高分子铝盐优化混凝控制水中腐殖酸特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对给水源水中消毒副产物前驱物的去除这一热点,考察了高Al13/Al30含量聚合氯化铝和无机复合型聚硫氯化铝两类高分子铝盐混凝剂优化混凝去除水中主要消毒副产物前驱物—腐殖酸的特性,并对其作用机理进行探讨。
     文章首先对消毒副产物的危害和控制技术、混凝和优化混凝应用基础以及高分子铝盐混凝剂的开发利用、形态表征、发展方向等进行了综述性研究。对混凝去除的目标物质—腐殖酸以及实验室配制的腐殖酸模拟水样的相关特性进行了表征,为水中腐殖酸的混凝去除研究打下基础。
     在实验室制备了总铝浓度为0.2mol/L,碱化度(B=[OH-]/[Al3+])分别为1.2、1.8和2.4,分别以Al13和Al30为主要铝水解形态的聚合氯化铝十三(PAC-Al13)和聚合氯化铝三十(PAC-Al30)混凝剂。并通过在聚合铝盐的制备过程中引入一定量S042-离子,制备得到总铝浓度为0.2mol/L,碱化度为2.0,硫酸根投加比(S=[SO42-]/[Al3+])分别为0.00、0.02、0.06以及0.10的聚硫氯化铝(PACS)和高聚聚硫氯化铝(HPACS)昆凝剂,用于水中腐殖酸的混凝去除。
     采用烧杯混凝沉淀实验方法,并以传统单分子混凝剂AlCl3做对照,从水样初始pH、混凝剂投量、共存阳离子和无机颗粒、电中和性能以及絮体形成能力等角度,分别考察了包含PAC-Al13、PAC-Al30、PACS以及HPACS在内的4个系列共14种高分子铝盐混凝剂去除水中腐殖酸的特性。实验结果表明,PAC-Al13、 PAC-Al30、PACS以及HPACS对腐殖酸的最佳去除效率分别达到97.6%、98.5%、99.4%和97.3%。水样初始pH、混凝剂投量对不同B值的PAC-Al13和PAC-Al30以及不同S值的PACS和HPACS有不同程度的影响;B值为2.4的PAC-Al13和PAC-Al30混凝性能优于其它碱化度的PAC-Al13和PAC-Al30混凝剂;S=0.06为PACS和HPACS混凝剂最佳的SO42-投加控制值;PAC-Al30(B=2.4)相比PAC-Al13(B=2.4)能在低投量下发挥更好的腐殖酸去除能力,且在大投量下不易出现混凝再稳现象;虽然PACS(S=0.06)对腐殖酸的去除效果最好,达到99.4%,但其获得最高腐殖酸去除率时所需的投量比HPACS(S=0.06)大,且HPACS(S=0.06)能在小投量以及偏碱性条件下获得更好的腐殖酸去除效果。在实际应用中应根据处理水质选择合适的混凝剂种类和投量。Ca2+和高岭土在混凝剂投量较小时分别通过压缩双电层和粘附架桥促进腐殖酸的混凝去除,而在混凝剂足量时作用不明显。除了水中腐殖酸的去除效果,对混凝出水残留铝浓度以及出水pH进行了测定,结果表明,高分子铝盐在多数情况下混凝出水残留铝浓度以及出水pH均达到居民生活饮用水卫生标准,相比之下单分子铝盐AlCl3的使用存在较多出水残留铝以及出水pH超标情况。
     文章采用多种表征和鉴定手段,对制备的混凝剂进行了结晶形貌、电镜扫描(SEM)、X射线衍射(XRD)、傅里叶转换红外光谱(FTIR)、Al-Ferron逐时络合比色、激光散射粒径、密度以及吸湿性等物理化学特性分析,并结合其在混凝过程中的特性,对高分子铝盐优化混凝去除水中腐殖酸的作用机理进行了分析和探讨。研究发现,采用简单的浓缩结晶方法,可以从宏观角度观察到聚合氯化铝分枝形貌以及棱状结晶体图像,与文献中通过SEM、透射电镜(TEM)以及原子力显微镜(AFM)得到的显微图像相似;Al-Ferron逐时络合比色形态分析得到的以Al30等高聚合形态为主要成分的Alc有可能发挥出比中等聚合形态Alb更优越的混凝作用;混凝剂的激光散射粒径、密度、吸湿性等物理化学特性能在一定程度上影响或反映混凝剂的混凝效能。
     本研究为新型高分子铝盐混凝剂的开发和应用打下基础,对于研制开发高性能的聚合铝盐混凝剂具有十分重要的理论和现实意义。此外,实验对最佳混凝条件的探索和各种影响因素的分析,将为以腐殖酸为代表的消毒副产物前驱物的控制技术提供经济可行的优化混凝参考方案。
High Al13/Al30contend polyaluminum chlorides and inorganic composite polyaluminum with sulfate were developed, and the the coagulation behavior of them were investigased for humic acid (one typical disinfection by-products (DBPs) precursor) removal. The mechanisms of coagulation were investigated simultaneously.
