Banach空间上的强不可约算子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有限维空间的矩阵论中,著名的Jordan标准形定理充分揭示了矩阵的内在结构,从Jordan标准形定理可以看出,Jordan块在矩阵论中起着基本而重要的作用.在无穷维可分Hilbert空间中,强不可约算子己被蒋春澜等证明为Jordan块的合适类似物.而且他们建立了算子在相似意义下唯一强不可约分解定理,得到了强不可约算子的谱图象和紧摄动结果以及应用K理论来寻找算子的完全相似不变量,事实上,他们已经建立了无穷维可分Hilbert空间上强不可约算子的一套系统的理论.毫无疑问,考虑建立一般Banach空间中相应的理论不仅是非常重要的,也是非常必要的.本文的主要目的就是研究一般Banach空间上的强不可约算子的包括存在性等在内的重要基本性质.全文共分六章.
     第一章简要回顾了强不可约算子研究的背景以及发展概况.
     第二章讨论强不可约算子的存在性,证明了当Banach空间X的共轭空间X~*w~*可分时,X上存在强不可约算子;研究强不可约算子具有的基本性质,说明强不可约算子具有非有限秩、非代数算子等性质;探讨强不可约算子与Cowen-Douglas算子的关系,证明了若X=c_0或ι_p(1≤p≤∞),则对任意1≤n≤∞,存在T∈B_n(Ω)∩(SI)(X).
     第三章给出上三角算子矩阵的本性谱填洞结果,即对上三角算子矩阵M_C=(?)∈B(x×y),有σ_τ(A)∪σ_τ(B)=σ_τ,(M_C)∪W,其中W(?)σ_τ(A)∩σ_τ(B)是σ_τ(M_C)的某些洞的并,这里σ_τ对σ_b与σ_e成立,但对σ_K与σ_ι,σ_r,σ_ιe,σ_re不成立;给出M_2(A)中上三角矩阵相应的谱填洞结果;讨论算子矩阵成为强不可约算子的条件.
     第四章研究遗传不可分解空间上的强不可约算子的性质.根据遗传不可分解空间特殊的算子构成,给出其上强不可约算子具有的特殊性质,例如当T是遗传不可分解空间上的强不可约算子时,kerT(?)(?);以及A'(T)/radA'(T)≈C(?)T∈(SI)此外,当算子T的点谱或压缩谱为空时,T是强不可约的.给出有限维强不可约算子的定义,说明其性质.
     第五章讨论遗传不可分解空间上强不可约算子的小紧摄动问题,证明了几种特殊的单点谱算子能小紧摄动成为强不可约算子,即当具有单点谱{0}的算子T满足如下条件((1)dimkerT<∞;(2)dim(x/(?))<∞;(3)dim(kerT/(kerT∩(?))=∞;(4)dimkerT=dim(x/(?))=∞,kerT(?)(?),dim((?)/kerT)<∞)之一时,T能小紧摄动成为强不可约算子;证明有有限维Schauder分解空间上的具有单点谱的对角算子可以小紧摄动成为强不可约算子.
     第六章应用K理论工具来研究算子的强不可约分解,得到了与无穷维可分Hilbert空间上结果类似的定理,即A(?)∑_(i=1)~k(?)A_i~(ni),其中A_i∈(SI),i=1,2,…,k,A_i(?)A_j(i≠j)当且仅当存在从∨(A'(A))到N~((k))上的同构h,使得h([I])=n_1e_1+n_2e_2+…+n_ke_k,其中I是A'(A)中的恒等算子,{e_i}_(i=1)~k是N~((k))的生成元,0≠n_i∈N.特别地,在遗传不可分解空间上,两个强不可约算子直和换位代数的K_0群可以用来刻画它们的相似性.
In the matrix theory of finite dimensional spaces, the famous Jordan Standard Theorem sufficiently reveals the internal structure of matrix. From the Jordan Standard Theorem, it is obvious that the Jordan block plays a fundamental and important role in matrix theory. In infinite dimensional separable Hilbert spaces, C.L.Jiang and his cooperators have proved that strongly irreducible operator is a suitable analogue of Jordan block in the set of all bounded linear operators. And they have founded the theorems concerning the unique strongly irreducible decomposition of operators in the sense of similarity, the spectral picture and compact perturbations of strongly irreducible operators. They have also used the K-theory language to find the complete similarity invariant. In fact, they have formed a theoretical system of strongly irreducible operators in infinite dimensional separable Hilbert spaces. Undoubtedly, it is very important and very essential to build the corresponding theory on general Banach spaces. The main purpose of this thesis is to research the important basic properties of strongly irreducible operators on general Banach spaces, which includes the existence of strongly irreducible operators. This thesis consists of six chapters.
     Chapter 1 presents a survey of the study of strongly irreducible operators.
     Chapter 2 discusses the existence of strongly irreducible operators, proves that there is a strongly irreducible operator on the Banach space X with the property that conjugate space X~* is separable under the w~* topology; researches the basic properties of strongly irreducible operators, shows that if T is a strongly irreducible operator,then T isn't of finite rank and isn't an algebraic operator. And the relation between strongly irreducible operators and Cowen-Douglas operators is considered, it is showed that if X=c_0 orι_p(1≤p<∞),then there exists T∈B_n(Ω)∩(SI)(X)for every 1≤n≤∞.
