合成孔径雷达系统原理[M].北京:科学出版社. 2003.
    [102]丁金闪, Otmar Loffeld, Holger Nies,保铮,邢孟道.异构平台双基SAR成像的RD算法[J].电子学报. 2009, 37(6): 1170~1174. Ding Jinshan, Otmar Loffeld, Holger Nies, Bao Zheng, Xing Mengdao. Focusing Bisatic SAR Data from Heterogeneous Platforms Using the Range Doppler Algorithm[J]. ACTA ELECTRONICA SINICA, 2009, 37(6): 1170~1174.
    [103]丁金闪, Otmar Loffeld, Holger Nies,邢孟道,保铮.双基SAR成像的点目标解析频谱研究[J].电子与信息学报. 2009, 31(4): 763~767. Ding Jinshan, Otmar Loffeld, Holger Nies, Xing Mengdao, Bao Zheng. Study of Point Target Spectrum for Bistatic SAR Imaging[J]. Journal of Electronic & Information Technology, 2009, 31(4): 763~767.
    [104]毛士艺,李少洪,黄永红,等.机载PD雷达DBS实时成像研究[J].电子学报, 2000, 28(3): 32-34.
    [105]张直中,多普勒波束锐化(DBS)理论和实践中若干问题的探讨[J].现代雷达, 1991, 13(2): 1-12.
    [106]孙泓波,顾红,苏卫民,等.机载脉冲多普勒雷达DBS成像实验研究[J].数据采集与处理, 2001, 16(4): 423-427.
    [107]李悦丽,梁甸农.一种单脉冲雷达多通道解卷积前视成像方法[J].信号处理, 2007,23(5): 699-703.
    [108] Schmidt A R. Secondary Range Compression for Improved Range Doppler Processing of SAR Data with High Squint[D]. Master’s thesis, The University of British Columbia, September 1986.
    [109] Raney R K, Runge H, Bamler R, et al. Precision SAR Processing Using Chirp Scaling[J]. IEEE Trans. Geoscience and Remote Sensing, 1994, 32(4): 786-799.
    [110] Wu C. A Digital System to Produce Imagery from SAR Data[C]. AIAA Conference: System Design Driven by Sensors, October 1976.
    [111] Cumming I G, Bennett J R. Digital Processing of SEASAT SAR Data[C]. IEEE 1979 International Conference on Acoustics, Speech and Signal Processing , Washington, D.C., April 2-4, 1979.
    [112] Bello P. Joint estimation of delay, Doppler and Doppler rate[J]. IRE Trans.Information Theory,1960,IT-6:330—341.
    [113] Kelly E J. The radar measurement of range, velocity and acceleration[J]. IRE Trans. Military Electronics, 1961, MIL-5: 51-57.
    [114] Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate[J]. IEEE Trans. AES, 1986, 22(6): 708-715.
    [115] Friedlander B. Parametric signal analysis using the polynomial phase transform [J]. IEEE Signal Processing workshop on Higher-Order Statistics, 1993: 151-159.
    [116] Xia X G. Discrete Chirp Fourier transform and its application to chirp rate estimation[J]. IEEE Trans. Signal Processing, 2000, 48(11): 3122-3133.
    [117] Wood J C and Barry D T. Linear signal synthesis using the Radon-Wigner transform[J]. IEEE Trans. Signal Processing, 1994, 42(8): 2105-2111.
    [118]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 2001, 153-180.
    [119] Barbarossa S. Analysis of multi component LFM signals by a combined Wigner-Hough transform[J]. IEEE Trans. Signal Processing, 1995, 43(6): 1511-1515.
    [120] Wang M S, Chan A K, Chui C K. Linear Frequency modulated signal detection using Radon-Ambigui transform[J]. IEEE Trans. on Signal Processing, 1998, 46(3): 571-586.
    [121] Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. J. Inst. Appl. Math, 1980, 25, 241–265.