     Firstly, hazards and control technologies of DBPs, application of coagulation and optimized coagulation, and development, application and characterization of polymeric aluminum coagulants were reviewed in this article. Then, the commercial humic acids (HA) were analyzed by modern analytical methods, and the properties of simulated raw water with the commercial HA were studied.
     Polyaluminum chlorides with a high Al13content (PAC-Al13) and with a high Al30content (PAC-Al30) were prepared in laboratory for HA removal. The basicity (B=[OH-]/[A13+]) of PAC-Al13and PAC-Al30was controlled to be1.2.1.8, and2.4respectively. Poly-Aluminum Chloride Sulfate (PACS) and High-Poly-Aluminum Chloride Sulfate (HPACS) coagulants were prepared by adding SO42-in preparation process of polyaluminum chlorides. The sulfate addition ratio (S=[SO42-]/[A13+]) was0.00,0.02,0.06and0.10respectively.
     Compared with AICl3, coagulation behaviors of PAC-Al13、PAC-Al30、PACS and HPACS were investigated by jar tests, and the influence of initial pH, coagulation dosage, coexisting cations and inorganic particles, the charge neutralization performance and the floc formation capacity were considered. The results showed that the best HA removal efficiency of PAC-Al13、PAC-Al30、PACS and HPACS were97.6%、98.5%、99.4%and97.3%, respectively. Initial pH and coagulants dosage showed different effects on the coagulation of PAC-Al13and PAC-Al30with different B values, and PACS and HPACS with different S values. Generally, PAC-Al13and PAC-Al30with the B value of2.4showed more excellent coagulation effect than the other PAC coagulants, and S=0.06was the best choice for PACS and HPACS preparation. PAC-Al30(B=2.4) not only performed a more effective HA removal at low coagulant dosage but also exhibited less re-stabilization at a high dosage, compared with PAC-Al13(B=2.4) and AlCl3. Although PACS (S=0.06) achieved the highest HA removal efficiency of99.4%. higher coagulant dosage of PACS (S=0.06) was needed to get the best HA removal than that of HPACS (S=0.06). HPACS (S=0.06) performed a more effective HA removal at the low coagulant dosage and in a basic medium, compared with PACS (S=0.06). The appropriate type and dosage of coagulants should be optimized based on the source water quality in practice. When the coagulant dosage was low, the exsiting of Ca2+and kaolin promoted HA removal through double-layer compression and bridging adsorption, but these effects became insignificant when the coagulant dosage was sufficient. Besides HA removal, the residual Al concentration and pH of the treated water were also investigated. The results indicated that residual Al concentration and pH met the requirement of drinking water quality for polymeric aluminum coagulants application under most conditions, while AICI3might be not suitable for source water treatment from this consideration.