     Chapter 3 gives the result of "filling in holes" of essential spectra of upper triangular operator matrices, that is, for upper triangular operator matrix M_C=(?)∈B(X×Y),σ_τ(A)∪σ_τ(B)=σ_τ(M_C)∪W,where W is the union of certain of the holes inσ_τ(M_C) which happen to be subsets ofσ_τ(A)∩σ_τ(B),σ_τcan be equal toσ_b andσ_e,and the result is not true ifσ_T is equal toσ_K andσ_ι,σ_r,σ_(ιe),σ_(re); presents the corresponding result of "filling in holes" of spectra of upper triangular matrices in M_2(A).And the conditions is discussed such that operator matrices become strongly irreducible operators.
     Chapter 4 researches the properties of strongly irreducible operators on hereditarily indecomposable space. Shows the special property of strongly irreducible operators on hereditarily indecomposable space according to the special operator structure.For example, if T is a strongly irreducible operator, then ker T (?) (?); and A'(T)/radA'(T)≈C if and only if T∈(SI);moreover,ifσ_p(T)=(?) orσ_γ(T)=(?),then T∈(SI).Gives the definition of finite dimensional strongly irreducible operators and shows some properties of it.
     Chapter 5 discusses the small and compact perturbations problem of strongly irreducible operators on hereditarily indecomposable space, shows that some kinds of operators with singleton spectra can become strongly irreducible operators by a small and compact perturbation, that is, if the operator T with singleton spectra {0} satisfies one of the following conditions: (1)dim kerT <∞; (2)dim(X/(?))<∞; (3)dim(ker T/(ker T∩(?)))=∞;(4)dim ker T=dim(X/(?))=∞,ker T(?) (?),dim((?)/ ker T)<∞,then T can become strongly irreducible operators by a small and compact perturbation. Proves that diagonal operators with singleton spectra can become strongly irreducible operators by a small and compact perturbation on the space which has a finite dimensional Schauder decomposition.
     Chapter 6 uses the K-theory language to research the strongly irreducible decomposition,obtains some theorems which are similar to the conclusions on infinite dimensional separable Hilbert spaces, that is, A-∑_(i=1)~k(?)A_i~((ni)),where A_i∈(SI), i=1,2,…,k,A_i(?)A_j(i≠j) if and only if there exists a isomorphism h from∨(A'(A)) onto N~((k)) with h([I])=n_1e_1+n_2e_2+…+n_ke_k,where I is the identityoperator in A'(A),{e_i}_(i+1)~k are the generators of N~((k)),and 0≠n_i∈N.In particular, the K_0-group of commutant of direct sum of two strongly irreducible operators can been characterized the similarity of them in hereditarily indecomposable space.
引文
[1] 江泽坚,孙善利.关于完全不可约算子.吉林大学自然科学学报,1992,4:20-29
    [2] P.R.Halmos.Irreducible operator.Mich.Math.J.,1968,15:215-223
    [3] D.Voiculescu.A non-commutative Weyl-von Neumann theorem.Rev.Roum.Math.Pures et Appl.,1976,21:97-113
    [4] F.Gilfeather.Strongly irreducibility of operators.Indiana Univ.Math.J.,1972,22:97-133
    [5] 江泽坚.关于线性算子的结构.在全国算子理论会议上的报告,九江,1981.
    [6] 江泽坚.关于BIR算子的若干问题.在吉林大学泛函分析讨论班的报告,1979.
    [7] 江泽坚.关于算子谱论的若干方面.在第二届全国泛函分析会议上的报告,济南,1979.
    [8] 江泽坚.关于完全不可约算子.在第五届全国泛函分析会议上的报告,南京,1990.
    [9] D.A.Herrero, C.L.Jiang. Limits of strongly irreducible operators and the Riesz decomposition theorem. Michigan Math.1,1990,37:283-291
    [10] C.L.Jiang. Approximation of direct sums of strongly irreducible operators.Northeast. Math. J., 1989, 5:253-254
    [11] C.K.Fong, C.L.Jiang. Approximation by Jordan type operators. Houston J.Math., 1993, 19:51-62
    [12] L.J.Gray. Jordan representation for a class of nilpotent operators. Indiana Univ.Math. J., 1977, 26:57-64
    [13] C.Apostol, R.Douglas, C.Foias. Quasisimilar models for nilpotent operators.Trans. Amer. Math. Soc, 1976, 224:407-415
    [14] K.R.Davidson, D.A.Herrero. The Jordan form of a bitriangular operator. J. Funct. Anal., 1990,94:27-73
    