    [122] Pei S C, Yeh M H,and Tseng C C.Discrete fractional Fourier transform based on orthogonal projections[J].IEEETrans. Signal Processing, 1999, 47(5): 1335-1348.
    [123]李文臣,王雪松,刘佳琪,王国玉.线性调频参数估计方法的数学统一[J].信号处理, 2009, 25(8): 1292-1297.
    [124] Fornaro G, Sansosti E, Lanari R. Role of processing geometry in SAR raw data focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 441-453.
    [125] Madsen S D. Estimation the Doppler centroid of SAR data. IEEE Trans. on AES, 1989, 25(2): 134-140.
    [126] Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
    [127] Kong Young-Kyun, Cho Byun~Lae, and Kim Young-Soo. Ambiguity-free Doppler centroid estimation technique for airborne SAR using the Radon transform[J]. IEEE Trans. on Geosci Remote Sensing, 2005, 43(4): 716-721.
    [128]朱振波,汤子跃,张亚标,等.基于Radon变换的双站SAR多普勒参数估计[J].电子与信息学报. 2008, 30(6): 1331-1335.
    [129]谢华英,赵宏钟,付强.基于Radon变换的大前斜视角SAR多普勒参数估计方法[J].信号处理, 2009, 25(2): 210-215.
    [130]张劲松,许荣庆,刘永坦.利用Wigner-Ville分布估计星载合成孔径雷达多普勒中心频率[J].系统工程与电子技术, 1998, (3) : 15 - 18.
    [131]王宏艳,吴彦鸿,贾鑫.星载SAR多普勒参数估计的改进方法[J].现代雷达, 2006, 28(12): 52-54.
    [132]曲强,金明录.基于自适应分数阶傅里叶变换的线性调频信号检测及参数估计[J].电子与信息学报, 2009, 31(12): 2937-2940.
    [133]李绍滨,刘银中.机载SAR原始回波数据多普勒参数估计的比较[J].哈尔滨工业大学学报, 2006, 38(11): 1910-1914.
    [134]赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报, 2005, 25(4): 360-364.
    [135]周峰,王琪,邢孟道,保铮.一种机载大斜视SAR运动补偿方法[J].电子学报, 2007, 35(3): 463-468.
    [136]李燕平,邢孟道,保铮.斜视SAR运动补偿研究[J].电子与信息学报, 2007, 29(6): 1421-1424.
    [137]王建,王亮,薛国义,周智敏.基于数据的超宽带SAR的运动补偿方法[J].电子与信息学报, 2007, 29(2): 360-364.
    [138]邢孟道.基于实测数据的雷达成像方法研究[D].博士学位论文.西安:西安电子科技大学, 2002.
    [139] Benjamin Friedlander, Anthony J. Weiss. Direction finding for wideband signals using an interpolated array[J]. IEEE Transactions on Signal Processing, 1993, 41(4): 1618– 1634.
    [140] Benjamin Friedlander. Direction Finding with an Interpolated Array[C]. Intl. Conference on Acoustics, Speech and Signal Processing, Albuquerque, New Mexico, April 3-6, 1990.
    [141] Benjamin Friedlander. The Interpolated Root-MUSIC Algorithm for Direction Finding[J]. Euro.J.Signal Processing, 1993, 30: 15-29.
    [142]王永良,陈辉,彭应宁等著,空间谱估计理论与算法[M].清华大学出版社,2004, :367-385.
    [143] Donoho D L.Compressed sensing[J]. IEEE Transactions on Information Theroy. 2006, 52(4): 1289-1306.
    [144]石光明,刘丹华,高大华,等.压缩感知理论及其研究进展[J].电子学报, 2009, 37(5): 1070-1081.
    [145] Liu Q H, Nguyen N. An Accurate Algorithm for Non-uniform fast Fourier Transform (NUFFT’s)[L]. IEEE microwave and guided wave letters,1998,8(1):18-20.
    [146] Suboza B, Gimen0-Nieve, Lopez-Sanchez J M, et al. An Approach to SAR Imaging by Means of Non-Uniform FFT’s[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 4089-4091.