     Crystal morphology, scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), Al-Ferron timed complexation colorimetric and some other physical and chemical properties like laser scattering particle size, dencity and hygroscopic etc. of prepared coagulants were studied, and the coagulation mechanisms of HA removal were discussed combining with the coagulate characteristics. The branching morphology and prismatic crystals of polymeric aluminum, which usually were observed by SEM or AMF, were found with the simple crystallization. The Alc detected by Al-Ferron timed complexation colorimetric might be more effective for HA coagulation than the Alb-The laser scattering particle size, dencity and hygroscopic of coagulants also reflected and affected the coagulation performance to some extent.
     This study provides a foundation for development and application of new polymeric aluminum coagulants, showing an important theoretical and practical significance for development of high-effective coagulants. The optimal coagulation conditions and the analysis of influence factors would provide a cost-effective apporch for HA removal by optimized coagulation.
引文
[1]Rook J J. Format ion of haloforms during chlorintion of natural waters. Water Treatment Examination,1974,23:234
    [2]Wei J R, Ye B X, Wang W Y, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing. China. Science of The Total Environment,2010,408(20):4600-4606
    [3]Silva G H R, Daniel L A, Bruning H, et al. Anaerobic effluent disinfection using ozone:Byproducts formation. Bioresource Technology,2010,101(18): 6981-6986
    [4]Gunten U V. Ozonation of drinking water:Part Ⅱ. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research,2003, 37(7):1469-1487
    [5]Rehan S. Manuel J R. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence:A review. Science of the Total Environment,2004,321(1-3):21-46
    [6]Hunter E S, Roger E H, Schmid J E, et al. Comparative effects of haloaceticacids in whole embryo culture. Teratology,1996,54(2):57-64
    [7]Tokmak B, Capar G, Dilek F B, et al. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey. Environment Research, 2004,96(3):345-352
    [8]Lu J H, Zou H X, Yu Z R, et al. The interference of 2-chloro-5-oxo-3-hexene diacyl chloride (COHC) in the detection of strong mutagen MX. Chemosphere, 2002,48(1):29-33
    [9]葛飞,杨天军.饮用水中消毒副产物的形成机理与控制技术研究.湖北化工,2001,6:23-25
    [10]Deborde M, Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms:A critical review. Water Research,2008,42(1-2):13-51
    [11]Joll C A, Alessandrino M J, Heitz A. Disinfection by-products from halogenation of aqueous solutions of terpenoids. Water Research,2010,44(1): 232-242
    [12]Komulainen H. Carcinogenicity of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in the rat. Journal of Cancer Institute,1997,89(12):848-856
    [13]Matsumura H.3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) induces gene mutations and inhibits metabolic cooperation incultured Chinese hamster cells. Journal of Toxicology and Environmental Health,1994,43(1): 65-72
    [14]童小萍,冀元棠.氯化消毒饮用水与生殖发育毒性关系的研究进展.卫生毒理学杂志,2003,17(3):185-187
    [15]Aschengrau A., Zierler S., Cohen A. Quantity of community drinking water and the occurrence of late adverse pregnancy outcomes. Archives Environmental Health,1993,48:105-113
    [16]刘勇建,牟世芬,林爱武,等.北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究.环境科学,2004,25(2):51-55
    [17]曹朝晖.长沙市饮用水氯化消毒剂主要副产物的监测结果分析.实用预防医学,2008,15(3):647-651
    [18]王丽花.张晓健.成都市饮用水中消毒副产物的变化研究.中国给水排水,2003,19(11):8-11
    [19]张晋珠,黄廷林,邸尚志.西安市地表水厂水处理工艺过程中三卤甲烷类氯化消毒副产物变化规律研究.科技情报开发与经济,2009,19(18):151-154
    [20]丁国清,张艳萍,刘晓东,等.佛山市生活饮用水中氯化消毒副产物监测结果分析.卫生监督监测,2008,34(3):67-69
    [21]邓瑛,魏建荣,鄂学礼,等.中国六城市饮用水中氯化消毒副产物分布的研究.卫生研究,2008,37(2):207-210
    [22]刘波,孙超,崔燕.济南市供水消毒副产物的变化研究.供水技术,2009,3(5):40-46
    [23]Shakhawat C, Manuel J, Rodriguez R S. Disinfection by-products in Canadian provinces:Associated cancer risks and medical expenses. Journal of Hazardous Materials,2011,187(1-3):574-584
    [24]Matilainen A, Gjessing E T, Lahtinen T, et al. An overview of the methods used in the characterization of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere,2011,83(11):1431-1442
    [25]Jacangelo J, De Marco J, Owen D, et al. Selected processes for removing NOM: an overview. Journal of America Water Works Association.1995,87(1):64-77.