    [15] P.R.Halmos. A Hilbert Space Problem Book. Springer-Verlag, 1982.
    
    [16] A.L.Shields. Weighted Shift Operators and Analytic Function Theory. Math. Surveys, No. 13 AMS Providence R.I., 1974.
    
    [17] R.Gellar. Operators commuting with a weighted shift. Proc. Amer, Math. Soc., 1969,23:538-545
    
    [18]龚贵华.双边加权移位算子的Banach约化性质.东北数学,1987,3:17—35
    
    [19] C.L.Jiang. Similarity reducibility and approximation of Cowen-Douglas operators. J. Operator Theorey, 1994,32:77-89
    
    [20] C.L.Jiang. Similarity classification of Cowen-Douglas operators. Canad. J. Math., 2004,56:742-775
    
    [21] C.L.Jiang, H.He. Quasisimilarity of Cowen-Douglas operators. Science in China Ser.A, 2004,47(2):297-310
    
    [22] Y.Q.Ji, C.L.Jiang, Z.Y.Wang. Essentially normal + small compact = strongly irreducible. Chin. Ann. Math., 1997,18B(4):485-494
    
    [23] C.L.Jiang, S.H.Sun, Z.Y.Wang. Essentially normal operator + compact operator = strongly irreducible operator. Trans. Amer. Math. Soc., 1997,349:217-233
    
    [24] C.L.Jiang, S.Power, Z.Y.Wang. Biquasitriangular operators have strongly irreducible perturbations. Quart. J. Math., 2000, 51(3):353-369
    
    [25] B.Sz-Nagy, C.Foias. Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, Budapest, 1970.
    
    [26] J.Agler, E.Franks, D.A.Herrero. Spectral pictures of operators quasisimilar to the unilateral shift. J. Reine Angew. Math., 1991, 422:1-20
    
    [27] C.L.Jiang. Strongly irreducibility operators and Cowen-Douglas operators. Northeast. Math. J., 1991,7(1): 1-3
    
    [28] C.L.Jiang, Z.Y.Wang. Strongly Irreducibility Operators on Hilbert Space. π-Pitman Research Notes in Mathematics Series, 389, Longman, Harlow, 1998.
    
