油层强动载造缝动态模拟模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国石油工业目前后备储量紧张,探明未动用石油地质储量中大部分为低渗透储量,为了有效动用低渗透油田的储量,油层强动载造缝技术得到了广泛应用,但油层强动载造缝过程影响因素分析、造缝过程动态分析以及裂缝条数预测等的研究缺乏,影响着技术的进一步发展。针对这一问题,利用火药燃烧模型、质量守恒方程和能量守恒方程,推导了火药在定容积内强动载加载过程的压力、温度随时间变化的加载计算模型;根据井筒内的散热损失,建立了爆燃后卸载的温度、压力变化模型,分析了装药质量、装药结构、初始空间体积和初始空间压力等对火药爆燃过程的压力、温度的影响规律;运用断裂理论,基于裂缝受力分析,引入地层岩石断裂动态应力强度因子,建立了油层强动载作用下破裂压力计算模型;结合高压流体在裂缝中的压力分布近似模型、流体渗滤模型、裂缝起裂/止裂判据模型、裂缝延伸速度模型、延伸宽度模型及裂缝体积计算模型,利用质量守恒和能量守恒,建立了裂缝动态延伸的数学模型;综合上述各子模型,建立了火药爆燃—地层开裂—裂缝延伸的强动载造缝动态模拟模型,编制了计算软件,并进行耦合求解。结果表明:缝长和缝宽均随时间迅速增长;峰值压力和造缝长度均随裂缝条数的增加而降低,一定条件下当裂缝条数从2增加到6时,峰值压力从108.4MPa降至63.6MPa,裂缝长度由2.48m减至1.17m。利用“岩石动态损伤模拟实验装置”作了24组实验,实验研究表明加载速率是影响裂缝条数的主要因素;根据强动载造缝耦合模型计算了不同火药参数下的加载速率、峰值压力与裂缝条数,并回归出加载速率与裂缝条数的关系式,与实验所得的关系式进行了对比分析,结果吻合较好;因此逐步推得不同装药量、装药结构与裂缝条数的指数回归关系式,并达到一定精度,从而建立了强动载造缝裂缝条数数学模型。强动载造缝动态模拟模型的建立与研究,为这类技术工艺参数设计和控制提供依据,对这类技术的发展和应用具有重要的指导意义。
Our country’s petroleum industry development now are facing embarrassing and pressing phenomenon that is the shortage of the back up reserves and the majority of the proved unexploited reserves being reserves of low permeability. Reservoir strong dynamic load fracture initiation technology has been popularized in order to effectively exploit low permeability reserves. Nowadays researches on process parameters analysis, process dynamic analysis and fracturing numbers analysis of strong dynamic load fracture initiation technology are limited which greatly restrict the technology’s further development. Focusing on these problems, some work has been done in this paper. Firstly, the loading calculation model of pressure’s and temperature’s variation with time in the stable cubage powder’s loading process. Then, on the basis of wellbore heat loss theory, the temperature and pressure variation model after deflagrating is conducted with the affecting law analysis of powder amount, powder holding structure, initial space volume and initial space’s pressure to the pressure and temperature in powder deflagrating process. Thirdly, ground rock fracturing dynamic stress strength factor is introduced and thus reservoir fracturing pressure calculation model under strong dynamic condition is proposed after fracture’s force analysis using fracturing theory. Fourthly, by utilizing mass and energy conservation equation, the mathematical model of fracture extension is built by coupling the following models including pressure distribution model of high pressure liquid in fracture, liquid seepage model, fracture beginning and ending criterion model, fracture extension rate model, fracture extension width model and fracture volume model. Then, by interconnecting all the sub models, the strong load fracturing dynamic simulation model connecting powder deflagrating, ground fracturing and fracture extension is built and the related computational software is programmed to carry on model coupling calculation. The results show that: the fracture’s width and length increase with time; both peak pressure and fracture length will decrease with fracture number’s increasing, for example, the peak pressure decreases to 63.6MPa from 108.4MPa and fracture length decreases to 1.17meters from 2.48 meters when fracture number increases to 6 from 2. Using“rock dynamic damage simulation experimental setup”, 24 tests are made and the experiment results show that loading rate is the major factor that affects fracture number; the loading rate, peak pressure and fracture number under different powder parameters are calculated and the relationship equation between loading rate and fracture number is regressed which shows satisfactory inosculation when compared with the equation got from experiment. The exponential equations between fracture number and powder amount as well as powder holding structure are gained and can reach a satisfying accuracy. In this meaning, the fracture number model under strong load condition is gained. The building and research of strong load dynamic fracturing model have provided criterion of the technology’s parameters’design and control, and has an important guiding meaning to the technology’s further improvement and application.
