着陆式AUV动力学行为与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AUV是进行海洋环境和资源调查的强有力工具,具有广阔的应用前景。然而有限的能源使得AUV无法长时间工作,为了在能源一定的情况下延长AUV的监测时间,本文进行了着陆式AUV动力学行为与控制策略研究。在着陆式AUV设计基础上,建立了着陆式AUV的动力学模型,分析了运动参数对系统稳定性和机动性的影响,设计了运动控制器并对着陆策略进行了研究,通过大量的水域试验验证了本文理论研究与分析的正确性。该AUV通过注水改变负浮力降落到海底,以实现只保持耗能少的监测传感器工作来延长工作时间的目的。
     根据着陆式AUV的功能和设计目标,采用机械结构模块化和控制架构分布式的设计理念,设计了着陆式AUV的样机,实现了在设计速度和深度下的航行、测量、通信及着陆功能。
     采用牛顿-欧拉方法建立了着陆式AUV的非线性动力学模型,通过CFD方法和流体动力参数试验获得了表征着陆式AUV特征的流体动力参数,并进行了仿真分析,为运动控制提供了依据。
     根据所建立的动力学模型,对着陆式AUV水平面和垂直面内的运动进行了稳定性和机动性分析。在AUV总体外形确定的情况下,建立了基于重心坐标、舵力系数及航速等变量的稳定性曲面函数,以判定上述参数对着陆式AUV系统稳定性的影响;重点分析了舵对AUV运动稳定性的作用,进而用稳定性分析结果指导AUV舵的设计;考虑了航行中AUV运动参数如速度等对稳定性的影响,得出提高速度有利于增强稳定性的结论。
     研究了着陆式AUV的运动控制系统,设计了航速、航向及深度控制器。针对PID控制器在水域试验中的局限性,设计了模糊神经网络PID控制器。研究了下潜到近海底注水着陆策略,即将着陆过程分为下潜、拉平、定高直航搜索着陆点和自由下沉四个阶段,进而设计出着陆轨迹。采用视线跟踪与轨迹误差法跟踪上述着陆轨迹,以确保航行过程的稳定性,避免AUV意外触底;同时考虑了海底地形的影响,以确保安全着陆。
Autonomous underwater vehicle (AUV) is widely used as an effective platformin the oceanic research and exploration. AUV has high flexibility and can work inareas that are hazardous to humans or where humans cannot go, such as natural orman-made disastrous regions, deep ocean, and under ice. AUV needs a significantamount of onboard power to complete missions. However, energy storage is limitedin AUV. A Landing AUV was developed to prolong the monitoring time, also itsdynamic behavior and control strategy is studied. To obtain this behavior, the vehicleis required to have the capability of self ballast. When sitting on the seafloor, theAUV can enter into a sleep mode to conserve power, while the monitoring sensors areawake and working. In this dissertation, a dynamic model is developed to analyze theeffects of kinematical parameters on stability and maneuverability of the landing AUV.A landing strategy for the vehicle has been proposed and a fuzzy neural networkalgorithm has been applied in motion controller design. A series of sea trials have alsoconducted to verify the theoretical analysis. Comparison shows that the simulationresults are in a good agreement with experimental results.
     The prototype of the landing AUV has been designed based on concept ofmodular mechanical structure and distributed control architecture. The prototype canachieve long-range navigation, underwater landing, bottom-sitting and rising.
     A nonlinear dynamic model of the landing AUV has been formulated usingNewton-Euler Equations and hydrodynamic parameters have been obtained usingcomputational fluid dynamics method and physical experiments. Simulation of thebasic motions, such as rectilinear motion, rotary motion, and helix motion, has alsobeen studied. The simulation results provide fundamental support for motion control.
     The stability and maneuverability of the landing AUV in the horizontal planeand the vertical plane have been analyzed based on the dynamic model derived above.The stability curved surface which is a function of the fin coefficient, the coordinatesof the center of gravity, and the velocity of AUV. It is established to evaluate the stability of Landing AUV when its overall shape is determined. The important role offins in AUV motion stability is analyzed and the result is used to guide the design offins. The stability analysis also indicates that stability of the landing AUV increaseswith its velocity. Raising the center of gravity can also enhance the stability.