    [26]Christine A M, Simon A P. Removal of NOM from drinking water:Fenton's and photo-Fenton's processes. Chemosphere,2004,54:1017-1023
    [27]Lin H C, Wang G S. Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation. Desalination.2011,270:221-226
    [28]Cornelissen E R, Moreau N, Siegers W G. et al. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions. Water Research, 2008,42:413-423
    [29]Margarida C, Maria J R. Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Research.2010,44:1636-1644.
    [30]Vaezi F, Mohagheghian A, Nouri J, et al. Improvement of NOM removal from water resources by modifying the coagulation process. Iranian Journal of Environmental Health Science and Engineering,2005,2(1):43-49
    [31]Park N, Kwon B, Sun M, et al. Application of various membranes to remove NOM typically occurring in Korea with respect to DBP, AOC and transport parameters. Desalination,2005,178:161-169
    [32]Wei X. Wang R. Li Z S, et al. Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal. Journal of Membrane Science,2006,273:47-57
    [33]John R L. Comparison of natural organic matter (NOM) removal processes on disinfection byproduct (DBP) formation during drinking water treatment. Master Dissertation, University of Akron, America,2010,5-10
    [34]Zularisam A W, Ahmad A, Sakinah M, et al. Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance. Separation and Purification Technology,2011,78(2):189-200
    [35]Stumm W, Morgan J J. Chemical aspects of coagulation. Journal of America Water Works Association,1962,54:971
    [36]Hahn H H, Stumm W. Kinetics of coagulation with hydrolyzed Al(III). Journal of Colloid and Interface Science,1968,28:133
    [37]Stumm W O, Melia C R. Stoichiometry of coagulation. Journal of America Water Works Association,1968,60:514-539
    [38]汤鸿霄.浑浊水铝矾絮凝机理的胶体化学观.中国土木学报,1965,(1):45-55
    [39]汤鸿霄,钱易,文湘华,等.水体颗粒物与难降解有机物的特性与控制技术(上卷).北京:中国环境科学出版社,2000,1-282
    [40]王东升,汤鸿霄,栾兆坤.颗粒物悬浮体系中聚合铝凝聚絮凝形态表征(Ⅰ):Al-Ferron法的应用研究.环境科学,1999,20(5):1-5
    [41]Wang D S. Tang H X, John G. Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACI:Effect of sulfate ion. Environmental Science and Technology,2002,36(8):1815-1820
    [42]Feng C H, Tang H X, Wang D S. Differentiation of hydroxyl-aluminum species at lower OH/Al ratios by combination of 27Al NMR and Ferron assay improved with kinetic resolution. Colloids and Surfaces A,2007.305:76-82
    [43]黄廷林.王锦,石宏志,等.强化混凝去除水中的DBP先质研究.西安建筑科技大学学报,1998,30(4):328-331
    [44]Edzwald J K, Tobiason J E. Enhanced coagulation:US requirement and a broader view. Water Science and Technology,1999,40(9):63-70
    [45]Yan M Q, Wang D S, Ni J R, et al. Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation:Targets and techniques. Separation and Purification Technology,2009,68:320-327
    [46]USEPA. Enhanced coagulation and enhanced precipitative softening guidance manual.1999, EPA 815-R-99-012
    [47]Edzwald J K, Tobiason J E. Enhanced versus optimized multiple objective coagulation. Chemical Water and Wastewater Treatment. New York:Springer. 1998,113-124
    [48]Jander G, Winlel A Z. Diffusion coefficients of basic aluminum solutions. Anorganic Chemistry,1931,200:257
    [49]Brosset C. On the reactions of the aluminum ion with water. Acta Chemica Scandinavica,1952,6:910
    [50]Brosset C, Biedermann G, Sillen L G. Studies on the hydrolysis of the metal ions, Ⅵ. The aluminum ion, Al3+. Acta Chemica Scandinavica,1954,8:1917.