    [29] C.L.Jiang, P.Y.Wu. Sums of strongly irreducible operators. Houston J. Math., 1998,24:467-481
    [30] J.S.Fang, C.L.Jiang, P.Y.Wu. Direct sums of irreducible operators. Studia Math., 2003,155(1):37-49
    
    [31] C.L.Jiang, Z.Y.Wang. The spectral picture and the closure of the similarity orbit of strongly irreducible operators. Integr. equ. oper. theory, 1996,24:81-105
    
    [32] S.L.Sun. Spectral decomposition of weighted shift operators. Acta Math. Sinica, 1986,2(4):367-376
    
    [33] C.L.Jiang, Y.Q.Ji. Operators with connected spectrum + compact operators = strongly irreducible operators. Science in China Ser.A, 1999,42(9):925-931
    
    [34] Y.Q.Ji. Quasitriangular + small compact = strongly irreducible. Trans. Amer. Math. Soc., 1999, 351(11):4657-4673
    
    [35] C.L.Jiang, G.F.Cao, S.L.Sun. A completely irreducible compact perturbation of a class of essentially normal operators. Northeast. Math. J., 1994,10(4):427-433
    
    [36] Y.Q.Ji, C.L.Jiang. Small compact perturbation of strongly irreducible operators. Integr. equ. oper. theory, 2002, 43:417-449
    
    [37] G. A .Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra, 1976,38:29-44
    
    [38] G.A.Elliott. On the classification of C~*-algebras of real rank zero. J. Reine Angew. Math., 1993, 443:179-219
    
    [39] G.A.Elliott. A classification of certain simple C~*-algebras. Quantum and Non-Commutative Analysis(Dordrecht)(H.Araki et al., ed.), Kluwer, 1993,373-385
    
    [40] H.B.Su. A'-theoretical classification of certain real rank zero C~*-algebras with torsion. Quantum and Non-Commutative Analysis(Dordrecht)(H.Araki et al, ed.), Kluwer, 1993,387-397
    
    [41] M.Rordam. Classification of inductive limits of Cuntz algebras. J. Reine Angew. Math., 1993,440:175-200
    
    [42] G.A.Elliott. The classification problem for amenable C~*-algebras. Proceedings ICM'94, Zurich, Switzerland, Birkhauser Verlag, Basel, Switzerland, 922-932
    
    [43] G.H.Gong. Approximation by dimension drop C~*-algebras and classification. C. R. Math. Rep. Acad. Sci. Canada, 1994, 16:40-44
    [44] H.B.Su. On the classification of C~*-algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs. Mem. Amer. Math. Soc., 1995, 114
    
    [45] H.B.Su. Classification for certain simple real rank zero C~*-algebras. J. Funct. Anal., 1996,140:505-540
    
    [46] G.A.Elliott, H.B.Su. K-theoretical classifications for inductive limit Z_2 actions on AF algebras. Canad. J. Math., 1996,48(5):946-958
    
    [47] H.B.Su. K-theoretical classification for certain inductive limit Z_2 actions on real rank zero C~*-algebras. Trans. Amer. Math. Soc., 1996, 348:4199-4230
    
    [48] G.A.Elliott, G.H.Gong. On the classification of C~*-algebras of real rank zero n. Ann. Math., 1996,144:497-610
    
    [49] G.A.Elliott, G.H.Gong, X.H.Jiang, et al. A classification of simple inductive limits of dimension drop algebras. Operator Algebras and their Appli-cations(Waterloo, ON 1994/1995), Field Inst. commun., vol.13, Amer. Math. Soc., Providence, RI, 1997,125-143
    
    [50] L.Q.Li. Classification of simple C~*-algebras: Inductive limits of matrix algebras over trees. Mem. Amer. Math. Soc., 1997, 127
    