    [147] Meglio F,Panariello G, et al. Three dimensional SAR image focusing from non-uniform samples[J]. IEEE International Geoscience and Remote Sensing Symposium, 2007, 528-531.
    [148]余志宏.飞行模拟机组合导航系统建模与仿真[D].硕士学位论文,安徽:中国民航大学, 2008.
    [149]李刚,鲜勇.纯惯导中制导误差分析[J].飞行力学. 2007, 25(2): 50-52.
    [150]曹福祥,保铮,袁建平,等.用于SAR运动补偿的DGPS/SINS组合系统研究[J].航空学报, 2001, 22(2): 121-124. CAOFu-xiang, BAOZheng, YUANJian-ping, et al. DGPS/SINS integrated system used in AR motion compensation. Acta Aeronautica ET Astronautica Sinica, 2001, 22(2): 121-124.
    [151]杨大烨,谢天怀,胡宝余.机载SAR用的GPS/SINS组合导航系统研究[J].中国惯性技术学报. 2002, 10(4): 19-23.
    [152]郑卫平.机载SAR运动补偿分析与补偿方法研究[D].博士学位论文.北京:中科院电子所:76-77.
    [153]张志涌,精通matlab6.5[M].北京:北京航空航天大学出版社, 2003,第四章.
    [154] Doren N. E., Space-Variant. Post-Filtering for Wavefront Curvature Correction in Polar Formatted Spotlight-Mode SAR Imagery[C]. Dissertation for the Degree of Doctor of Philosophy Engineering, Albuquerque New Mexico, the University of New Mexico, Dec.1999.
    [155] Mitermayer J., Moreira A.,and Loffeld O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans Geosci. Remote Sensing, 1999, 37(9): 2198 -2213.
    [156] Rocca F, Cafforio C, Preti C. Synthetic aperture radar: a new application for wave equation techniques[J]. Geophysical Processing, 1989,37:809-830.
    [157] Wahl D E, Eichel P H, Ghiqlia D C, et al.Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. Kluwer Academic Publisher, Boston, 1996.
    [158]谢文冲,孙文峰,王永良.弹载毫米波聚束SAR对地面目标成像研究[J].系统工程与电子技术. 2003, 25(7): 860-866. XIE Wen-chong, SUN Wen-feng, WANG Yong-liang. Image Reconstruction of a Ground Target by Using Millile-Borne Millimeter Wave Spotlight SAR[J].Systems Engineering and Electronics. 2003, 25(7): 860-866.
    [159] Wahl D E, Eichel P H, Ghigetia D C et al. Phase Gradient Aurofocus-Robust Tool for High Resolution SAR Phase Correction[J]. IEEE Trans. on AES, 1994, 30(3):827~835.
    [160] Paulo J, Ferreira S G. Nonuniform sampling of nonbandlimited signals. IEEE Signal processing letters, 1995,2(5): 89-91.
    [161] Marvasti F. Nonuniform sampling theorems for bandpass signals at or below the nyquist density. IEEE transactions on signal processing, 1996,44(3):572-576.
    [162] Stoica P, Nehorai Arye. MUSIC, maximum likelihood, and cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(5): 720-741.
    [163] Friedlander B. A Sensitivity analysis of the MUSIC algorithm[J]. IEEE Trans. On ASSP, 1990, 38(10): 1740-1751.
    [164]冯德军,王雪松,陈志杰,等.酉ESPRIT超分辨ISAR成像方法[J].电子学报, 33(12): 2097-2100.
    [165] N.Brueller N N, Peterfreund N, Porat M. On Non-uniform Sampling of Signals [C]. IEEE International Symposium on Industrial Electronics, 1998: 249-252.
    [166] Narvasti F. Nonuniform Sampling Theorems for Bandpass Signals at or below the Nyquist Density [J]. IEEE Transactions on Signal Processing, 1996, 44(3): 572-576.