     The motion control system of the landing AUV has been studied using a fuzzyneural network algorithm. Controllers, including speed controller, orientationcontroller, and depth controller, have been respectively designed. Considering thelimitations of PID controllers, the fuzzy neural network PID controller is proposed. Alanding strategy has been studied regarding the topography of the seafloor. Landingof the AUV is divided into four stages according to the presented strategy. Thelanding trajectory has been designed by lines of sight and cross track error trackingmethod to ensure the navigation stability and safety.
引文
[1] Yuh J. Design and control of autonomous underwater robots: a survey. AutonomousRobots,2000,8(1):7-24
    [2] Costanza R. The ecological, economic and social importance of the oceans. EcologicalEconomics,1999,31(2):199-213
    [3] Yoon S, Qiao C. Cooperative search and survey using autonomous underwater vehicles.IEEE Transactions on Parallel and Distributed Systems,2011,23(3):364-379
    [4]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000
    [5]赵进平.发展海洋检测技术的思考与实践.北京:海洋出版社,2005
    [6]朱光文.我国海洋监测技术研究和开发的现状和未来发展.海洋技术,2002,21(2):27-32
    [7] Manley J E, Weirich J B. Deep frontiers: technology for ocean exploration. SeaTechnology,2005,46(4):10-5
    [8]曹永辉.复杂环境下自主式水下航行器动力定位技术研究:[博士学位论文],西安:西北工业大学,2006
    [9]封锡盛.从有缆遥控水下机器人到自治水下机器人.中国工程科学,2000,2(12):29-33
    [10] Available at: http://arm.cpst.net.cn/gfbk/2010_06/275355652.html
    [11]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势.高科技通讯,1999,(9):55-59
    [12]任福君,张岚,王殿君.水下机器人的发展现状.佳木斯大学学报(自然科学版),2000,18(4):317-320
    [13]袁幼零.以发展中国机器人事业为己任.机器人技术与应用,2000,(1):5-10
    [14]陈建平.我国潜水器发展状况及存在的问题.机器人技术与应用,1999,(2):7-9
    [15]余雄,唐晓东.国内外几种水下机器入的性能对比与分析.机器人技术与应用,1997,(1):18-20
    [16]蒋新松.未来机器人技术的发展方向.机器人技术与应用,1997,(2):2-5
    [17]辛建成.美国海军未来的水下机器人.机器人技术与应用,2000,(3):19-21
    [18]高剑.自主式水下航行器的建模与自适应滑模控制:[硕士学位论文],西安:西北工业大学,2004
    [19]左立标.国外深海机器人技术发展现状及对我国的启示.采矿技术,2011,11(5):47-51
    [20] Healey A J, Good M R. NPS AUV II autonomous underwater vehicle testbed: design andexperimental verification. Naval Engineers Journal,1992,104(3):191-202
    [21]侯巍.具有着陆坐底功能的水下自航行器系统控制与实验研究:[博士学位论文],天津:天津大学,2006
    [22]张宏伟.可着陆水下自航行器系统设计与动力学行为研究:[博士学位论文],天津:天津大学,2006
    [23]王晓鸣. AUV水下着陆策略研究.机器人,2008,30(4):346-352
    [24]王晓鸣.基于模糊控制的水下自航行器着陆策略分析.机械工程学报,2009,45(3):84-88
    [25]沈宏良,刘昶.飞机平衡状态的优化计算方法,飞行力学,2001,19(4):15-18
    [26]沈宏良,陶矩等.航天飞机自动着陆轨迹优化设计,飞行力学,2004,22(1):10-13
    [27]张军,杨一栋,曹东.航天飞机自动着陆技术概念研究,航天控制,2004,22(2):2-5
    [28]齐照辉,王中伟,张为华.无人机自动回收方案研究,飞行试验,2003,19(2):2-5
    [29]刘小华.模糊神经网络在飞机自动着陆系统中的应用研究:[硕士学位论文],长春:长春理工大学,2008
    [30]宁东方.无人机自动着陆控制系统的设计与实现研究:[硕士学位论文],西安:西北工业大学,2006
    [31] Powell M W, Norris J S, Vona III, M A, et al. Scientific visualization for the marsexploration rovers. Proceedings of the2005IEEE International Conference on Roboticsand Automation, Barcelona, Spain,2005:4290-4296
    [32] Available at: http://en.wikipedia.org/wiki/Robert_Whitehead
    [33] Christopher V A. Autonomous underwater vehicles. online available at:http://www.geo-prose.com/ALPS/white_papers/alt.pdf
    [34]马伟锋,胡震. AUV的研究现状与发展趋势.火力与指挥控制,2008,33(6):10-13
    [35] Nodland W, Ewart T, Bendiner W, et al. SPURV II-an unmanned, free-swimmingsubmersible developed for oceanographic research. Oceans,1981,13:92-98
    [36] Blidberg D R. Autonomous underwater vehicles: a tool for the ocean. Unmanned Systems,1991,9(2):10-15
    [37]李锡群,王志华.无人水下航行器(UUV)技术综述.船电技术,2003,(6):12-15
    [38]王晓鸣.混合驱动水下自航行器动力学行为与控制策略研究:[博士学位论文],天津:天津大学,2009
    [39]牟春晖.基于故障树的AUV可靠性研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2008