    [51] G.A.Elliott, G.H.Gong, H.B.Su. Classification of C~*-algebras of real rank zero - reduction to local spectrum of dimension two. Field Institute Communications, 1998, 20:50-76
    
    [52] M.Dadarlat, G.Gong. A classification result for approximately homogeneous C~*-algebras of real rank zero. Geom. Funct. Anal., 1997,7(4):646-711
    
    [53] G.H.Gong, X.H.Jiang, H.B.Su. Obstructions to Z-stability for unital simple C~*-algebras, Canad. Math. Bull., 2000,43:418-426
    
    [54] M.Rordam, F.Larsen, N.Laustsen. An Introduction to K-Theory for C~*-Algebras. London Math. Soc. Student Texts 49, Cambridge : Cambridge University Press, 2000.
    
    [55] L.Q.Li. Classification of simple C~*-algebras: Inductive limits of matrix algebras over one-dimensional spaces. J. Funct. Anal., 2002,192:1-51
    
    [56] G.A.Elliott, G.H.Gong, L.Q.Li. On the classification of simple inductive limit C~*-algebras II. Inventiones Math., 2007,168(2):249-320
    [57] Y.Cao, J.S.Fang, C.L.Jiang.K'-groups of Banach algebras and strongly irreducible decompositions of operators. J. Operator Theory, 2002,48:235-253
    [58] C.L.Jiang, Z.Y.Wang. Structure of Hilbert Space Operators. World Scientific Publishing Co. Pte. Ltd., Singapore:World Scientific Printers, 2006.
    [59] H.He, K.Ji.K-theory and similarity classification of operator Ⅱ.Illinois J.Math., 2007,51(2):409-428
    [60] Z.Y.Wang, Y.F.Xue. On the unique finite (SI) decomposition of the Jordan operator (?)_(i=1)~n S(θ) for certain inner function θ.Integr.equ.open.theory, 2000,36:370-377
    [61] 纪友清,杨轶华.强不可约分解在相似下惟一的一类算子.吉林大学自然科学学报,2000,3:1-7
    [62] 房军生,蒋春澜.Hilbert空间有限强不可约分解算子.数学年刊,1999,20A(6):707-714
    [63] C.L.Jiang, X.Z.Guo, K.Ji.K-group and similarity classification of operators.J. Funct. Anal.,2005, 225:167-192
    [64] C.L.Jiang, J.X.Li. The irreducible decomposition of Cowen-Douglas operators and operator weighted shifts. Acta Sci. Math., 2000, 66:679-695
    [65] H.He, C.L.Jiang. Unitary equivalence, similarity and calculation of K_0-group.Acta Math. Sinica, 2005,21(6): 1259-1268
    [66] H.He, C.L.Jiang. The unitary equivalence of operators and K_0-group of cornmutant algebras. Northeast. Math. J., 2001, 17(4):481-486
    [67] J.Lindenstrauss, L.Tzafriri. Classical Banach Spaces Ⅰ.New York : Springer-Verlag, 1977.
    [68] 赵俊峰.Banach空间结构理论.武汉:武汉大学出版社,1991.
    [69] R.B.Holmes. Geometry Functional Analysis and Its Applications. GTM.24,Springer, 1975.
    [70] H.R.Dowson. Spectral Theory of Linear Operators. London, New York : Academic Press, 1978.
    [71] 俞鑫泰.Banach空间选论.上海:华东师范大学出版社,1990.
    [72] 俞鑫泰.Banach空间几何理论.上海:华东师范大学出版社,1984.
    [73] M.J.Cowen, R.G.Douglas. Complex geometry and operator theory. Bull. Amer.Math. Soc, 1977,83(1): 131-133
    [74] M.J.Cowen, R.G.Douglas. Complex geometry and operator theory. Acta Math.,1978,141:187-261
    [75] 钟怀杰.巴拿赫空间结构和算子理想.北京:科学出版社,2005.
    [76] M.Rosenblum.On the operator equation BX-XA=Q.Duke Math. J., 1956,23:263-269