    [167]任丽香,龙腾,远海鹏. HPRF脉冲多普勒频率步进雷达信号处理与参数设计[J].电子学报, 2007, 35(9):1630-1636.
    [168]胡秀娟,邓甲昊,周志峰,等.高分辨率步进频脉冲雷达二次速度补偿方法[J].系统工程与电子技术, 2009, 31(7):1560-1563.
    [169] Knedlik S, Loffeld O, Gebhardt U. On position and attitude determination requirement s for future bistatic SAR experiments[C].IGARSS2006 , Denver , 2006: 1216-1219.
    [170]况凌,沈晓峰,杨万麟.频率源稳定性对双基地SAR的分辨率影响[J].电子科技大学学报. 2009, 38(2):165~168.
    [171]周鹏,皮一鸣.一种用于非合作式星基双基地SAR中的波束同步技术[J].电子与信息学报. 2009, 31(5):1122-1126.
    [172] Otmar Loffeld, Holger Nies, et al. Models and useful relations for bistatic SAR[J].IEEE Trans on Geosci Remote Sensing, 2004,.42(10):2031-2038
    [173] Dutt A. Fast Fourier Transform For Nonequispaced Data[R]. Yale University, Hew Haven, CT. Dept. of Computer Science, 1993.
    [174] Xue Yuan Tang, Liu Q H. CG-FFT for Nonuniform Inverse Fast Fourier Transforms(NU-IFFT's)[C]. IEEE Antennas and propagation society International symposium, 1998, Las Cruces NM, USA, 1785-1789.
    [175] Paulo Jorge, Ferreira S G.. Nonuniform Sampling of Nonbandlimited Signals[L]. IEEE Signal Processing Letters. 1995, 5(2): 89-91.
    [176] Bland D M, Laaks T I, Tarcinski A. Analysis of algorithms for nonuniform-time discrete Fourier transform[C]. IEEE International Symposium on Circuits and Sysyems, London, 1996: 453-456.
    [177]解向利.机载火控雷达脉冲多普勒波束锐化成像研究[D].硕士学位论文.电子科技大学, 2007,成都.
    [178]李素芝,万建伟,时域离散信号处理[M]. 1994,长沙:国防科技大学出版社.
    [179] Soumekh M. Reconnaissance with Slant Plane Circular SAR Imaging[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1252-1256.
    [180]祝明波,董巍,张东兴.雷达景像匹配制导基准图制备技术综述[J].系统工程与电子技术. 2009, 31(3): 549-552.
    [181]李宁宁,安雪滢,汤国建,等.巡航导弹末制导中景象匹配性能仿真与分析[J].飞行力学, 2009, 27(2): 46-49.
    [182]姚迪,刘峰,龙腾.合成孔径雷达景象匹配实时信号处理的研究[J].现代雷达, 2007, 29(5): 36-38.
    [183]尹德成.弹载合成孔径雷达制导技术发展综述[J].现代雷达, 2009, 31(11): 20-24.
    [184]秦玉亮,王建涛,王宏强,等.弹载合成孔径雷达技术研究综述[J]. 2009, 25(4): 630-635.
    [185]朱学平,杨军,刘俊,等.一种SAR成像制导导弹制导律研究[J].测控技术, 2009, 28(9): 69-76.
    [186]李欣伟,张平,李飞,等.基于DSP和FPGA的相控阵机载SAR运动补偿系统的实现[J].电子器件, 2009, 32(3): 711-715.
    [187]吴道庆,陈涛.数字相控阵雷达步进频合成宽带宽角扫描研究.现代雷达, 2009, 31(12): 1-4.
    [188]王开志.斜视条件下高分辨率合成孔径雷达成像技术[C].博士学位论文.上海交通大学, 2007,上海.
    [189] González-Blanco P, De Diego E, Millán E, et al. Stepped-frequency waveform radar demonstrator and its jamming[C]. International Waveform Diversity and Design Conference, 2009, 2: 192-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700