    [40]任福君,张岚,王殿君.水下机器人的发展现状.佳木斯大学学报,2000,18(4):317-320
    [41] Damus R, Manley J, Desset S, et al. Design of an inspection class autonomous underwatervehicle. Oceans,2002,1:180-185
    [42] Smith S M, Dunn S E. The Ocean Voyager II: an AUV designed for coastaloceanography. Proceedings of the1994Symposium on Autonomous Underwater VehicleTechnology, Cambridge, MA, USA,1994,7:139-147
    [43] Thori F, Aslaug G. Nonlinear output feedback control of dynamically positioned shipsusing vectorial observer backstepping. IEEE Transactions on Control Technology,1998,6(1):121-128
    [44] Crimmins D, Deacutis C, Hinchey E, et al. Use of a long endurance solar poweredautonomous underwater vehicle (SAUV II) to measure dissolved oxygen concentrationsin Greenwich Bay. Oceans2005–Europe, Rhode Island, U.S.A,2005,2:896-901
    [45] Turner R M, Turner E H. Organization and reorganization of autonomous oceanographicsampling networks. IEEE International Conference on Robotics and Automation, Leuven,Belgium,1998,3:2060-2067
    [46] Schmidt H, Bovio E. Underwater vehicle networks for acoustic and oceanographicmeasurements in the littoral ocean.5th IFAC Conference on Maneuvering and Control ofMarine Craft, Aalborg, Denmark,2000:105-110
    [47] Turner R M, Turner E H. Simulating an autonomous oceanographic sampling network: amulti-fidelity approach to simulating systems of systems. OCEANS2000MTS/IEEEConference and Exhibition, Providence, RI, USA,2000,2:905-911
    [48] Von A C, Allen B, Austin T, et al. Remote environmental measuring units. Proceedingsof IEEE Symposium on autonomous underwater vehicle technology, Cambridge, MA,USA,1994,3:13-19
    [49] Allen B, Stokey R, Austin T. REMUS: a small, low cost AUV; system description, fieldtrials and performance results. Proceedings of the1997Oceans Conference, Halifax, NS,Can,1997,2:994-1000
    [50] Purcell M, Von A C, Allen B. New capabilities of the REMUS autonomous underwatervehicle. OCEANS2000MTS/IEEE Conference and Exhibition, Providence, RI, USA,2000,1:147-151
    [51] Ricard M, Keegan M. Intelligent autonomy for the Manta test vehicle. OCEANS2000MTS/IEEE Conference and Exhibition, Providence, RI, USA,2000,2:126-127
    [52] Thorleifson J M, Davies T C, Black M R, et al. The Theseus autonomous underwatervehicle: a Canadian success story. MTS/IEEE Conference Proceedings of OCEANS,Halifax, NS, Canada,1997,2:1001-1006
    [53] Butler B, Den H V. Theseus: a cable-laying AUV. Proceedings of OCEANS’93, VictoriaBC, Canada,1993,1:1210-1213
    [54] Balasuriya A, Ura T. Autonomous target tracking by Twin-Burger2. Intelligent Robotsand Systems,2000,2:849-854
    [55] Takemura Y, Ishii K. Dynamics classification of underwater robot and introduction tocontroller adaptation.2010World Automation Congress (WAC2010), Kobe, Japan,2010
    [56] Ishitsuka M, Ishii K. Development of an underwater manipulator mounted for an AUV.Proceedings of MTS/IEEE OCEANS, Washington, USA,2005,2:1811-1816
    [57] Ura T, Kumagai M, Sakakibara T, et al. Construction and operation of four autonomousunderwater vehicles for lake survey. Underwater Technology,2002,24-29
    [58] Imai T, Ura T, Nose Y. Semi-autonomous touching of underwater object by unmanneduntethered vehicle. Oceans2002Conference and Exhibition, Biloxi, USA,2002,1:236-241
    [59] Maki T, Mizushima, H, Ura T, et al. AUV navigation around jacket structures I: relativelocalization based on multi-sensor fusion. Journal of Marine Science and Technology,2012:1-10