    [51]Sillen L G. On equilibria in systems with polynuclear complex formation, Ⅰ Methods for deducing the composition of the complexes from experimental data. "Core+links" complexes. Acta Chemica Scandinavica,1954,8(2):229
    [52]Sillen L G. On equilibria in systems with polynuclear complex formation,Ⅱ. Testing simple mechanisms which give "Core+links" complexes of composition B(A, B)n. Acta Chemica Scandinavica,1954,8(2):229
    [53]Hsu P H, Bates T F. Formation of X-ray amorphous and crystalline aluminum hydroxides. Mineralogical Magazine,1964,33:749
    [54]Mesmer R E, Baes C F. Acidity measurements at elevated temperatures, V. Aluminum ion hydrolysis. Inorganic Chemistry,1971,10:2290
    [55]Armand M, Astride V R, Jerome R, et al. Coagulation-flocculation of natural organic matter with Al Salts:Speciation and structure of the aggregates. Environmental Science and Technology.2000.34(15):3242-3246
    [56]周维芝.SO42-和/或Si032-对部分水解铝盐混凝剂性能的影响研究:[山东大学博士学位论文].济南:山东大学,2006.1-50
    [57]Rowsell J. Nazar L F. Speeiation and thermal transformation in alumina sols: structures of the polyhydroxyoxo aluminum cluster [Al30O8(OH)56(H20)26] and its 8-Keggin moiet. Journal of the American Chemical Society,2000,122(15): 3777-3778
    [58]Allouche L, Gerardin C, Loiseau T, et al. Al30:A giant aluminum polycation. Angewandte Chemie International Edition,2000,39(3):511-514
    [59]汤鸿霄.无机高分子絮凝理论与絮凝剂.北京:中国建筑工业出版社,2006:35-37,301
    [60]Gray K A, Yao C H, O'Melia C R. Inorganic metal polymers:preparation and characterization. Journal of the American Water Works Association,1995,4: 36-46
    [61]Pasrthasarathy N, Buffle J. Study of polymeric aluminum (Ⅲ) hydroxide solutions for application in wastewater treatment:Properties of the polymer and optimal conditions preparation. Water Research,1985,25-36
    [62]Tang H X, Luan Z K. Features and mechanism for coagulation-flocculation processes of polyaluminum chloride. Journal of Environmental Science,1995, 7:204-211
    [63]Lu X Q, Chen Z L, Yang X H. Spectroscopic study of aluminum speciation in removing humic substances by Al coagulation. Water Research,1999,15: 3271-3280
    [64]Exall K N. Examination of the behaviour of aluminum-based coagulants during organic matter in drinking water treatment. Ph.D. Dissertation, Queen's University, Canada,2001
    [65]Feng C G, Shi B Y, Wang D S, et al. Characteristics of simplified ferron colorimetric solution and its application in hydroxy-aluminum speciation. Colloids and Surface A,2006,287:203-211
    [66]Lin J L, Huang C, Pan J R, et al. Effect of Al(Ⅲ) speciation on coagulation of highly turbid water. Chemosphere,2008,72:189-196
    [67]Hu C Z, Liu H J, Qu J H, et al. Coagulation behavior of aluminum salts in eutrophic water:significance of Al13 species and pH control. Environmental Science and Technology,2006,40,325-331
    [68]Parker D R. Bertsch P M. Identification and quantification of the "Al13" tridecameric polycation using ferron. Environmental Science and Technology, 1992.26:908-914