引文
[1]李文魁.高能气体压裂技术在油气资源开发中的应用研究[J].西安工程学院学报,2000,22(2)
    [2]张鼎业,张小岩,孙香秋.高能气体压裂技术研究与应用[J].石油钻采工艺,1997,19(增刊)
    [3] Cuderman J F.et a1. A Propellant-Based Technology for Multiple Fracturing Wellbores to Enhance Gas Recovery:Application and Results in Dovonian Shale[J].SPE/DOE/GRI 12838,1984
    [4] Cuderman J F. Tailored-Pulse Fracturing in Cased and Perforated Boreholes [J].SPE l5253,1986
    [5]杨卫宇.高能气体压裂对套管井壁的破坏[J].西安石油学院学报,1989,4(2)
    [6]薄其众,葛刚,马功联.高能气体压裂技术与应用[J].海洋石油,2003,23(3).69-71
    [7]秦发动.聚能效应及其在高能气体压裂中的应用研究[J].石油学院学报,1992,(2):17-22
    [8]高建义,陆兴峰,李汝学.无壳体高能气体压裂弹工艺介绍[J].油气井测试,1999,8(1):63-64
    [9]王安仕,刘发喜.高能气体压裂液体火药理论配方优选设计[J].西安石油学院学报.1994,9(4):4-6
    [10]王安仕.高能气体压裂用液体药点火与燃烧研究[J].西安石油学院学报,1995,10(3):55-57
    [11]王艳萍,黄寅生,潘永新.复合射孔技术的现状与趋势[J].爆破器材,2002,31(3):30-33
    [12]刁刚田,刘志华,周家驹.复合射孔技术的应用[J].钻采工艺,2003,26(6):30-33
    [13]赵开良,罗仁杰,于敬文.复合射孔技术及其应用[J].断块油气田,2000,7(2):62-64
    [14]杨宝君,郭伟.复合射孔技术研究与应用[J].石油钻采工艺,1997,19(6):58-62
    [15] Luo Yong, SHEN Zhao-wu. The experimental study on the feasibility of compound technique of perforating in coal seam [J]. ENERGETIC MATERIALS, 2005, 13 (4) :257-261
    [16]吴晋军,马荣华.复合射孔压裂技术的应用[J].石油矿场机械,2000,29(2):31-34
    [17]张鼎业,张小岩,孙香秋.高能气体压裂技术研究与应用[J].石油钻采工艺,1997,19(增刊)
    [18]郝兰香,张强等.爆燃压裂及其适用的地质条件研究[J].西北地质,2001,34(2)
    [19]李延美,季红新,刘河.大港油田高能气体压裂技术的研究和应用[J].石油钻采工艺,1997,19(增刊)
    [20]魏斌,黎荣剑,陈平等.高能气体压裂在长庆油田的应用及效果分析[J].低渗透油气田,2000,5(2)
    [21]王涛.高能气体压裂技术在濮城油田的研究与应用[J].油气井测试,2004,13(5)
    [22]刘继华.火药物理化学性能[M].北京:北京理工大学出版社,1997,8:192-200
    [23]彭培根等.固体推进剂性能及原理[M].长沙:中国人民解放军国防科学技术大学出版社.1987
    [24]王德才.火药学[M].南京:南京理工大学出版社.1988:165-180
    [25]杨卫宇,周春虎,赵刚.高能气体压裂瞬态压力耦合分析[J].石油学报,1993,14(3):127-134
    [26]王安仕,秦发动.高能气体压裂技术[M].西安:西北大学出版社,1998:10-14,70-71,77
    [27] D.B.Lombard. Recovering Oil From Shale With Nuclear Explosives[J]. SPE1068,1965
    [28] Shyapobersky.J et al. A review of recent development in fracture mechanics with petroleum engineering applications[J].SPE28074,1994
    [29] BRAY, BRUCE G, KNUTSON, CARROLL F. Economics of Contained Nuclear Explosions Applied to Petroleum Reservoir Stimulation[J]. SPE1133,1965