    [60] Nakatani T, Ura T, Ito Y, et al. AUV “TUNA-SAND” and its exploration of hydrothermalvents at Kagoshima Bay. OCEANS2008MTS/IEEE Kobe Techno-Ocean, Kobe, Japan,2008,1(3):1154-1158
    [61] Tsukioka S, Aoki T, Tamura K. Development of a long range autonomous underwatervehicle “AUV-EX1”. Proceedings of the2000International Symposium on UnderwaterTechnology, Tokyo, Japan,2000:254-258
    [62] Collar P G, Mcphail S D. Autosub: an autonomous unmanned submersible for ocean datacollection. Electronics&Communication Engineering Journal,1995,7(5):105-114
    [63] Hughes N E, Wilkinson J P, Wadhams P. Multi-satellite sensor analysis of fast-icedevelopment in the Norske Oer Ice Barrier, northeast Greenland. Annals of Glaciology,2011,52(57):151-160
    [64] Emits J, Dearden R, Pebody M. Automatic fault detection and execution monitoring forAUV missions.2010IEEE/OES Autonomous Underwater Vehicles (AUV2010),Monterey, CA, USA,2010:1-10
    [65] Storkersen N J, Kristensen A, Indreeide J. HUGIN-UUV for seabed surveying. SeaTechnology,1998,39(2):22-27
    [66] Hagen P E, Storkersen N J, Vestgard K, et al. The HUGIN1000autonomous underwatervehicle for military applications. Oceans2003. Celebrating the Past... Teaming Towardthe Future, San Diego, CA, USA,2003,2:1141-1145
    [67] Hagen P E, Storkersen N J, Vestgard K. HUGIN-use of UUV technology in marineapplications. OCEANS'99MTS/IEEE-Riding the Crest into the21st Century, Seattle,WA, USA,1999,2:967-972
    [68] Hagen P E, Storkersen N J, Marthinsen B E, et al. Military operations with HUGINAUVs: lessons learned and the way ahead. Oceans2005–Europe, Brest, France,2005,2:810-813
    [69] Lars H, Anders B, Anders I. Sea Trials of MARTIN A European Survey AUV.OCEANS’95‘Challenges of Our Changing Global Environment’, San Diego, CA, USA,1995,3:1439-1445
    [70] Wang D, Kang S, Guan Y, et al. A launch and recovery system for an autonomousunderwater vehicle “Explorer”. Proceedings of the1992Symposium on AutonomousUnderwater Vehicle Technology, Washington, DC, USA,1992,1:279-281
    [71] Healey A J, Good M R. NPS AUV II autonomous underwater vehicle testbed: design andexperimental verification. Naval Engineers Journal,1992,104(3):191-202
    [72] Marco D B. Command, control and navigation experimental results with the NPS ARIESAUV. IEEE Journal of Oceanic Engineering,2001,26(4):466-476
    [73] Amin R, Khayyat A A, Osgouie K G. Neural networks control of autonomous underwatervehicle.20102nd International Conference on Mechanical and Electronics Engineering(ICMEE2010), Kyoto, Japan,2010,2:117-121
    [74] Glegg S A L, Olivieri M P, Coulson R K, et al. A passive sonar system based on anautonomous underwater vehicle. IEEE Journal of Oceanic Engineering,2001,26(4):700-710
    [75] Sangekar M N, Thornton B, Nakatani T. Development of a landing algorithm forautonomous underwater vehicles using laser. OCEANS2010IEEE–Sydney, Sydney,NSW, Australia,2010:1-7
    [76]温秉权.小型浅水域水下自航行器系统设计与实验研究:[博士学位论文],天津:天津大学,2005
    [77] Evans J, Nahon M. Dynamics modeling and performance evaluation of an autonomousunderwater vehicle. Ocean Engineering,2004,31(14-15):1835-1858
    [78] Conte G, Serrani A. Modeling and simulation of underwater Vehicles. Proceedings ofJoint Conference on Control Applications Intelligent Control and Computer AidedControl System Design, Dearborn, MI, USA,1996,9:62-67
    [79] Sagatun S I, Fossen T I. Lagrangian formulation of underwater vehicles’ dynamics. IEEEInternational Conference on Systems, Man and Cybernetics, Charlottesville, VA, USA,1991,2:1029-1034
    [80] Fossen T. Guidance and Control of Ocean Vehicles. New York: John Wiley&Sons Ltd,1994