    [69]谷景华.用光散射法和小角度X-射线散射法研究无机聚合絮凝剂:[博士后论文].北京:中国科学院环境生态中心,1999,1-90
    [70]Bottero J Y, Tchoubar D, Cases J M, et al. Investigation of the hydrolyzed aluminum chloride solution.Ⅱ. Nature and structure by small-angle X-ray scattering. Journal of Physics Chemistry,1982,86:3667
    [71]吕春华.氯化铝和聚合氯化铝絮凝剂的LLS和AFM研究:[博士后论文].北京:中国科学院环境生态中心,2002,1-68
    [72]Chen Z Y, Liu C J, Luan Z K, et al. Effect of total aluminium concentration on the formation and transformation of nanosized Al13 and Al30 in hydrolytic polymeric aluminium aqueous solutions. Chinese Science Bulletin,2005,50: 2010-2015
    [73]Chen Z Y, Luan Z K, Fan J H, et al. Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic aluminium solutions. Colloids Surface A,2007,292:110-118
    [74]Allouche L, Taulelle F. Conversion of Al13 Keggin ε into Al30:a reaction controlled by aluminium monomers. Inorganic Chemical Communication.2003, 6:1167-1170
    [75]Phillips B L, Lee A, Casey W H. Rates of oxygen exchange between the Al2O8Al28(OH)56(H2O)2618+(aq) (Al30) molecule and aqueous solution. Geochemist Cosmochim Acta,2003,67:2725-2733
    [76]Chen Z Y, Fan B, Peng X J, et al. Evaluation of Al30 polynuclear species in polyaluminum solutions as coagulant for water treatment. Chemosphere,2006, 64:912-918
    [77]高宝玉,李翠平,岳钦艳,等.铝离子与聚硅酸的相互作用.环境化学,1993,112(4):2682-2731
    [78]Gao B Y, Hahn H H, Hoffmann E. Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment. Water Research,2002,36: 3573-3581
    [79]Yang Z L, Gao B Y, Xu W Y, et al. Effect of OH-/Al3+and Si/Al molar ratios on the coagulation performance and residual Al speciation during surface water treatment with poly-aluminum-silicate-chloride (PASiC). Journal of Hazardous Materials,2011,189(1-2):203-210
    [80]高宝玉,岳钦艳.含铝离子聚硅酸絮凝剂的研究.环境科学,1990,11(5): 372-411.
    [81]高宝玉,汤鸿宵.聚硅酸铝盐混凝剂的研究进展.环境科学进展,1998.6(2):452-491
    [82]Tascgaw T, Nireukat O. A study of new inorganic polymer coagulants. Procedure 39th Annal Conference, Journal of America Water Works Association, 1988.107
    [83]吴早春,胡勇有,王忠民,等.新型混凝剂聚磷氯化铝在污水处理中的特性.工业水处理,1996,16(5):15-17
    [84]Ciavatta L, Luliano M, Midollini S, et al. Phosphorus-31 nuclear magnetic resonance study of aliminium (III) ortho-phosphate complexes in aqueous solution. Polyhedron,2005,24:1878-1884
    [85]何炜光,李卓美,林森树.PASS-1的特征及其净水性能的研究.水处理技术,1999,25(3):10-14
    [86]高宝玉,王秀芬,于慧,等.聚合氯化铝铁絮凝剂的性能研究.环境化学,1994.13:12-16
    [87]刘万毅.吴尚芝.复合絮凝齐PAFCS勺絮凝研究.工业水处理,1996,16(4):29-30
    [88]Sun T, Liu L L, Wan L L, et al. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash. Chemical Engineering Journal,2010,163:48-54
    [89]Sun T, Sun C H, Zhu G L, et al. Preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from fly ash. Desalination,2011,268: 270-275
    [90]Gao B Y, Yue Q Y. Effect of SO42-/Al3+ratio and OH-/Al3+value on the characterization of coagulant poly-aluminum-chloride-sulfate (PACS) and its coagulation performance in water treatment. Chemosphere,2005,61:579-584