    [30] Holditch,S.A. Successful Stimulation of Deep Wells Using High Proppant Concentrations[J]. SPE 4118,1973
    [31] Watson S C , Benson G R. Liquid propellant stimulation of shallow Appalachian basin wells[J].SPE13376,1984
    [32]丁雁生.低渗透油气田“层内爆炸”增产技术研究[J].石油勘探与开发,2001,28(2)L:90-96
    [33]李传乐.国外油气井“层内爆炸”增产技术概述及分析[J].石油钻采工艺,2001,23(5):77-78
    [34]胡朝菊,马洪涛,耿兆华等.利用地层测试压力曲线指导油层压裂改造[J].特种油气藏,2004,11(1):72-74
    [35]东兆星.高应变率下岩石本构特性的研究[J].工程爆破,1999,5(2):6-9
    [36]杨军.岩石动态损伤特性实验及爆破模型[J].岩石力学与工程学报,2001,20(3):321-322
    [37]夏昌敬.冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学,2006.23(9):1-4
    [38]蒋金宝.爆炸波对水泥试样损伤破坏的实验研究[J].岩土工程学报,2007. 29(6):923-925
    [39]葛涛.坚硬岩石在强冲击荷载作用近区的性状研究[J].爆炸与冲击,2007. 27(4):310
    [40]林英松.损伤对爆生气体作用下孔壁岩石开裂规律的影响[J].石油钻探技术,2007.35(4):26-27
    [41] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:Experimental characterization[J]. International Journal of IMpact Engineering, 2001,25(3):869-886
    [42]夏昌敬,谢和平,鞠杨.孔隙岩石的SHPB试验研究[J].岩石力学与工程学报,2006,25(5):896-899
    [43]刘剑飞,胡时胜,胡元育等.花岗岩的动态压缩试验和力学性能试验[J].岩石力学与工程学报,2000,19(5):618-621.
    [44]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,2001,18(5):115-126
    [45]杨军,高文学,金乾坤.岩石动态损伤特性实验及爆破模型.[J].岩石力学与工程学报,2001,20(3):320-323
    [46]李战鲁,王启智.加载速率对岩石动态断裂韧度影响的实验研究[J].岩土工程学报,2006,28(12):2116-2120
    [47]朱万成,唐春安,黄志平等.静态和动态载荷作用下岩石劈裂破坏规律的数值模拟[J].岩石力学与工程学报,2005,24(1):1-7
    [48]左宇军,李夕兵,马春德等.动静组合载荷作用下岩石失稳破坏的突变理论模型与实验研究[J].岩石力学与工程学报,2005,24(5):741-746
    [49]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.6:108-118
    [50]张琪.采油工程原理与设计[M].东营:石油大学出版社,2005,6:259-260
    [51]新涛,程贵海.岩石爆破破坏机理的四种理论[J].西部探矿工程.2006,(7):181-182
    [52]陶颂霖.凿岩爆破[M].北京:冶金工业出版社.1992:119-120
    [53]井澜.爆破破岩机理的探讨[J].爆破,1994,(4):1-6
    [54] K.Hino. Fragmentation of Rock Through Blasting & Shock Wave Theory of Blasting[J]. Quarterly Colorado School of Mines,1956,No.3
    [55] H. K. Kutter , C. Fairhurst. On the Fracture Process in Blasting[J]. Int.J. of Rk Mech.& Min.Sci, 1971,5:26-32
    [56]陈建平,高文学.爆破工程地质学[M].北京:科学出版社.2005:217-218
    [57]刘红岩,李俊文,徐留红.机遇综合考虑损伤与断裂的岩石爆破破坏力学模型[J].有色金属,2005,57(1):35-40
    [58]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116