    [81]王延辉.水下滑翔器动力学行为与鲁棒控制策略研究:[博士学位论文],天津:天津大学,2007
    [82] Abkowitz M A. Stability and motion control of ocean Vehicles. Cambridge: MIT Press,1969
    [83]苏兴翘,高士奇.船舶操纵性.北京:国防工业出版社,1989,165-166
    [84]张宇文.鱼雷弹道与弹道设计.西安:西北工业大学出版社,2000
    [85]小川阳弘.操纵运动数学模型的基础.日本造船学会第三届操纵性讨论会论文集,1981
    [86]令狐选霞,徐德民,唐大军.水下航行器机动性优化设计的模型研究.西北工业大学学报,2003,21(2):222-225
    [87]令狐选霞.自主水下航行器操纵性优化设计及分离运动研究:[博士学位论文],西安:西北工业大学,2002
    [88]吴旭光,徐德民.水下自主航行器动力学模型-建模和参数估计.西安:西北工业大学出版社,1998
    [89] Rentschler M E, Hover F S, Chryssostomidis C. System identification of open-loopmaneuvers leads to improved AUV flight performance. IEEE Journal of OceanicEngineering,2006,31(1):200-208
    [90] Sayyaadi H, Ura T. Multi Input-Multi Output system identification of AUV systems byneural network. Proceedings of the OCEANS'99MTS/IEEE-Riding the Crest into the21st Century, Seattle, W A, USA,1999,201-208
    [91] Bossley K M, Brown M, Harris C J. Neurofuzzy identification of an autonomousunderwater vehicle. International Journal of Systems Science,1999,30(9):901-913
    [92] Astrom K J, Eykhoff E. System Identification-A survey. Automatica,1971,7(2):123-162
    [93] Fujii T, Ura T, Kuroda Y, et al. Development of a versatile test-bed “Twin-Burger”toward realization of intelligent behaviors of autonomous underwater vehicles.OCEANS’93, Victoria, Canada,1993,1:186-192
    [94] Indivefi G. Modeling and identification of underwater Robotic systems: PhD Thesis,University of Geneva,1998
    [95] Caccia M, Indiveri G, Veruggio G. Modeling and identification of open-flame variableconfiguration unmanned underwater vehicles. Journal of Ocean Engineering,2000,25(2):227-240
    [96] Ridao E, Batlle J, Carreras M. Model identification of a low-speed UUV. Proceedings ofthe1st IFAC workshop on guidance and control of underwater vehicles, Glasgow,Scotland,2003:47-52
    [97] Tiano A, Carreras M, Ridao P, et a1. On the identification ofnon-linear models ofunmanned underwater vehicles.10th IEEE Mediterranean conference on control andautomation, Lisbon, Portugal,2002:9-12
    [98] Marco D B, Martins A, Healey A J. Surge motion parameter identification for the NPSPhoenix AUV. In International Advanced Robotics Program(IARP’98), Lafayette,1998:197-210
    [99] Marco D B, Healey A. Command, control and navigation experimental results with theNPS ARIES AUV. Journal of Oceanic Engineering, Special Issue on Autonomous OceanSampling Networks,2001,26(4):466-477
    [100] Van de Ven P W J, Johansen T A. Neural network augmented identification ofunderwater vehicle models. Control Engineering Practice,2007,15(6):715-725
    [101] Ven P V, Flanagan C, Toal D, et a1. Identification and control of underwater vehicleswith the aid of neural networks. IEEE Conference on Robotics, Automation andMechatronics,2004(1):428-433
    [102]田亚杰,边信黔.应用全局最小二乘法辨识AUV运动参数.自动化技术与应用,2006,25(2):4-7
    [103]刘建成,刘学敏,徐玉如.极大似然法在水下机器人系统辨识中的应用.哈尔滨工程大学学报,2001,22(5):1-4
    [104]张铭钧.基于神经网络和遗传算法的水下机器人运动建模、规划与控制技术研究:[博士学位论文],哈尔滨:哈尔滨工程大学,1998
    [105] Barrett, N, Seiler J, Anderson T, et al. Autonomous underwater vehicle (AUV) formapping marine biodiversity in coastal and shelf waters: implications for marinemanagement. OCEANS2010IEEE-Sydney, Sydney, NSW, Australia,2010
    [106] Teo K, An E, Beaujean P J. A robust fuzzy autonomous underwater vehicle (AUV)docking approach for unknown current disturbances. IEEE Journal of OceanicEngineering,2012,37(2):143-155
    [107] Pan H, Xin M. Depth control of autonomous underwater vehicles using indirect robustcontrol method. International Journal of Control,2012,85(1):98-113