    [91]张跃军,李潇潇,苏林,等PAC/PDM复合混凝剂用于春季长江水制水生产研究.净水技术,2008,27(6):17-20
    [92]Tan X W, Zhou X L, Hua R, et al. Technologies for the removal of humic acid from water:A short review of recent developments. The 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu China, 2010
    [93]Zhan Y H, Zhu Z L, Lin J H, et al. Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. Journal of Environmental Science,2010.22(9):1327-1334
    [94]Liu H J, Hu C Z, Zhao H, et al. Coagulation of humic acid by PACl with high content of Al13:The role of aluminum speciation. Separation and Purification. 2009,70(2):225-230
    [95]Ames R S, Jr. The effect of certain anions of the coagulations of kaolin clay with aluminum sulfate, M.S. Thesis, Illinois Institute of Technology, Chicago, 1976
    [96]Tan K H. Humic matter in soil and the environment, Marcel Dekker, Inc.:New York,2003
    [97]张声,谢曙光,张晓健,等.利用强化混凝去除水源水中天然有机物的研究进展.环境污染治理技术与设备,2003,4(8):19-22
    [98]张丽丽,朱淮武,余德顺,等.腐殖酸与铜和铅离子相互作用的荧光光谱和电导率及红外吸收光谱分析.西南大学学报(自然科学版),2008,30(7):152-156
    [99]彭立凤,董敬华,边文骅,等.发酵黄腐酸的红外光谱释析.河北师范大学学报(自然科学版),1997,21(1):86-88,99
    [100]Yantasee W, Warner C L. Sangvanich T. et al. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environmental Science and Technology,2007,41:5114-5119
    [101]Schulten H R, Schnitzer M. A state of the art structural concept for humic substances. Naturwissenschaften,1993.80:29-30
    [102]余守志,朱琰,陈荣峰.八种腐殖酸热重分析及其热分解动力学研究.染料化学学报,1990,18(1):8-15
    [103]金鹏康,王晓昌,白帆.腐殖酸臭氧氧化和过氧化氢催化氧化处理特性比较.环境化学,2005,24(5):533-537
    [104]Duan J M, Gregory J. Coagulation by hydrolyzing metal salts, Advanced Colloid Interface Science,2003,100-102:475-502
    [105]Huang C, Shiu H. Interactions between alum and organics in coagulation. Colloid Surface A,1996,113(2):155-163
    [106]Vilge-Ritter A, Masion A, Boulange T, et al. Removal of natural organic matter by coagulation-flocculat ion:A pyrolysis-GC-MS study. Environmental Science and Technology,1999,33(17):3027-3032
    [107]刘红,王东升.Al13去除水中腐殖酸的混凝作用机理.环境化学,2005,24(2):121-124
    [108]Gitelman H J, Dekker M. Aluminium and health:A review. New York:lewis publisher,1989,35
    [109]Harrington C R. A lazheimer's-disease-like changes in tauprotein processing: association with aluminum accumulation in brains of renal dialysis patients. The Lancet.1994.343:993
    [110]刘文新.天然水体及生活饮用水中铝的含量及形态分布.环境科学学报,1997,17(2):167-73
    [111]董申伟,李明玉.陈伟红,等.聚合氯化铝的盐基度与混凝性能关系研究.工业水处理,2007,27(2):53-56
    [112]高宝玉,岳钦艳,王春省.用透射电镜研究聚硅氯化铝混凝剂的结构形貌.上海环境科学,2001,20(9):414-416
    [113]Chen Z, Liu C, Luan Z, et al. Efect of total aluminum concentration on the formation and transformation of nanosized Al13 and Al30 in hydrolytic polymeric aluminum aqueous solutions. Chinese Science Bulletin,2005,50(18): 2010-2015
    [114]Zhang P Y, Herstellung und. Characterisierung polymerer anorganischer flocungsmittel. Ph. D. Dissertation, University of Karlsruhe. Ernst Grasser, Karlsruhe.2003