    [59]卢文波,陶振宇.爆生气体驱动的裂纹扩展速度研究[J].爆炸与冲击,1994,14(3):264-267
    [60]陈莉静,李宁,王俊奇.高能复合射孔爆生气体作用下预存裂缝起裂扩展研究[J].石油勘探与开发,2005,32(6):91-93,120
    [61] Nilson R H, Proffer W J, Duff R E. Modeling of Gas driven Fractures Induced by Propellant Combustion within a Borehole [J]. Int. J. Rock. Mech. Min. Sci. & Geomech.1985,22(1):3-19
    [62]曹言光,刘长松,林平等.应用断裂力学理论建立油气井压裂时岩石破裂压力计算模型[J].西安石油学院学报(自然科学版),2003,18(4):36-39
    [63]阿特金森B K.尹祥础,修济刚(译).岩石断裂力学[M].北京:地震出版社,1992
    [64] George E, Zacharias A, Eleftherios L. Effect the Fracture Process Zone in Directed Crack Propagation in Borehole Blasting [J]. SPE 28085,1994:463-470
    [65]李永东.理论应用断裂力学[M].北京:兵器工业出版社,2005,11:82-83
    [66] Tada H, Paris P C, Irwin G R. The Stress Analysis of Crack Handbook [J]. Del Res, Corp. Hellertown. 1973
    [67]杨卫宇,周春虎,赵刚.高能气体压裂瞬态压力耦合分析[J].石油学报,1993,14(3):127-134
    [68]王安仕,秦发动.高能气体压裂技术[M].西安:西北大学出版社,1998:10-14,70-71,77
    [69]张琪.采油工程原理与设计[M].东营:石油大学出版社,2003:381-391
    [70]杨宝君,宗寿国.井下低频电脉冲技术及其应用[J].石油钻采工艺,1997,l9(增刊)
    [71]孙鹞鸿,孙广生,严萍等.高压电脉冲采油技术发展[J].高压电技术,2002,28(1)
    [72]杨建华,魏自科,屈建平.电脉冲物理法采油技术在濮城油田的应用[J].试采技术,1998,19(4):41
    [73]石道涵,王栋林,刘书炳.电脉冲解堵技术增产机理分析及应用[J].石油钻采工艺,2002,24(3)
    [74]杨宝君等.物理法增产增注原理与技术.北京:石油工业出版社,2003:88-96
    [75] Bally B W and Wohlenberg J. Structure and evolution of the Kenya Rift Valley. Nature, 1971,229: 538-542
    [76]丁雁生,陈力,谢夑等.低渗透油气田“层内爆炸”增产技术研究[J].石油勘探与开发,2001,4:90
    [77]谢燮.低渗油田“层内爆燃”小尺度模拟实验装置研究.中国科学院力学研究所硕士论文,2000
    [78] David W. Yang, Rasmus Risnes. Experimental Study on Fracture Initiation by Pressure Pulses. SPE63035, 2000
    [79]陈德春,孟红霞,张琪等.水力裂缝层内爆燃压裂油井产能计算模型[J].石油大学学报,2005,29(6):69-73
    [80]陈德春.水力裂缝层内爆燃技术基础研究.中国石油大学工学博士论文,2006,2
    [81]张杰,田和金,王爱华等.子长油矿4207裸眼井“压胀松动”增产技术现场试验.西安石油学院学报(自然科学版),2000,15(1)
    [82]张杰,廖红伟,薛中天等.“压胀松动”增产技术.天然气工业,2006,26(8):107-109
    [83]李文魁.井下封隔区间高能气体压裂的理论计算.西安石油学院学报(自然科学版),2000,15(3)
    [84]周起槐,任务正.火药物理化学性能.北京国防工业出版社,1983
    [85]沈维道,蒋智敏,童钧耕.工程热力学.北京:高等教育出版社,2001
    [86]楼一珊,金业权.岩石力学与石油工程.石油工业出版社,2006,3:79-80
    [87]张志呈.岩石断裂控制爆破的裂纹扩展[J].西南工学院学报.2000,15(1):60-66
    [88]茆诗松,丁元等.回归分析及其试验设计.上海:华东师范大学出版社,1981:37-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700