    [108] Petillo S, Schmidt H, Balasuriya A. Constructing a distributed AUV network forunderwater Plume-Tracking Operations. International Journal of Distributed SensorNetworks,2012:191-235
    [109] Daniel F, Oliveira P, Paseoal A, et al. Integrated design of navigation, guidance andcontrol systems forunmanned underwater vehicles. Oceans Conference Record,1994,3:105-110
    [110] Hawkinson T D. Multiple input sliding mode control for autonomous diving and steeringof underwater vehicles: M.S. Thesis, Naval Postgraduate School, Monterey, California,1990
    [111] Yoerger D N, Slotine J E. Robust trajectory control of underwater Vehicles. IEEE Journalof Oceanic Engineering,1985,10(4):462-470
    [112] Cristi R, Fotis A P, Healey A J. Adaptive sliding mode control of autonomous underwatervehicles in t he dive plane. IEEE Journal of Oceanic Engineering,1990,15(3):152-160
    [113] Healey A J, Lienard D. Multivariable sliding mode control for autonomous diving andsteering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering,1993,18(3):327-339
    [114] Goheen K R, Jeffery R E. Multivariable self-tuning auto pilots for autonomous andremotely operated underwater vehicles. IEEE Journal of Oceanic Engineering,1990,15(3):144-15l
    [115] Fossen T, Svein I S. Adaptive Control of Nonlinear Underwater Robotic Systems. InProceedings of the1991IEEE Conference on Robotics and Automation, Sacramento,California,1991:1687-1695
    [116] Do K D, Pan J. Robust and adaptive path following for underactuated autonomousunderwater vehicles. Proceedings of the American Control Conference, Denver, CO, USA,2003,3:1994-1999
    [117] Pepijn W J, Colin F, Daniel T. Neural network control of underwater vehicles.Engineering Applications of Artificial Intelligence,2005,18:533-547
    [118] Li J H, Lee P M. A neural networks adaptive controller design for free-pitch-angle divingbehavior of an autonomous underwater vehicle. Robotics and Autonomous Systems,2005,52:132-147
    [119] Jagannathan S, Gustavo G. One-Layer Neural-Network Controller with PreprocessedInputs for Autonomous Underwater Vehicles. Vehicular Technology,2003,52(5):1342-1355
    [120] Sarath B S, Kumar C S, Faruqi M A. A Neural Network Online Controller forAutonomous underwater vehicle. Industrial Technology,2006:2320-2324
    [121] Kim T W, Yuh J. Application of on-line neuro-fuzzy controller to AUVs. InformationSciences,2002,145(1-2):169-182
    [122] Wang J S, Lee C S G. Self-adaptive recurrent neuro-fuzzy control of an autonomousunderwater vehicle. IEEE Transactions on Robotics and Automation,2003,19(2):283-295
    [123] Lin C K. Adaptive critic control of autonomous underwater vehicles using neuralnetworks.20066th International Conference on Intelligent Systems Design andApplications, Los Alamitos, CA, USA,2006,2:122-127
    [124] Xu J N, Zhang M J. Neural networks modeling and generalized predictive control for anautonomous underwater vehicle. The IEEE International Conference on Industrialinformatics, Daejeon, Republic of Korea,2008:487-491
    [125] Pepijn W J, Johansen T A, Sorensen A J, et al. Neural networks augmented identificationof underwater vehicle models. Control Engineering Practice,2007,15(6):715-725
    [126] Yuan H W, Wang C. Adaptive NN controller design for autonomous underwater vehicle.IEEE proceeding of the27th Chinese control conference, Kunming, Yunnan, China,2008:65-69
    [127] Ishii K, Ura T. An adaptive neural-net controller system for an underwater vehicle.Control Engineering Practice,2000,8(2):177-184