    [115]Edzwald J K. Coagulation in drinking water treatment:particles, organics and coagulants. In IAWQ/IWSA Joint Specialized Conference, Control of organic material by coagulation and floc separation, Water Science and Technology, 1993,27:21-35
    [116]许士洪,彭长琪,上官文峰.聚氯硫酸铝铁的制备及絮凝性能研究.环境化学,2005,24:158-161
    [117]葛小鹏,汤鸿霄,王东升,等.原子力显微镜在环境样品研究与表征中的应用与展望.环境科学学报,2005,25:5-16
    [118]Nazar G, Fu L F, Bain A D. Aging processes of alumina sol-gels: characterization of new aluminum polyoxycations by 27Al NMR spectroscopy. Chemical Mater,1991,3:602
    [119]汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异.环境化学,1997,16(6):497-504
    [120]王东升,汤鸿霄,高琼,等.Al 13形态分离纯化方法的初步研究.环境化学,2000,19:389-394
    [121]徐毅.Al13形态的分离提纯及其稳定性和凝聚絮凝作用机理:[博士学位论文].北京:中国科学院研究生院,2003,1-121
    [122]Xu Y, Wang D S, Liu Hong, et al. Timization of the separation and purification of Al13. Colloids and Surfaces A.2003,231:1-9
    [123]高宝玉,岳钦艳,王炳建,等.高Al13纳米聚合氯化铝的结构表征及混凝效果.中国环境科学,2003,23:657-660
    [124]Wang W Z, Hsu P H. The nature of polynuclear OH-Al complexes in laboratory-hydrolyzed and commercial hydroxyaluminum solutions. Clays and Clay Minerals,1994,42:356-368
    [125]Wang M, Muhammed M. Novel synthesis of Al13-cluster based alumina materials. Nanostructured Materials,1999,11(8):1219-1229
    [126]何菲.膜反应器合成聚合氯化铝研究:[博士学位论文].北京:中国科学院研究生院,2003
    [127]苏丹,乔文莉.铝(Ⅲ)水解聚合形态及在混凝中的应用.河北化工,2005,(4):24-25,48
    [128]Hu C Z, Liu H J, Qu J H, et al. Coagulation behavior of aluminum salts in eutrophic water significance of Al13 species and pH control. Environmental Science and Technology,2006,40:325-331
    [129]Tang H X. Luan Z K. The differences of behavior and mechanism between pre-polymeric inorganic flocculants and traditional coagulants. Chemical Water and Wastewater Treatment, IV,1996, ed., Hahn H H,83-93, Springer-Verlag
    [130]汤鸿霄,栾兆坤.聚合氯化铝与传统絮凝剂的凝聚-絮凝行为差异.环境化学,1997,16(6):497-505
    [131]Tang H X, Wang D S, Xu Y. Optimazation of the concepts for polyaluminum species. Chemical Water and Waste Water Treatment VIII, eds. Hahn H H, Hoffman E, Odeggaed H,139-149
    [132]蓝伟,邱慧琴,张洁,等.稳定剂对聚合氯化铁铝(PFAC)特性的影响.中北大学学报(自然科学版),2009,30(4):365-369
    [133]张瑜,任福民,张琼.聚合氯化铁复合型絮凝剂的性能比较研究.工业用水与废水,2007,38(1):73-77
    [134]Wang D S, Sun W, Xu Y, et al. Speciation stability of inorganic polymer flocculant-PACl. Colloids and Surfaces A,2004,243:1-10
    [135]Zhao C W, Wang J, Luan Z K. Preparation of high concentration polyaluminum chloride with high Alc content by membrane distillation. Chinese Journal of Chemical Engineering,2011,19(1):173-176
    [136]杨立新,何子涵,李朝霞,等.均匀碱化制备高纯聚合氯化铝的形态特征.湘潭大学自然科学学报,2005,27(4):68-72
    [137]王瑞芬,孙忠,张胤.Al(Ⅲ)盐水解聚合过程中Al5和Al9的制备及初步表征.应用化学.2009,26(7):878-880
    [138]高宝玉,刘莉莉,周维芝,等.高浓度聚硅氯化铝(PACS)中铝的水解-聚合特性研究.环境科学学报,2005,25(11),1464-1469
    [139]Li X F, Qin Z, Zhang L N. et al. Characteristics of electrodeposited Uranium films of uranium ore water samples. Nuclear Physics Review,2009,26(4): 53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700