    [77] G.Lumer, M.Rosenblum. Linear operator equations. Proc.Amer. Math. Soc,1959,10:32-41
    [78] C.Davis, P.Rosenthal. Solving linear operator equations. Canad. J. Math., 1974,26(6):1384-1389
    [79] J.K.Han, H.Y.Lee, W.Y.Lee. Invertible completions of 2×2 upper triangular operator matrices. Proc. Amer. Math. Soc, 2000,128:119-123
    [80] W.Y.Lee. Weyl spectra of operator matrices. Proc. Amer. Math. Soc, 2001,129:131-138
    [81] S.V.Djordjevic, Y.M.Han. A note of Weyl's Theorem for operator matrices.Proc. Amer. Math. Soc, 2002,131:2543-2547
    [82] 李炳仁.Banach代数.北京:科学出版社,1997.
    [83] D.S.Djordjevic.Perturbations of spectra of operator matrices. J. Operator Theory, 2002,48:467-486
    [84] W.T.Gowers, B.Maurey. The unconditional basic sequence problem. J. Amer.Math. Soc, 1993,6(3):851-874
    [85] W.T.Gowers, B.Maurey. Banach spaces with small spaces of operators. Math.Ann., 1997,307:543-568
    [86] V.Ferenczi.Operators on subspaces of hereditarily indecomposable Banach spaces. Bull. London Math. Soc, 1997, 29(3):338-344
    [87] V.Ferenczi. A uniformly convex hereditarily indecomposable Banach space.Israel J. Math., 1997, 102:199-225
    [88] F.Rabiger, W.J.Ricker. Aspects of operator theory in hereditarily indecomposable Banach spaces. Rend. Sem.Mat. Fis. Milano, 1997,67:139-149
    [89] V.Ferenczi. Quotient hereditarily indecomposable Banach spaces. Canad. J.Math., 1999, 51(3):566-584
    [90] S.A.Argyros, V.Felouzis. Interpolating hereditarily indecomposable Banach spaces. J. Amer. Math. Soc, 2000,13(2):243-294
    [91] A.M.Pelczar. On a certain property of hereditarily indecomposable Banach spaces. Univ. Iagel.Acta Math., 2000,38:283-288
    [92] S.A.Argyros. A universal property of reflexive hereditarily indecomposable Banach spaces. Proc.Amer. Math. Soc, 2001,129(11):3231-3239
    [93] M.Gonzalez, J.M.Herrera. Operators on quotient indecomposable spaces. Publ.Math. Debrecen, 2001, 59(3-4):271-288
    [94] 钟怀杰,程立新.关于G-M成果研究的若干新动态Ⅰ(G-M型空间若干品种).应用泛函分析学报,2002,4(1):60-68
    [95] I.Gasparis. A continuum of totally incomparable hereditarily indecomposable Banach spaces. Studia Math., 2002,151(3):277-298
    [96] I.Gasparis. Strictly singular non-compact operators on hereditarily indecomposable Banach spaces. Proc. Amer. Math. Soc, 2003, 131(4):1181-1189
    [97] 钟怀杰,程立新.关于G-M成果研究的若干新动态Ⅱ(与G-M型空间相关的算子).应用泛函分析学报,2003,5(3):240-248
    [98] S.A.Argyros, A.Tolias. Methods in the theory of hereditarily indecomposable Banach spaces. Mem. Amer. Math. Soc, 2004, 170
    [99] L.X.Cheng, H.J.Zhong. On hereditarily indecomposable Banach spaces. Acta Math. Sinica, 2006, 22(3):751-756
    [100] V.Ferenczi. Uniqueness of complex structure and real hereditarily indecomposable Banach spaces. Adv. Math., 2007, 213(1):462-488
    [101] J.Diestel. Geometry of Banach Spaces. LNM.485, Springer-Verlag, 1975.
    [102] B.Blanchdar. K-Theory for Operator Algebras. Springer-Verlag, Heidelberg,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700