    [128] Ishii K, Fujii T, Ura T. Neural networks system for on-line controller adaptation and itsapplication to underwater robot. IEEE International Conference on Robotics andAutomation, Leuven, Belgium,1998,1:756-761
    [129] Smith S M, Rae G J S, Anderson D T, et al. Fuzzy logic control of an autonomousunderwater vehicle. Control Engineering Practice,1994,2(2):321-331
    [130] Song F, Smith S M. Design of sliding mode fuzzy controllers for all autonomousunderwater vehicles without system model. Oceans Conference Record,2000,2:835-840
    [131]赵晶. AUV模糊神经网络混合学习算法的控制研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2007
    [132]许亮.基于模糊神经网络的AUV路径规划技术研究:[硕士学位论文],青岛:中国海洋大学,2007
    [133] Astrov I, Pedai A. Multirate depth control of an AUV by neural network predictivecontroller for enhanced situational awareness. ISCIII2011-5th International Symposiumon Computational Intelligence and Intelligent Informatics, Floriana, Malta,2011:47-52
    [134] Pandian S R, Sakagami N. A neuro-fuzzy controller for underwater robot manipulators.11th International Conference on Control, Automation, Robotics and Vision, Singapore,Singapore,2010:2135-2140
    [135] Zhang L, Pang Y J, Wan L, et al. Fuzzy neural network control of AUV based on IPSO.IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand,2008:1561-1566
    [136]王树新,杜兵,张宏伟.一种开锁式水下抛载机构,国家发明专利,专利号:ZL200910301964.9
    [137]李天森.鱼雷操纵性.北京:国防工业出版社,1999
    [138]施生达.潜艇操纵性.北京:国防工业出版社,1995
    [139]陈厚泰.潜艇操纵性.北京:国防工业出版社,1981
    [140]荣建德.水下运载器性能的分析与设计.北京:国防工业出版社,2005
    [141]吴旭光,徐德民.水下自主航行器动力学模型-建模和参数估计.西安:西北工业大学出版社,1998
    [142]张字文.鱼雷外形设计.西安:西北工业大学出版社,1998
    [143] Ananthakrishnan P, Decron S. Dynamics of small and mini autonomous underwatervehicles. Florida: Florida Atlantic University,2000
    [144] Saout O, Ananthakrishnan P. Hydrodynamic and dynamic analysis to determine thedirectional stability of an underwater vehicle near a free surface. Applied Ocean Research,2011,33(2):158-167
    [145]武建国.混合驱动水下滑翔器系统设计与性能分析:[博士学位论文],天津:天津大学,2010
    [146] Koh T H, Lau M W S, Low E, et al. A study of the control of underactuated underwaterrobotic vehicle. IEEE/RSJ international Conference on robots and systems, Lausanne,Switzerland,2002,2:2049-2054
    [147]陶永华.新型PID控制及其应用.北京:机械工业出版社,2005
    [148]田雨波.混合神经网络技术.北京:科学出版社,2009
    [149]田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006
    [150]宋军,许小鸣.水下机器人三维路径制导控制器设计.中国造船,1998,(1):87-93
    [151] Borhaug E, Pettersen K Y. Cross-track control for underactuated autonomous vehicles.Proceedings of the44th IEEE Conference on Decision and Control, and the EuropeanControl Conference, Seville, Spain,2005:602-606
    [152] Lapierre L, Soetanto D, Pascoal A. Nonlinear Path Following with application to theControl of Autonomous Underwater Vehicle.42nd IEEE International Conference onDecision and Control, Maui, HI, USA,2003,2:1256~1261
    [153] Lapierre L, Soetanto D. Nonlinear path-following control of an AUV. Ocean Engineering,2007,34(11-12):1734-1744
    [154] Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV. IEEEJournal of Oceanic Engineering,2008,33(2):89-102
    [155] Yuh J. Modeling and Control of Underwater Robotic Vehicle. IEEE Trans System ManCybern,1990,20(6):1475-1483
    [156] Potter I J. A systematic experimental and analytical investigation of the autonomousunderwater vehicle design process with particular regard to power system integration:PhD Thesis, University of Calgary,1998
    [157] David A S, Louis L W. Model-based dynamic positioning of underwater robotic vehicles:theory and experiment. IEEE Journal of Oceanic Engineering,2004,29(1):169-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700